Improve mocking in test_proxy_exception_mapping

Mock the calls to the backend and assert that the correct parameters are passed
to the backend.
This commit is contained in:
Marc Abramowitz 2024-05-02 14:42:20 -07:00
parent f893f8bc55
commit cdb39e90ce

View file

@ -1,6 +1,8 @@
# test that the proxy actually does exception mapping to the OpenAI format
import sys, os
from unittest import mock
import json
from dotenv import load_dotenv
load_dotenv()
@ -12,13 +14,30 @@ sys.path.insert(
import pytest
import litellm, openai
from fastapi.testclient import TestClient
from fastapi import FastAPI
from fastapi import Response
from litellm.proxy.proxy_server import (
router,
save_worker_config,
initialize,
) # Replace with the actual module where your FastAPI router is defined
invalid_authentication_error_response = Response(
status_code=401,
content=json.dumps({"error": "Invalid Authentication"}),
)
context_length_exceeded_error_response_dict = {
"error": {
"message": "AzureException - Error code: 400 - {'error': {'message': \"This model's maximum context length is 4096 tokens. However, your messages resulted in 10007 tokens. Please reduce the length of the messages.\", 'type': 'invalid_request_error', 'param': 'messages', 'code': 'context_length_exceeded'}}",
"type": None,
"param": None,
"code": 400,
},
}
context_length_exceeded_error_response = Response(
status_code=400,
content=json.dumps(context_length_exceeded_error_response_dict),
)
@pytest.fixture
def client():
@ -60,7 +79,11 @@ def test_chat_completion_exception(client):
# raise openai.AuthenticationError
def test_chat_completion_exception_azure(client):
@mock.patch(
"litellm.proxy.proxy_server.llm_router.acompletion",
return_value=invalid_authentication_error_response,
)
def test_chat_completion_exception_azure(mock_acompletion, client):
try:
# Your test data
test_data = {
@ -73,6 +96,15 @@ def test_chat_completion_exception_azure(client):
response = client.post("/chat/completions", json=test_data)
mock_acompletion.assert_called_once_with(
**test_data,
litellm_call_id=mock.ANY,
litellm_logging_obj=mock.ANY,
request_timeout=mock.ANY,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
@ -90,12 +122,21 @@ def test_chat_completion_exception_azure(client):
# raise openai.AuthenticationError
def test_embedding_auth_exception_azure(client):
@mock.patch(
"litellm.proxy.proxy_server.llm_router.aembedding",
return_value=invalid_authentication_error_response,
)
def test_embedding_auth_exception_azure(mock_aembedding, client):
try:
# Your test data
test_data = {"model": "azure-embedding", "input": ["hi"]}
response = client.post("/embeddings", json=test_data)
mock_aembedding.assert_called_once_with(
**test_data,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
print("Response from proxy=", response)
json_response = response.json()
@ -204,7 +245,11 @@ def test_embedding_exception_any_model(client):
# raise openai.BadRequestError
def test_chat_completion_exception_azure_context_window(client):
@mock.patch(
"litellm.proxy.proxy_server.llm_router.acompletion",
return_value=context_length_exceeded_error_response,
)
def test_chat_completion_exception_azure_context_window(mock_acompletion, client):
try:
# Your test data
test_data = {
@ -219,20 +264,22 @@ def test_chat_completion_exception_azure_context_window(client):
response = client.post("/chat/completions", json=test_data)
print("got response from server", response)
mock_acompletion.assert_called_once_with(
**test_data,
litellm_call_id=mock.ANY,
litellm_logging_obj=mock.ANY,
request_timeout=mock.ANY,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
assert json_response == {
"error": {
"message": "AzureException - Error code: 400 - {'error': {'message': \"This model's maximum context length is 4096 tokens. However, your messages resulted in 10007 tokens. Please reduce the length of the messages.\", 'type': 'invalid_request_error', 'param': 'messages', 'code': 'context_length_exceeded'}}",
"type": None,
"param": None,
"code": 400,
}
}
assert json_response == context_length_exceeded_error_response_dict
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")