mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
Litellm vllm refactor (#7158)
* refactor(vllm/): move vllm to use base llm config * test: mark flaky test
This commit is contained in:
parent
e9fbefca5d
commit
cd9b92b402
9 changed files with 48 additions and 8 deletions
198
litellm/llms/vllm/completion/handler.py
Normal file
198
litellm/llms/vllm/completion/handler.py
Normal file
|
@ -0,0 +1,198 @@
|
|||
import json
|
||||
import os
|
||||
import time # type: ignore
|
||||
from enum import Enum
|
||||
from typing import Any, Callable
|
||||
|
||||
import httpx
|
||||
import requests # type: ignore
|
||||
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
|
||||
from ...prompt_templates.factory import custom_prompt, prompt_factory
|
||||
|
||||
llm = None
|
||||
|
||||
|
||||
class VLLMError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(method="POST", url="http://0.0.0.0:8000")
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
# check if vllm is installed
|
||||
def validate_environment(model: str):
|
||||
global llm
|
||||
try:
|
||||
from litellm.llms.vllm.completion.handler import LLM # type: ignore
|
||||
from litellm.llms.vllm.completion.handler import SamplingParams # type: ignore
|
||||
|
||||
if llm is None:
|
||||
llm = LLM(model=model)
|
||||
return llm, SamplingParams
|
||||
except Exception as e:
|
||||
raise VLLMError(status_code=0, message=str(e))
|
||||
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
custom_prompt_dict={},
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
global llm
|
||||
try:
|
||||
llm, SamplingParams = validate_environment(model=model)
|
||||
except Exception as e:
|
||||
raise VLLMError(status_code=0, message=str(e))
|
||||
sampling_params = SamplingParams(**optional_params)
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details["roles"],
|
||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
prompt = prompt_factory(model=model, messages=messages)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
additional_args={"complete_input_dict": sampling_params},
|
||||
)
|
||||
|
||||
if llm:
|
||||
outputs = llm.generate(prompt, sampling_params)
|
||||
else:
|
||||
raise VLLMError(
|
||||
status_code=0, message="Need to pass in a model name to initialize vllm"
|
||||
)
|
||||
|
||||
## COMPLETION CALL
|
||||
if "stream" in optional_params and optional_params["stream"] is True:
|
||||
return iter(outputs)
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=outputs,
|
||||
additional_args={"complete_input_dict": sampling_params},
|
||||
)
|
||||
print_verbose(f"raw model_response: {outputs}")
|
||||
## RESPONSE OBJECT
|
||||
model_response.choices[0].message.content = outputs[0].outputs[0].text # type: ignore
|
||||
|
||||
## CALCULATING USAGE
|
||||
prompt_tokens = len(outputs[0].prompt_token_ids)
|
||||
completion_tokens = len(outputs[0].outputs[0].token_ids)
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
def batch_completions(
|
||||
model: str, messages: list, optional_params=None, custom_prompt_dict={}
|
||||
):
|
||||
"""
|
||||
Example usage:
|
||||
import litellm
|
||||
import os
|
||||
from litellm import batch_completion
|
||||
|
||||
|
||||
responses = batch_completion(
|
||||
model="vllm/facebook/opt-125m",
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "good morning? "
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what's the time? "
|
||||
}
|
||||
]
|
||||
]
|
||||
)
|
||||
"""
|
||||
try:
|
||||
llm, SamplingParams = validate_environment(model=model)
|
||||
except Exception as e:
|
||||
error_str = str(e)
|
||||
raise VLLMError(status_code=0, message=error_str)
|
||||
sampling_params = SamplingParams(**optional_params)
|
||||
prompts = []
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
for message in messages:
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details["roles"],
|
||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||
messages=message,
|
||||
)
|
||||
prompts.append(prompt)
|
||||
else:
|
||||
for message in messages:
|
||||
prompt = prompt_factory(model=model, messages=message)
|
||||
prompts.append(prompt)
|
||||
|
||||
if llm:
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
else:
|
||||
raise VLLMError(
|
||||
status_code=0, message="Need to pass in a model name to initialize vllm"
|
||||
)
|
||||
|
||||
final_outputs = []
|
||||
for output in outputs:
|
||||
model_response = ModelResponse()
|
||||
## RESPONSE OBJECT
|
||||
model_response.choices[0].message.content = output.outputs[0].text # type: ignore
|
||||
|
||||
## CALCULATING USAGE
|
||||
prompt_tokens = len(output.prompt_token_ids)
|
||||
completion_tokens = len(output.outputs[0].token_ids)
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
final_outputs.append(model_response)
|
||||
return final_outputs
|
||||
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
Loading…
Add table
Add a link
Reference in a new issue