mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
feat - add afile_content, file_content
This commit is contained in:
parent
18830e58e9
commit
cd4a3627e8
4 changed files with 222 additions and 2 deletions
|
@ -30,6 +30,8 @@ from ..types.llms.openai import (
|
|||
FileTypes,
|
||||
FileObject,
|
||||
Batch,
|
||||
FileContentRequest,
|
||||
HttpxBinaryResponseContent,
|
||||
)
|
||||
|
||||
####### ENVIRONMENT VARIABLES ###################
|
||||
|
@ -170,6 +172,134 @@ def create_file(
|
|||
raise e
|
||||
|
||||
|
||||
async def afile_content(
|
||||
file_id: str,
|
||||
custom_llm_provider: Literal["openai"] = "openai",
|
||||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
) -> Coroutine[Any, Any, HttpxBinaryResponseContent]:
|
||||
"""
|
||||
Async: Get file contents
|
||||
|
||||
LiteLLM Equivalent of GET https://api.openai.com/v1/files
|
||||
"""
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
kwargs["afile_content"] = True
|
||||
|
||||
# Use a partial function to pass your keyword arguments
|
||||
func = partial(
|
||||
file_content,
|
||||
file_id,
|
||||
custom_llm_provider,
|
||||
extra_headers,
|
||||
extra_body,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Add the context to the function
|
||||
ctx = contextvars.copy_context()
|
||||
func_with_context = partial(ctx.run, func)
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
if asyncio.iscoroutine(init_response):
|
||||
response = await init_response
|
||||
else:
|
||||
response = init_response # type: ignore
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
def file_content(
|
||||
file_id: str,
|
||||
custom_llm_provider: Literal["openai"] = "openai",
|
||||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
) -> Union[HttpxBinaryResponseContent, Coroutine[Any, Any, HttpxBinaryResponseContent]]:
|
||||
"""
|
||||
Returns the contents of the specified file.
|
||||
|
||||
LiteLLM Equivalent of POST: POST https://api.openai.com/v1/files
|
||||
"""
|
||||
try:
|
||||
optional_params = GenericLiteLLMParams(**kwargs)
|
||||
if custom_llm_provider == "openai":
|
||||
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
||||
api_base = (
|
||||
optional_params.api_base
|
||||
or litellm.api_base
|
||||
or os.getenv("OPENAI_API_BASE")
|
||||
or "https://api.openai.com/v1"
|
||||
)
|
||||
organization = (
|
||||
optional_params.organization
|
||||
or litellm.organization
|
||||
or os.getenv("OPENAI_ORGANIZATION", None)
|
||||
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
||||
)
|
||||
# set API KEY
|
||||
api_key = (
|
||||
optional_params.api_key
|
||||
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
||||
or litellm.openai_key
|
||||
or os.getenv("OPENAI_API_KEY")
|
||||
)
|
||||
### TIMEOUT LOGIC ###
|
||||
timeout = (
|
||||
optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
||||
)
|
||||
# set timeout for 10 minutes by default
|
||||
|
||||
if (
|
||||
timeout is not None
|
||||
and isinstance(timeout, httpx.Timeout)
|
||||
and supports_httpx_timeout(custom_llm_provider) == False
|
||||
):
|
||||
read_timeout = timeout.read or 600
|
||||
timeout = read_timeout # default 10 min timeout
|
||||
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
||||
timeout = float(timeout) # type: ignore
|
||||
elif timeout is None:
|
||||
timeout = 600.0
|
||||
|
||||
_file_content_request = FileContentRequest(
|
||||
file_id=file_id,
|
||||
extra_headers=extra_headers,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
_is_async = kwargs.pop("afile_content", False) is True
|
||||
|
||||
response = openai_files_instance.file_content(
|
||||
_is_async=_is_async,
|
||||
file_content_request=_file_content_request,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
timeout=timeout,
|
||||
max_retries=optional_params.max_retries,
|
||||
organization=organization,
|
||||
)
|
||||
else:
|
||||
raise litellm.exceptions.BadRequestError(
|
||||
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format(
|
||||
custom_llm_provider
|
||||
),
|
||||
model="n/a",
|
||||
llm_provider=custom_llm_provider,
|
||||
response=httpx.Response(
|
||||
status_code=400,
|
||||
content="Unsupported provider",
|
||||
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
||||
),
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
async def acreate_batch(
|
||||
completion_window: Literal["24h"],
|
||||
endpoint: Literal["/v1/chat/completions", "/v1/embeddings", "/v1/completions"],
|
||||
|
|
|
@ -1585,6 +1585,54 @@ class OpenAIFilesAPI(BaseLLM):
|
|||
response = openai_client.files.create(**create_file_data)
|
||||
return response
|
||||
|
||||
async def afile_content(
|
||||
self,
|
||||
file_content_request: FileContentRequest,
|
||||
openai_client: AsyncOpenAI,
|
||||
) -> HttpxBinaryResponseContent:
|
||||
response = await openai_client.files.content(**file_content_request)
|
||||
return response
|
||||
|
||||
def file_content(
|
||||
self,
|
||||
_is_async: bool,
|
||||
file_content_request: FileContentRequest,
|
||||
api_base: str,
|
||||
api_key: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
organization: Optional[str],
|
||||
client: Optional[Union[OpenAI, AsyncOpenAI]] = None,
|
||||
) -> Union[
|
||||
HttpxBinaryResponseContent, Coroutine[Any, Any, HttpxBinaryResponseContent]
|
||||
]:
|
||||
openai_client: Optional[Union[OpenAI, AsyncOpenAI]] = self.get_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
organization=organization,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
if openai_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(openai_client, AsyncOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.afile_content( # type: ignore
|
||||
file_content_request=file_content_request,
|
||||
openai_client=openai_client,
|
||||
)
|
||||
response = openai_client.files.content(**file_content_request)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
class OpenAIBatchesAPI(BaseLLM):
|
||||
"""
|
||||
|
|
|
@ -60,8 +60,6 @@ def test_create_batch():
|
|||
create_batch_response.input_file_id == batch_input_file_id
|
||||
), f"Failed to create batch, expected input_file_id to be {batch_input_file_id} but got {create_batch_response.input_file_id}"
|
||||
|
||||
time.sleep(30)
|
||||
|
||||
retrieved_batch = litellm.retrieve_batch(
|
||||
batch_id=create_batch_response.id, custom_llm_provider="openai"
|
||||
)
|
||||
|
@ -70,6 +68,17 @@ def test_create_batch():
|
|||
|
||||
assert retrieved_batch.id == create_batch_response.id
|
||||
|
||||
file_content = litellm.file_content(
|
||||
file_id=batch_input_file_id, custom_llm_provider="openai"
|
||||
)
|
||||
|
||||
result = file_content.content
|
||||
|
||||
result_file_name = "batch_job_results_furniture.jsonl"
|
||||
|
||||
with open(result_file_name, "wb") as file:
|
||||
file.write(result)
|
||||
|
||||
pass
|
||||
|
||||
|
||||
|
@ -127,6 +136,18 @@ async def test_async_create_batch():
|
|||
|
||||
assert retrieved_batch.id == create_batch_response.id
|
||||
|
||||
# try to get file content for our original file
|
||||
|
||||
file_content = await litellm.afile_content(
|
||||
file_id=batch_input_file_id, custom_llm_provider="openai"
|
||||
)
|
||||
|
||||
print("file content = ", file_content)
|
||||
|
||||
# # write this file content to a file
|
||||
# with open("file_content.json", "w") as f:
|
||||
# json.dump(file_content, f)
|
||||
|
||||
|
||||
def test_retrieve_batch():
|
||||
pass
|
||||
|
|
|
@ -20,6 +20,7 @@ from openai.types.beta.assistant import Assistant
|
|||
from openai.pagination import SyncCursorPage
|
||||
from os import PathLike
|
||||
from openai.types import FileObject, Batch
|
||||
from openai._legacy_response import HttpxBinaryResponseContent
|
||||
|
||||
from typing import TypedDict, List, Optional, Tuple, Mapping, IO
|
||||
|
||||
|
@ -186,6 +187,26 @@ class CreateFileRequest(TypedDict, total=False):
|
|||
timeout: Optional[float]
|
||||
|
||||
|
||||
class FileContentRequest(TypedDict, total=False):
|
||||
"""
|
||||
FileContentRequest
|
||||
Used by Assistants API, Batches API, and Fine-Tunes API
|
||||
|
||||
Required Params:
|
||||
file_id: str
|
||||
|
||||
Optional Params:
|
||||
extra_headers: Optional[Dict[str, str]]
|
||||
extra_body: Optional[Dict[str, str]] = None
|
||||
timeout: Optional[float] = None
|
||||
"""
|
||||
|
||||
file_id: str
|
||||
extra_headers: Optional[Dict[str, str]]
|
||||
extra_body: Optional[Dict[str, str]]
|
||||
timeout: Optional[float]
|
||||
|
||||
|
||||
# OpenAI Batches Types
|
||||
class CreateBatchRequest(TypedDict, total=False):
|
||||
"""
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue