openai at parity

This commit is contained in:
ishaan-jaff 2023-07-31 15:56:56 -07:00
parent 1739cbdd6c
commit cfddfaff89
2 changed files with 209 additions and 32 deletions

View file

@ -82,12 +82,69 @@ def client(original_function):
raise e
return wrapper
def get_optional_params(
# 12 optional params
functions = [],
function_call = "",
temperature = 1,
top_p = 1,
n = 1,
stream = False,
stop = None,
max_tokens = float('inf'),
presence_penalty = 0,
frequency_penalty = 0,
logit_bias = {},
user = "",
):
optional_params = {}
if functions != []:
optional_params["functions"] = functions
if function_call != "":
optional_params["function_call"] = function_call
if temperature != 1:
optional_params["temperature"] = temperature
if top_p != 1:
optional_params["top_p"] = top_p
if n != 1:
optional_params["n"] = n
if stream:
optional_params["stream"] = stream
if stop != None:
optional_params["stop"] = stop
if max_tokens != float('inf'):
optional_params["max_tokens"] = max_tokens
if presence_penalty != 0:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty != 0:
optional_params["frequency_penalty"] = frequency_penalty
if logit_bias != {}:
optional_params["logit_bias"] = logit_bias
if user != "":
optional_params["user"] = user
return optional_params
####### COMPLETION ENDPOINTS ################
#############################################
@client
@func_set_timeout(60, allowOverride=True) ## https://pypi.org/project/func-timeout/ - timeouts, in case calls hang (e.g. Azure)
def completion(model, messages, max_tokens=None, *, forceTimeout=60, azure=False, logger_fn=None): # ,*,.. requires optional params like forceTimeout, azure and logger_fn to be passed in as keyword arguments
def completion(
model, messages, # required params
# Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create
functions=[], function_call="", # optional params
temperature=1, top_p=1, n=1, stream=False, stop=None, max_tokens=float('inf'),
presence_penalty=0, frequency_penalty=0, logit_bias={}, user="",
# Optional liteLLM function params
azure=False, logger_fn=None, verbose=False
):
try:
# check if user passed in any of the OpenAI optional params
optional_params = get_optional_params(
functions=functions, function_call=function_call,
temperature=temperature, top_p=top_p, n=n, stream=stream, stop=stop, max_tokens=max_tokens,
presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, logit_bias=logit_bias, user=user
)
if azure == True:
# azure configs
openai.api_type = "azure"
@ -95,11 +152,39 @@ def completion(model, messages, max_tokens=None, *, forceTimeout=60, azure=False
openai.api_version = os.environ.get("AZURE_API_VERSION")
openai.api_key = os.environ.get("AZURE_API_KEY")
## LOGGING
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = openai.ChatCompletion.create(
engine=model,
messages = messages
messages = messages,
**optional_params
)
elif model in open_ai_chat_completion_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
## LOGGING
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = openai.ChatCompletion.create(
model=model,
messages = messages,
**optional_params
)
elif model in open_ai_text_completion_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = openai.Completion.create(
model=model,
prompt = prompt
)
elif "replicate" in model:
# replicate defaults to os.environ.get("REPLICATE_API_TOKEN")
@ -109,7 +194,7 @@ def completion(model, messages, max_tokens=None, *, forceTimeout=60, azure=False
os.environ["REPLICATE_API_TOKEN"] = replicate_api_token
prompt = " ".join([message["content"] for message in messages])
input = {"prompt": prompt}
if max_tokens:
if max_tokens != float('inf'):
input["max_length"] = max_tokens # for t5 models
input["max_new_tokens"] = max_tokens # for llama2 models
## LOGGING
@ -147,9 +232,10 @@ def completion(model, messages, max_tokens=None, *, forceTimeout=60, azure=False
prompt += f"{HUMAN_PROMPT}{message['content']}"
prompt += f"{AI_PROMPT}"
anthropic = Anthropic()
if max_tokens:
# check if user passed in max_tokens != float('inf')
if max_tokens != float('inf'):
max_tokens_to_sample = max_tokens
else:
else:
max_tokens_to_sample = 300 # default in Anthropic docs https://docs.anthropic.com/claude/reference/client-libraries
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
@ -197,32 +283,6 @@ def completion(model, messages, max_tokens=None, *, forceTimeout=60, azure=False
],
}
response = new_response
elif model in open_ai_chat_completion_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
## LOGGING
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = openai.ChatCompletion.create(
model=model,
messages = messages
)
elif model in open_ai_text_completion_models:
openai.api_type = "openai"
openai.api_base = "https://api.openai.com/v1"
openai.api_version = None
openai.api_key = os.environ.get("OPENAI_API_KEY")
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
## COMPLETION CALL
response = openai.Completion.create(
model=model,
prompt = prompt
)
else:
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
return response