mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 19:54:13 +00:00
fix(cohere.py): fix message parsing to handle tool calling correctly
This commit is contained in:
parent
4606b020b5
commit
cceb7b59db
5 changed files with 426 additions and 35 deletions
|
@ -1,13 +1,19 @@
|
||||||
import os, types
|
|
||||||
import json
|
import json
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import traceback
|
||||||
|
import types
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
import requests # type: ignore
|
|
||||||
import time, traceback
|
|
||||||
from typing import Callable, Optional
|
from typing import Callable, Optional
|
||||||
from litellm.utils import ModelResponse, Choices, Message, Usage
|
|
||||||
import litellm
|
|
||||||
import httpx # type: ignore
|
import httpx # type: ignore
|
||||||
from .prompt_templates.factory import cohere_message_pt
|
import requests # type: ignore
|
||||||
|
|
||||||
|
import litellm
|
||||||
|
from litellm.types.llms.cohere import ToolResultObject
|
||||||
|
from litellm.utils import Choices, Message, ModelResponse, Usage
|
||||||
|
|
||||||
|
from .prompt_templates.factory import cohere_message_pt, cohere_messages_pt_v2
|
||||||
|
|
||||||
|
|
||||||
class CohereError(Exception):
|
class CohereError(Exception):
|
||||||
|
@ -112,7 +118,7 @@ class CohereChatConfig:
|
||||||
|
|
||||||
def validate_environment(api_key):
|
def validate_environment(api_key):
|
||||||
headers = {
|
headers = {
|
||||||
"Request-Source":"unspecified:litellm",
|
"Request-Source": "unspecified:litellm",
|
||||||
"accept": "application/json",
|
"accept": "application/json",
|
||||||
"content-type": "application/json",
|
"content-type": "application/json",
|
||||||
}
|
}
|
||||||
|
@ -196,17 +202,17 @@ def completion(
|
||||||
api_base: str,
|
api_base: str,
|
||||||
model_response: ModelResponse,
|
model_response: ModelResponse,
|
||||||
print_verbose: Callable,
|
print_verbose: Callable,
|
||||||
|
optional_params: dict,
|
||||||
encoding,
|
encoding,
|
||||||
api_key,
|
api_key,
|
||||||
logging_obj,
|
logging_obj,
|
||||||
optional_params=None,
|
|
||||||
litellm_params=None,
|
litellm_params=None,
|
||||||
logger_fn=None,
|
logger_fn=None,
|
||||||
):
|
):
|
||||||
headers = validate_environment(api_key)
|
headers = validate_environment(api_key)
|
||||||
completion_url = api_base
|
completion_url = api_base
|
||||||
model = model
|
model = model
|
||||||
prompt, tool_results = cohere_message_pt(messages=messages)
|
most_recent_message, chat_history = cohere_messages_pt_v2(messages=messages)
|
||||||
|
|
||||||
## Load Config
|
## Load Config
|
||||||
config = litellm.CohereConfig.get_config()
|
config = litellm.CohereConfig.get_config()
|
||||||
|
@ -221,18 +227,18 @@ def completion(
|
||||||
_is_function_call = True
|
_is_function_call = True
|
||||||
cohere_tools = construct_cohere_tool(tools=optional_params["tools"])
|
cohere_tools = construct_cohere_tool(tools=optional_params["tools"])
|
||||||
optional_params["tools"] = cohere_tools
|
optional_params["tools"] = cohere_tools
|
||||||
if len(tool_results) > 0:
|
if isinstance(most_recent_message, dict):
|
||||||
optional_params["tool_results"] = tool_results
|
optional_params["tool_results"] = [most_recent_message]
|
||||||
|
elif isinstance(most_recent_message, str):
|
||||||
|
optional_params["message"] = most_recent_message
|
||||||
data = {
|
data = {
|
||||||
"model": model,
|
"model": model,
|
||||||
"message": prompt,
|
|
||||||
**optional_params,
|
**optional_params,
|
||||||
}
|
}
|
||||||
|
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.pre_call(
|
logging_obj.pre_call(
|
||||||
input=prompt,
|
input=most_recent_message,
|
||||||
api_key=api_key,
|
api_key=api_key,
|
||||||
additional_args={
|
additional_args={
|
||||||
"complete_input_dict": data,
|
"complete_input_dict": data,
|
||||||
|
@ -256,7 +262,7 @@ def completion(
|
||||||
else:
|
else:
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
input=prompt,
|
input=most_recent_message,
|
||||||
api_key=api_key,
|
api_key=api_key,
|
||||||
original_response=response.text,
|
original_response=response.text,
|
||||||
additional_args={"complete_input_dict": data},
|
additional_args={"complete_input_dict": data},
|
||||||
|
|
|
@ -1415,16 +1415,37 @@ def convert_to_documents(
|
||||||
return documents
|
return documents
|
||||||
|
|
||||||
|
|
||||||
def convert_openai_message_to_cohere_tool_result(message):
|
from litellm.types.llms.cohere import (
|
||||||
|
CallObject,
|
||||||
|
ChatHistory,
|
||||||
|
ChatHistoryChatBot,
|
||||||
|
ChatHistorySystem,
|
||||||
|
ChatHistoryToolResult,
|
||||||
|
ChatHistoryUser,
|
||||||
|
ToolCallObject,
|
||||||
|
ToolResultObject,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_openai_message_to_cohere_tool_result(
|
||||||
|
message, tool_calls: List
|
||||||
|
) -> ToolResultObject:
|
||||||
"""
|
"""
|
||||||
OpenAI message with a tool result looks like:
|
OpenAI message with a tool result looks like:
|
||||||
{
|
{
|
||||||
"tool_call_id": "tool_1",
|
"tool_call_id": "tool_1",
|
||||||
"role": "tool",
|
"role": "tool",
|
||||||
"name": "get_current_weather",
|
|
||||||
"content": {"location": "San Francisco, CA", "unit": "fahrenheit", "temperature": "72"},
|
"content": {"location": "San Francisco, CA", "unit": "fahrenheit", "temperature": "72"},
|
||||||
},
|
},
|
||||||
"""
|
"""
|
||||||
|
"""
|
||||||
|
OpenAI message with a function call looks like:
|
||||||
|
{
|
||||||
|
"role": "function",
|
||||||
|
"name": "get_current_weather",
|
||||||
|
"content": "function result goes here",
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Cohere tool_results look like:
|
Cohere tool_results look like:
|
||||||
|
@ -1434,7 +1455,6 @@ def convert_openai_message_to_cohere_tool_result(message):
|
||||||
"parameters": {
|
"parameters": {
|
||||||
"day": "2023-09-29"
|
"day": "2023-09-29"
|
||||||
},
|
},
|
||||||
"generation_id": "4807c924-9003-4d6b-8069-eda03962c465"
|
|
||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
|
@ -1444,30 +1464,255 @@ def convert_openai_message_to_cohere_tool_result(message):
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"""
|
"""
|
||||||
|
content_str: str = message.get("content", "")
|
||||||
|
if len(content_str) > 0:
|
||||||
|
try:
|
||||||
|
content = json.loads(content_str)
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
content = {"result": content_str}
|
||||||
|
else:
|
||||||
|
content = {}
|
||||||
|
name = ""
|
||||||
|
arguments = {}
|
||||||
|
# Recover name from last message with tool calls
|
||||||
|
if len(tool_calls) > 0:
|
||||||
|
tools = tool_calls
|
||||||
|
msg_tool_call_id = message.get("tool_call_id", None)
|
||||||
|
for tool in tools:
|
||||||
|
prev_tool_call_id = tool.get("id", None)
|
||||||
|
if (
|
||||||
|
msg_tool_call_id
|
||||||
|
and prev_tool_call_id
|
||||||
|
and msg_tool_call_id == prev_tool_call_id
|
||||||
|
):
|
||||||
|
name = tool.get("function", {}).get("name", "")
|
||||||
|
arguments_str = tool.get("function", {}).get("arguments", "")
|
||||||
|
if arguments_str is not None and len(arguments_str) > 0:
|
||||||
|
arguments = json.loads(arguments_str)
|
||||||
|
|
||||||
tool_call_id = message.get("tool_call_id")
|
if message["role"] == "function":
|
||||||
name = message.get("name")
|
name = message.get("name")
|
||||||
content = message.get("content")
|
cohere_tool_result: ToolResultObject = {
|
||||||
|
"call": CallObject(name=name, parameters=arguments),
|
||||||
|
"outputs": [content],
|
||||||
|
}
|
||||||
|
return cohere_tool_result
|
||||||
|
else:
|
||||||
|
# We can't determine from openai message format whether it's a successful or
|
||||||
|
# error call result so default to the successful result template
|
||||||
|
|
||||||
# Create the Cohere tool_result dictionary
|
cohere_tool_result = {
|
||||||
cohere_tool_result = {
|
"call": CallObject(name=name, parameters=arguments),
|
||||||
"call": {
|
"outputs": [content],
|
||||||
"name": name,
|
}
|
||||||
"parameters": {"location": "San Francisco, CA"},
|
return cohere_tool_result
|
||||||
"generation_id": tool_call_id,
|
|
||||||
},
|
|
||||||
"outputs": convert_to_documents(content),
|
def get_all_tool_calls(messages: List) -> List:
|
||||||
|
"""
|
||||||
|
Returns extracted list of `tool_calls`.
|
||||||
|
|
||||||
|
Done to handle openai no longer returning tool call 'name' in tool results.
|
||||||
|
"""
|
||||||
|
tool_calls: List = []
|
||||||
|
for m in messages:
|
||||||
|
if m.get("tool_calls", None) is not None:
|
||||||
|
if isinstance(m["tool_calls"], list):
|
||||||
|
tool_calls.extend(m["tool_calls"])
|
||||||
|
|
||||||
|
return tool_calls
|
||||||
|
|
||||||
|
|
||||||
|
def convert_to_cohere_tool_invoke(tool_calls: list) -> List[ToolCallObject]:
|
||||||
|
"""
|
||||||
|
OpenAI tool invokes:
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"content": null,
|
||||||
|
"tool_calls": [
|
||||||
|
{
|
||||||
|
"id": "call_abc123",
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "get_current_weather",
|
||||||
|
"arguments": "{\n\"location\": \"Boston, MA\"\n}"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
Cohere tool invokes:
|
||||||
|
{
|
||||||
|
"role": "CHATBOT",
|
||||||
|
"tool_calls": [{"name": "get_weather", "parameters": {"location": "San Francisco, CA"}}]
|
||||||
}
|
}
|
||||||
return cohere_tool_result
|
"""
|
||||||
|
|
||||||
|
cohere_tool_invoke: List[ToolCallObject] = [
|
||||||
|
{
|
||||||
|
"name": get_attribute_or_key(
|
||||||
|
get_attribute_or_key(tool, "function"), "name"
|
||||||
|
),
|
||||||
|
"parameters": json.loads(
|
||||||
|
get_attribute_or_key(
|
||||||
|
get_attribute_or_key(tool, "function"), "arguments"
|
||||||
|
)
|
||||||
|
),
|
||||||
|
}
|
||||||
|
for tool in tool_calls
|
||||||
|
if get_attribute_or_key(tool, "type") == "function"
|
||||||
|
]
|
||||||
|
|
||||||
|
return cohere_tool_invoke
|
||||||
|
|
||||||
|
|
||||||
|
def cohere_messages_pt_v2(
|
||||||
|
messages: List,
|
||||||
|
) -> Tuple[Union[str, ToolResultObject], ChatHistory]:
|
||||||
|
"""
|
||||||
|
Returns a tuple(Union[tool_result, message], chat_history)
|
||||||
|
|
||||||
|
- if last message is tool result -> return 'tool_result'
|
||||||
|
- if last message is text -> return message (str)
|
||||||
|
|
||||||
|
- return preceding messages as 'chat_history'
|
||||||
|
|
||||||
|
Note:
|
||||||
|
- cannot specify message if the last entry in chat history contains tool results
|
||||||
|
- message must be at least 1 token long or tool results must be specified.
|
||||||
|
"""
|
||||||
|
tool_calls: List = get_all_tool_calls(messages=messages)
|
||||||
|
|
||||||
|
## GET MOST RECENT MESSAGE
|
||||||
|
most_recent_message = messages.pop(-1)
|
||||||
|
returned_message: Union[ToolResultObject, str] = ""
|
||||||
|
if (
|
||||||
|
most_recent_message.get("role", "") is not None
|
||||||
|
and most_recent_message["role"] == "tool"
|
||||||
|
):
|
||||||
|
# tool result
|
||||||
|
returned_message = convert_openai_message_to_cohere_tool_result(
|
||||||
|
most_recent_message, tool_calls
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
content: Union[str, List] = most_recent_message.get("content")
|
||||||
|
if isinstance(content, str):
|
||||||
|
returned_message = content
|
||||||
|
else:
|
||||||
|
for chunk in content:
|
||||||
|
if chunk.get("type") == "text":
|
||||||
|
returned_message += chunk.get("text")
|
||||||
|
|
||||||
|
## CREATE CHAT HISTORY
|
||||||
|
user_message_types = {"user"}
|
||||||
|
tool_message_types = {"tool", "function"}
|
||||||
|
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, merge them.
|
||||||
|
new_messages: ChatHistory = []
|
||||||
|
msg_i = 0
|
||||||
|
|
||||||
|
while msg_i < len(messages):
|
||||||
|
user_content: str = ""
|
||||||
|
init_msg_i = msg_i
|
||||||
|
## MERGE CONSECUTIVE USER CONTENT ##
|
||||||
|
while msg_i < len(messages) and messages[msg_i]["role"] in user_message_types:
|
||||||
|
if isinstance(messages[msg_i]["content"], list):
|
||||||
|
for m in messages[msg_i]["content"]:
|
||||||
|
if m.get("type", "") == "text":
|
||||||
|
user_content += m["text"]
|
||||||
|
else:
|
||||||
|
user_content += messages[msg_i]["content"]
|
||||||
|
msg_i += 1
|
||||||
|
|
||||||
|
if len(user_content) > 0:
|
||||||
|
new_messages.append(ChatHistoryUser(role="USER", message=user_content))
|
||||||
|
|
||||||
|
system_content: str = ""
|
||||||
|
## MERGE CONSECUTIVE SYSTEM CONTENT ##
|
||||||
|
while msg_i < len(messages) and messages[msg_i]["role"] == "system":
|
||||||
|
if isinstance(messages[msg_i]["content"], list):
|
||||||
|
for m in messages[msg_i]["content"]:
|
||||||
|
if m.get("type", "") == "text":
|
||||||
|
system_content += m["text"]
|
||||||
|
else:
|
||||||
|
system_content += messages[msg_i]["content"]
|
||||||
|
msg_i += 1
|
||||||
|
|
||||||
|
if len(system_content) > 0:
|
||||||
|
new_messages.append(
|
||||||
|
ChatHistorySystem(role="SYSTEM", message=system_content)
|
||||||
|
)
|
||||||
|
|
||||||
|
assistant_content: str = ""
|
||||||
|
assistant_tool_calls: List[ToolCallObject] = []
|
||||||
|
## MERGE CONSECUTIVE ASSISTANT CONTENT ##
|
||||||
|
while msg_i < len(messages) and messages[msg_i]["role"] == "assistant":
|
||||||
|
assistant_text = (
|
||||||
|
messages[msg_i].get("content") or ""
|
||||||
|
) # either string or none
|
||||||
|
if assistant_text:
|
||||||
|
assistant_content += assistant_text
|
||||||
|
|
||||||
|
if messages[msg_i].get(
|
||||||
|
"tool_calls", []
|
||||||
|
): # support assistant tool invoke conversion
|
||||||
|
assistant_tool_calls.extend(
|
||||||
|
convert_to_cohere_tool_invoke(messages[msg_i]["tool_calls"])
|
||||||
|
)
|
||||||
|
|
||||||
|
if messages[msg_i].get("function_call"):
|
||||||
|
assistant_tool_calls.extend(
|
||||||
|
convert_to_cohere_tool_invoke(messages[msg_i]["function_call"])
|
||||||
|
)
|
||||||
|
|
||||||
|
msg_i += 1
|
||||||
|
|
||||||
|
if len(assistant_content) > 0:
|
||||||
|
new_messages.append(
|
||||||
|
ChatHistoryChatBot(
|
||||||
|
role="CHATBOT",
|
||||||
|
message=assistant_content,
|
||||||
|
tool_calls=assistant_tool_calls,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
## MERGE CONSECUTIVE TOOL RESULTS
|
||||||
|
tool_results: List[ToolResultObject] = []
|
||||||
|
while msg_i < len(messages) and messages[msg_i]["role"] in tool_message_types:
|
||||||
|
tool_results.append(
|
||||||
|
convert_openai_message_to_cohere_tool_result(
|
||||||
|
messages[msg_i], tool_calls
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
msg_i += 1
|
||||||
|
|
||||||
|
if len(tool_results) > 0:
|
||||||
|
new_messages.append(
|
||||||
|
ChatHistoryToolResult(role="TOOL", tool_results=tool_results)
|
||||||
|
)
|
||||||
|
|
||||||
|
if msg_i == init_msg_i: # prevent infinite loops
|
||||||
|
raise Exception(
|
||||||
|
"Invalid Message passed in - {}. File an issue https://github.com/BerriAI/litellm/issues".format(
|
||||||
|
messages[msg_i]
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
return returned_message, new_messages
|
||||||
|
|
||||||
|
|
||||||
def cohere_message_pt(messages: list):
|
def cohere_message_pt(messages: list):
|
||||||
|
tool_calls: List = get_all_tool_calls(messages=messages)
|
||||||
prompt = ""
|
prompt = ""
|
||||||
tool_results = []
|
tool_results = []
|
||||||
for message in messages:
|
for message in messages:
|
||||||
# check if this is a tool_call result
|
# check if this is a tool_call result
|
||||||
if message["role"] == "tool":
|
if message["role"] == "tool":
|
||||||
tool_result = convert_openai_message_to_cohere_tool_result(message)
|
tool_result = convert_openai_message_to_cohere_tool_result(
|
||||||
|
message, tool_calls=tool_calls
|
||||||
|
)
|
||||||
tool_results.append(tool_result)
|
tool_results.append(tool_result)
|
||||||
elif message.get("content"):
|
elif message.get("content"):
|
||||||
prompt += message["content"] + "\n\n"
|
prompt += message["content"] + "\n\n"
|
||||||
|
|
|
@ -1121,7 +1121,7 @@ async def test_gemini_pro_httpx_custom_api_base(provider):
|
||||||
assert "hello" in mock_call.call_args.kwargs["headers"]
|
assert "hello" in mock_call.call_args.kwargs["headers"]
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skip(reason="exhausted vertex quota. need to refactor to mock the call")
|
# @pytest.mark.skip(reason="exhausted vertex quota. need to refactor to mock the call")
|
||||||
@pytest.mark.parametrize("sync_mode", [True])
|
@pytest.mark.parametrize("sync_mode", [True])
|
||||||
@pytest.mark.parametrize("provider", ["vertex_ai"])
|
@pytest.mark.parametrize("provider", ["vertex_ai"])
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
|
@ -1159,7 +1159,7 @@ async def test_gemini_pro_function_calling(provider, sync_mode):
|
||||||
# The result of the tool call is added to the history
|
# The result of the tool call is added to the history
|
||||||
{
|
{
|
||||||
"role": "tool",
|
"role": "tool",
|
||||||
"tool_call_id": "call_123",
|
"tool_call_id": "call_123",
|
||||||
"content": "27 degrees celsius and clear in San Francisco, CA",
|
"content": "27 degrees celsius and clear in San Francisco, CA",
|
||||||
},
|
},
|
||||||
# Now the assistant can reply with the result of the tool call.
|
# Now the assistant can reply with the result of the tool call.
|
||||||
|
@ -1381,6 +1381,7 @@ async def test_vertexai_aembedding():
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
pytest.fail(f"Error occurred: {e}")
|
pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
def test_tool_name_conversion():
|
def test_tool_name_conversion():
|
||||||
messages = [
|
messages = [
|
||||||
|
@ -1424,7 +1425,8 @@ def test_tool_name_conversion():
|
||||||
|
|
||||||
# assert that the last tool response has the corresponding tool name
|
# assert that the last tool response has the corresponding tool name
|
||||||
assert (
|
assert (
|
||||||
translated_messages[-1]["parts"][0]["function_response"]["name"] == "get_weather"
|
translated_messages[-1]["parts"][0]["function_response"]["name"]
|
||||||
|
== "get_weather"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1585,6 +1587,7 @@ def test_prompt_factory():
|
||||||
|
|
||||||
print(f"\n\ntranslated_messages: {translated_messages}\ntranslated_messages")
|
print(f"\n\ntranslated_messages: {translated_messages}\ntranslated_messages")
|
||||||
|
|
||||||
|
|
||||||
def test_prompt_factory_nested():
|
def test_prompt_factory_nested():
|
||||||
messages = [
|
messages = [
|
||||||
{"role": "user", "content": [{"type": "text", "text": "hi"}]},
|
{"role": "user", "content": [{"type": "text", "text": "hi"}]},
|
||||||
|
@ -1606,4 +1609,4 @@ def test_prompt_factory_nested():
|
||||||
assert "text" in message["parts"][0], "Missing 'text' from 'parts'"
|
assert "text" in message["parts"][0], "Missing 'text' from 'parts'"
|
||||||
assert isinstance(
|
assert isinstance(
|
||||||
message["parts"][0]["text"], str
|
message["parts"][0]["text"], str
|
||||||
), "'text' value not a string."
|
), "'text' value not a string."
|
||||||
|
|
|
@ -408,6 +408,97 @@ def test_completion_claude_3_function_call(model):
|
||||||
pytest.fail(f"Error occurred: {e}")
|
pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("sync_mode", [True])
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"model",
|
||||||
|
[
|
||||||
|
"gpt-3.5-turbo",
|
||||||
|
"claude-3-opus-20240229",
|
||||||
|
"command-r",
|
||||||
|
"anthropic.claude-3-sonnet-20240229-v1:0",
|
||||||
|
# "azure_ai/command-r-plus"
|
||||||
|
],
|
||||||
|
)
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_model_function_invoke(model, sync_mode):
|
||||||
|
try:
|
||||||
|
litellm.set_verbose = True
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "Your name is Litellm Bot, you are a helpful assistant",
|
||||||
|
},
|
||||||
|
# User asks for their name and weather in San Francisco
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "Hello, what is your name and can you tell me the weather?",
|
||||||
|
},
|
||||||
|
# Assistant replies with a tool call
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"content": "",
|
||||||
|
"tool_calls": [
|
||||||
|
{
|
||||||
|
"id": "call_123",
|
||||||
|
"type": "function",
|
||||||
|
"index": 0,
|
||||||
|
"function": {
|
||||||
|
"name": "get_weather",
|
||||||
|
"arguments": '{"location":"San Francisco, CA"}',
|
||||||
|
},
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
# The result of the tool call is added to the history
|
||||||
|
{
|
||||||
|
"role": "tool",
|
||||||
|
"tool_call_id": "call_123",
|
||||||
|
"content": "27 degrees celsius and clear in San Francisco, CA",
|
||||||
|
},
|
||||||
|
# Now the assistant can reply with the result of the tool call.
|
||||||
|
]
|
||||||
|
|
||||||
|
tools = [
|
||||||
|
{
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "get_weather",
|
||||||
|
"description": "Get the current weather in a given location",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"location": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "The city and state, e.g. San Francisco, CA",
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"required": ["location"],
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
data = {
|
||||||
|
"model": model,
|
||||||
|
"messages": messages,
|
||||||
|
"tools": tools,
|
||||||
|
}
|
||||||
|
if sync_mode:
|
||||||
|
response = litellm.completion(**data)
|
||||||
|
else:
|
||||||
|
response = await litellm.acompletion(**data)
|
||||||
|
|
||||||
|
print(f"response: {response}")
|
||||||
|
except litellm.RateLimitError as e:
|
||||||
|
pass
|
||||||
|
except Exception as e:
|
||||||
|
if "429 Quota exceeded" in str(e):
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
pytest.fail("An unexpected exception occurred - {}".format(str(e)))
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_anthropic_no_content_error():
|
async def test_anthropic_no_content_error():
|
||||||
"""
|
"""
|
||||||
|
|
46
litellm/types/llms/cohere.py
Normal file
46
litellm/types/llms/cohere.py
Normal file
|
@ -0,0 +1,46 @@
|
||||||
|
from typing import Iterable, List, Optional, Union
|
||||||
|
|
||||||
|
from typing_extensions import Literal, Required, TypedDict
|
||||||
|
|
||||||
|
|
||||||
|
class CallObject(TypedDict):
|
||||||
|
name: str
|
||||||
|
parameters: dict
|
||||||
|
|
||||||
|
|
||||||
|
class ToolResultObject(TypedDict):
|
||||||
|
call: CallObject
|
||||||
|
outputs: List[dict]
|
||||||
|
|
||||||
|
|
||||||
|
class ChatHistoryToolResult(TypedDict, total=False):
|
||||||
|
role: Required[Literal["TOOL"]]
|
||||||
|
tool_results: List[ToolResultObject]
|
||||||
|
|
||||||
|
|
||||||
|
class ToolCallObject(TypedDict):
|
||||||
|
name: str
|
||||||
|
parameters: dict
|
||||||
|
|
||||||
|
|
||||||
|
class ChatHistoryUser(TypedDict, total=False):
|
||||||
|
role: Required[Literal["USER"]]
|
||||||
|
message: str
|
||||||
|
tool_calls: List[ToolCallObject]
|
||||||
|
|
||||||
|
|
||||||
|
class ChatHistorySystem(TypedDict, total=False):
|
||||||
|
role: Required[Literal["SYSTEM"]]
|
||||||
|
message: str
|
||||||
|
tool_calls: List[ToolCallObject]
|
||||||
|
|
||||||
|
|
||||||
|
class ChatHistoryChatBot(TypedDict, total=False):
|
||||||
|
role: Required[Literal["CHATBOT"]]
|
||||||
|
message: str
|
||||||
|
tool_calls: List[ToolCallObject]
|
||||||
|
|
||||||
|
|
||||||
|
ChatHistory = List[
|
||||||
|
Union[ChatHistorySystem, ChatHistoryChatBot, ChatHistoryUser, ChatHistoryToolResult]
|
||||||
|
]
|
Loading…
Add table
Add a link
Reference in a new issue