(docs) input params for litellm.embedding()

This commit is contained in:
ishaan-jaff 2023-11-22 14:40:52 -08:00
parent 5abd566b7c
commit d0f11e7a13

View file

@ -5,10 +5,34 @@
from litellm import embedding
import os
os.environ['OPENAI_API_KEY'] = ""
response = embedding('text-embedding-ada-002', input=["good morning from litellm"])
response = embedding(model='text-embedding-ada-002', input=["good morning from litellm"])
```
### Expected Output from litellm.embedding()
### Input Params for `litellm.embedding()`
### Required Fields
- `model`: *string* - ID of the model to use. `model='text-embedding-ada-002'`
- `input`: *array* - Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for text-embedding-ada-002), cannot be an empty string, and any array must be 2048 dimensions or less.
```
input=["good morning from litellm"]
```
### Optional LiteLLM Fields
- `user`: *string (optional)* A unique identifier representing your end-user,
- `timeout`: *integer* - The maximum time, in seconds, to wait for the API to respond. Defaults to 600 seconds (10 minutes).
- `api_base`: *string (optional)* - The api endpoint you want to call the model with
- `api_version`: *string (optional)* - (Azure-specific) the api version for the call
- `api_key`: *string (optional)* - The API key to authenticate and authorize requests. If not provided, the default API key is used.
- `api_type`: *string (optional)* - The type of API to use.
### Output from `litellm.embedding()`
```json
{