mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
refactor location of proxy
This commit is contained in:
parent
baa5564f95
commit
ce58c53ff1
413 changed files with 2087 additions and 2088 deletions
473
litellm_proxy/fine_tuning_endpoints/endpoints.py
Normal file
473
litellm_proxy/fine_tuning_endpoints/endpoints.py
Normal file
|
@ -0,0 +1,473 @@
|
|||
#########################################################################
|
||||
|
||||
# /v1/fine_tuning Endpoints
|
||||
|
||||
# Equivalent of https://platform.openai.com/docs/api-reference/fine-tuning
|
||||
##########################################################################
|
||||
|
||||
import asyncio
|
||||
import traceback
|
||||
from typing import Optional
|
||||
|
||||
from fastapi import APIRouter, Depends, Request, Response
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm_proxy._types import *
|
||||
from litellm_proxy.auth.user_api_key_auth import user_api_key_auth
|
||||
from litellm_proxy.common_request_processing import ProxyBaseLLMRequestProcessing
|
||||
from litellm_proxy.utils import handle_exception_on_proxy
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
from litellm.types.llms.openai import LiteLLMFineTuningJobCreate
|
||||
|
||||
fine_tuning_config = None
|
||||
|
||||
|
||||
def set_fine_tuning_config(config):
|
||||
if config is None:
|
||||
return
|
||||
|
||||
global fine_tuning_config
|
||||
if not isinstance(config, list):
|
||||
raise ValueError("invalid fine_tuning config, expected a list is not a list")
|
||||
|
||||
for element in config:
|
||||
if isinstance(element, dict):
|
||||
for key, value in element.items():
|
||||
if isinstance(value, str) and value.startswith("os.environ/"):
|
||||
element[key] = litellm.get_secret(value)
|
||||
|
||||
fine_tuning_config = config
|
||||
|
||||
|
||||
# Function to search for specific custom_llm_provider and return its configuration
|
||||
def get_fine_tuning_provider_config(
|
||||
custom_llm_provider: str,
|
||||
):
|
||||
global fine_tuning_config
|
||||
if fine_tuning_config is None:
|
||||
raise ValueError(
|
||||
"fine_tuning_config is not set, set it on your config.yaml file."
|
||||
)
|
||||
for setting in fine_tuning_config:
|
||||
if setting.get("custom_llm_provider") == custom_llm_provider:
|
||||
return setting
|
||||
return None
|
||||
|
||||
|
||||
@router.post(
|
||||
"/v1/fine_tuning/jobs",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["fine-tuning"],
|
||||
summary="✨ (Enterprise) Create Fine-Tuning Job",
|
||||
)
|
||||
@router.post(
|
||||
"/fine_tuning/jobs",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["fine-tuning"],
|
||||
summary="✨ (Enterprise) Create Fine-Tuning Job",
|
||||
)
|
||||
async def create_fine_tuning_job(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
fine_tuning_request: LiteLLMFineTuningJobCreate,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
Creates a fine-tuning job which begins the process of creating a new model from a given dataset.
|
||||
This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs
|
||||
|
||||
Supports Identical Params as: https://platform.openai.com/docs/api-reference/fine-tuning/create
|
||||
|
||||
Example Curl:
|
||||
```
|
||||
curl http://localhost:4000/v1/fine_tuning/jobs \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"training_file": "file-abc123",
|
||||
"hyperparameters": {
|
||||
"n_epochs": 4
|
||||
}
|
||||
}'
|
||||
```
|
||||
"""
|
||||
from litellm_proxy.proxy_server import (
|
||||
add_litellm_data_to_request,
|
||||
general_settings,
|
||||
premium_user,
|
||||
proxy_config,
|
||||
proxy_logging_obj,
|
||||
version,
|
||||
)
|
||||
|
||||
data = fine_tuning_request.model_dump(exclude_none=True)
|
||||
try:
|
||||
if premium_user is not True:
|
||||
raise ValueError(
|
||||
f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
|
||||
)
|
||||
# Convert Pydantic model to dict
|
||||
|
||||
verbose_proxy_logger.debug(
|
||||
"Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)),
|
||||
)
|
||||
|
||||
# Include original request and headers in the data
|
||||
data = await add_litellm_data_to_request(
|
||||
data=data,
|
||||
request=request,
|
||||
general_settings=general_settings,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
version=version,
|
||||
proxy_config=proxy_config,
|
||||
)
|
||||
|
||||
# get configs for custom_llm_provider
|
||||
llm_provider_config = get_fine_tuning_provider_config(
|
||||
custom_llm_provider=fine_tuning_request.custom_llm_provider,
|
||||
)
|
||||
|
||||
# add llm_provider_config to data
|
||||
if llm_provider_config is not None:
|
||||
data.update(llm_provider_config)
|
||||
|
||||
response = await litellm.acreate_fine_tuning_job(**data)
|
||||
|
||||
### ALERTING ###
|
||||
asyncio.create_task(
|
||||
proxy_logging_obj.update_request_status(
|
||||
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
||||
)
|
||||
)
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
verbose_proxy_logger.error(
|
||||
"litellm_proxy.proxy_server.create_fine_tuning_job(): Exception occurred - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
verbose_proxy_logger.debug(traceback.format_exc())
|
||||
raise handle_exception_on_proxy(e)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/v1/fine_tuning/jobs/{fine_tuning_job_id:path}",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["fine-tuning"],
|
||||
summary="✨ (Enterprise) Retrieve Fine-Tuning Job",
|
||||
)
|
||||
@router.get(
|
||||
"/fine_tuning/jobs/{fine_tuning_job_id:path}",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["fine-tuning"],
|
||||
summary="✨ (Enterprise) Retrieve Fine-Tuning Job",
|
||||
)
|
||||
async def retrieve_fine_tuning_job(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
fine_tuning_job_id: str,
|
||||
custom_llm_provider: Literal["openai", "azure"],
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
Retrieves a fine-tuning job.
|
||||
This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id}
|
||||
|
||||
Supported Query Params:
|
||||
- `custom_llm_provider`: Name of the LiteLLM provider
|
||||
- `fine_tuning_job_id`: The ID of the fine-tuning job to retrieve.
|
||||
"""
|
||||
from litellm_proxy.proxy_server import (
|
||||
add_litellm_data_to_request,
|
||||
general_settings,
|
||||
premium_user,
|
||||
proxy_config,
|
||||
proxy_logging_obj,
|
||||
version,
|
||||
)
|
||||
|
||||
data: dict = {}
|
||||
try:
|
||||
if premium_user is not True:
|
||||
raise ValueError(
|
||||
f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
|
||||
)
|
||||
# Include original request and headers in the data
|
||||
data = await add_litellm_data_to_request(
|
||||
data=data,
|
||||
request=request,
|
||||
general_settings=general_settings,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
version=version,
|
||||
proxy_config=proxy_config,
|
||||
)
|
||||
|
||||
# get configs for custom_llm_provider
|
||||
llm_provider_config = get_fine_tuning_provider_config(
|
||||
custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
|
||||
if llm_provider_config is not None:
|
||||
data.update(llm_provider_config)
|
||||
|
||||
response = await litellm.aretrieve_fine_tuning_job(
|
||||
**data,
|
||||
fine_tuning_job_id=fine_tuning_job_id,
|
||||
)
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
verbose_proxy_logger.error(
|
||||
"litellm_proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
verbose_proxy_logger.debug(traceback.format_exc())
|
||||
raise handle_exception_on_proxy(e)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/v1/fine_tuning/jobs",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["fine-tuning"],
|
||||
summary="✨ (Enterprise) List Fine-Tuning Jobs",
|
||||
)
|
||||
@router.get(
|
||||
"/fine_tuning/jobs",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["fine-tuning"],
|
||||
summary="✨ (Enterprise) List Fine-Tuning Jobs",
|
||||
)
|
||||
async def list_fine_tuning_jobs(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
custom_llm_provider: Literal["openai", "azure"],
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
Lists fine-tuning jobs for the organization.
|
||||
This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs
|
||||
|
||||
Supported Query Params:
|
||||
- `custom_llm_provider`: Name of the LiteLLM provider
|
||||
- `after`: Identifier for the last job from the previous pagination request.
|
||||
- `limit`: Number of fine-tuning jobs to retrieve (default is 20).
|
||||
"""
|
||||
from litellm_proxy.proxy_server import (
|
||||
add_litellm_data_to_request,
|
||||
general_settings,
|
||||
premium_user,
|
||||
proxy_config,
|
||||
proxy_logging_obj,
|
||||
version,
|
||||
)
|
||||
|
||||
data: dict = {}
|
||||
try:
|
||||
if premium_user is not True:
|
||||
raise ValueError(
|
||||
f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
|
||||
)
|
||||
# Include original request and headers in the data
|
||||
data = await add_litellm_data_to_request(
|
||||
data=data,
|
||||
request=request,
|
||||
general_settings=general_settings,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
version=version,
|
||||
proxy_config=proxy_config,
|
||||
)
|
||||
|
||||
# get configs for custom_llm_provider
|
||||
llm_provider_config = get_fine_tuning_provider_config(
|
||||
custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
|
||||
if llm_provider_config is not None:
|
||||
data.update(llm_provider_config)
|
||||
|
||||
response = await litellm.alist_fine_tuning_jobs(
|
||||
**data,
|
||||
after=after,
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
verbose_proxy_logger.error(
|
||||
"litellm_proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
verbose_proxy_logger.debug(traceback.format_exc())
|
||||
raise handle_exception_on_proxy(e)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/v1/fine_tuning/jobs/{fine_tuning_job_id:path}/cancel",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["fine-tuning"],
|
||||
summary="✨ (Enterprise) Cancel Fine-Tuning Jobs",
|
||||
)
|
||||
@router.post(
|
||||
"/fine_tuning/jobs/{fine_tuning_job_id:path}/cancel",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["fine-tuning"],
|
||||
summary="✨ (Enterprise) Cancel Fine-Tuning Jobs",
|
||||
)
|
||||
async def cancel_fine_tuning_job(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
fine_tuning_job_id: str,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
Cancel a fine-tuning job.
|
||||
|
||||
This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id}/cancel
|
||||
|
||||
Supported Query Params:
|
||||
- `custom_llm_provider`: Name of the LiteLLM provider
|
||||
- `fine_tuning_job_id`: The ID of the fine-tuning job to cancel.
|
||||
"""
|
||||
from litellm_proxy.proxy_server import (
|
||||
add_litellm_data_to_request,
|
||||
general_settings,
|
||||
premium_user,
|
||||
proxy_config,
|
||||
proxy_logging_obj,
|
||||
version,
|
||||
)
|
||||
|
||||
data: dict = {}
|
||||
try:
|
||||
if premium_user is not True:
|
||||
raise ValueError(
|
||||
f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
|
||||
)
|
||||
# Include original request and headers in the data
|
||||
data = await add_litellm_data_to_request(
|
||||
data=data,
|
||||
request=request,
|
||||
general_settings=general_settings,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
version=version,
|
||||
proxy_config=proxy_config,
|
||||
)
|
||||
|
||||
request_body = await request.json()
|
||||
|
||||
custom_llm_provider = request_body.get("custom_llm_provider", None)
|
||||
|
||||
# get configs for custom_llm_provider
|
||||
llm_provider_config = get_fine_tuning_provider_config(
|
||||
custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
|
||||
if llm_provider_config is not None:
|
||||
data.update(llm_provider_config)
|
||||
|
||||
response = await litellm.acancel_fine_tuning_job(
|
||||
**data,
|
||||
fine_tuning_job_id=fine_tuning_job_id,
|
||||
)
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
verbose_proxy_logger.error(
|
||||
"litellm_proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
verbose_proxy_logger.debug(traceback.format_exc())
|
||||
raise handle_exception_on_proxy(e)
|
Loading…
Add table
Add a link
Reference in a new issue