refactor(openai.py): making it compatible for openai v1

BREAKING CHANGE:
This commit is contained in:
Krrish Dholakia 2023-11-11 15:32:14 -08:00
parent 833c38edeb
commit d3323ba637
12 changed files with 622 additions and 370 deletions

View file

@ -1,14 +1,17 @@
from typing import Optional, Union
import types, requests
import types
import httpx
from .base import BaseLLM
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, convert_to_model_response_object
from typing import Callable, Optional
import aiohttp
class OpenAIError(Exception):
def __init__(self, status_code, message):
def __init__(self, status_code, message, request: httpx.Request, response: httpx.Response):
self.status_code = status_code
self.message = message
self.request = request
self.response = response
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
@ -144,7 +147,7 @@ class OpenAITextCompletionConfig():
and v is not None}
class OpenAIChatCompletion(BaseLLM):
_client_session: requests.Session
_client_session: httpx.Client
def __init__(self) -> None:
super().__init__()
@ -200,18 +203,8 @@ class OpenAIChatCompletion(BaseLLM):
return self.async_streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
else:
return self.acompletion(api_base=api_base, data=data, headers=headers, model_response=model_response)
elif "stream" in optional_params and optional_params["stream"] == True:
response = self._client_session.post(
url=api_base,
json=data,
headers=headers,
stream=optional_params["stream"]
)
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text)
## RESPONSE OBJECT
return response.iter_lines()
elif optional_params.get("stream", False):
return self.streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
else:
response = self._client_session.post(
url=api_base,
@ -219,7 +212,7 @@ class OpenAIChatCompletion(BaseLLM):
headers=headers,
)
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text)
raise OpenAIError(status_code=response.status_code, message=response.text, request=response.request, response=response)
## RESPONSE OBJECT
return convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
@ -246,41 +239,64 @@ class OpenAIChatCompletion(BaseLLM):
exception_mapping_worked = True
raise e
except Exception as e:
if exception_mapping_worked:
raise e
else:
import traceback
raise OpenAIError(status_code=500, message=traceback.format_exc())
raise e
async def acompletion(self,
api_base: str,
data: dict, headers: dict,
model_response: ModelResponse):
async with aiohttp.ClientSession() as session:
async with session.post(api_base, json=data, headers=headers, ssl=False) as response:
response_json = await response.json()
if response.status != 200:
raise OpenAIError(status_code=response.status, message=response.text)
async with httpx.AsyncClient() as client:
response = await client.post(api_base, json=data, headers=headers)
response_json = response.json()
if response.status != 200:
raise OpenAIError(status_code=response.status, message=response.text)
## RESPONSE OBJECT
return convert_to_model_response_object(response_object=response_json, model_response_object=model_response)
## RESPONSE OBJECT
return convert_to_model_response_object(response_object=response_json, model_response_object=model_response)
def streaming(self,
logging_obj,
api_base: str,
data: dict,
headers: dict,
model_response: ModelResponse,
model: str
):
with self._client_session.stream(
url=f"{api_base}",
json=data,
headers=headers,
method="POST"
) as response:
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text(), request=self._client_session.request, response=response)
completion_stream = response.iter_lines()
streamwrapper = CustomStreamWrapper(completion_stream=completion_stream, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
for transformed_chunk in streamwrapper:
yield transformed_chunk
async def async_streaming(self,
logging_obj,
api_base: str,
data: dict, headers: dict,
data: dict,
headers: dict,
model_response: ModelResponse,
model: str):
async with aiohttp.ClientSession() as session:
async with session.post(api_base, json=data, headers=headers, ssl=False) as response:
# Check if the request was successful (status code 200)
if response.status != 200:
raise OpenAIError(status_code=response.status, message=await response.text())
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
async for transformed_chunk in streamwrapper:
yield transformed_chunk
client = httpx.AsyncClient()
async with client.stream(
url=f"{api_base}",
json=data,
headers=headers,
method="POST"
) as response:
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text(), request=self._client_session.request, response=response)
streamwrapper = CustomStreamWrapper(completion_stream=response.aiter_lines(), model=model, custom_llm_provider="openai",logging_obj=logging_obj)
async for transformed_chunk in streamwrapper:
yield transformed_chunk
def embedding(self,
model: str,
@ -349,7 +365,7 @@ class OpenAIChatCompletion(BaseLLM):
class OpenAITextCompletion(BaseLLM):
_client_session: requests.Session
_client_session: httpx.Client
def __init__(self) -> None:
super().__init__()
@ -367,7 +383,7 @@ class OpenAITextCompletion(BaseLLM):
try:
## RESPONSE OBJECT
if response_object is None or model_response_object is None:
raise OpenAIError(status_code=500, message="Error in response object format")
raise ValueError(message="Error in response object format")
choice_list=[]
for idx, choice in enumerate(response_object["choices"]):
message = Message(content=choice["text"], role="assistant")
@ -386,8 +402,8 @@ class OpenAITextCompletion(BaseLLM):
model_response_object._hidden_params["original_response"] = response_object # track original response, if users make a litellm.text_completion() request, we can return the original response
return model_response_object
except:
OpenAIError(status_code=500, message="Invalid response object.")
except Exception as e:
raise e
def completion(self,
model: Optional[str]=None,
@ -397,6 +413,7 @@ class OpenAITextCompletion(BaseLLM):
api_key: Optional[str]=None,
api_base: Optional[str]=None,
logging_obj=None,
acompletion: bool = False,
optional_params=None,
litellm_params=None,
logger_fn=None,
@ -412,9 +429,6 @@ class OpenAITextCompletion(BaseLLM):
api_base = f"{api_base}/completions"
if len(messages)>0 and "content" in messages[0] and type(messages[0]["content"]) == list:
# Note: internal logic - for enabling litellm.text_completion()
# text-davinci-003 can accept a string or array, if it's an array, assume the array is set in messages[0]['content']
# https://platform.openai.com/docs/api-reference/completions/create
prompt = messages[0]["content"]
else:
prompt = " ".join([message["content"] for message in messages]) # type: ignore
@ -431,19 +445,13 @@ class OpenAITextCompletion(BaseLLM):
api_key=api_key,
additional_args={"headers": headers, "api_base": api_base, "data": data},
)
if "stream" in optional_params and optional_params["stream"] == True:
response = self._client_session.post(
url=f"{api_base}",
json=data,
headers=headers,
stream=optional_params["stream"]
)
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text)
## RESPONSE OBJECT
return response.iter_lines()
if acompletion == True:
if optional_params.get("stream", False):
return self.async_streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
else:
return self.acompletion(api_base=api_base, data=data, headers=headers, model_response=model_response, prompt=prompt, api_key=api_key, logging_obj=logging_obj, model=model)
elif optional_params.get("stream", False):
return self.streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
else:
response = self._client_session.post(
url=f"{api_base}",
@ -451,7 +459,7 @@ class OpenAITextCompletion(BaseLLM):
headers=headers,
)
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text)
raise OpenAIError(status_code=response.status_code, message=response.text, request=self._client_session.request, response=response)
## LOGGING
logging_obj.post_call(
@ -466,12 +474,76 @@ class OpenAITextCompletion(BaseLLM):
## RESPONSE OBJECT
return self.convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
except OpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
if exception_mapping_worked:
raise e
else:
import traceback
raise OpenAIError(status_code=500, message=traceback.format_exc())
raise e
async def acompletion(self,
logging_obj,
api_base: str,
data: dict,
headers: dict,
model_response: ModelResponse,
prompt: str,
api_key: str,
model: str):
async with httpx.AsyncClient() as client:
response = await client.post(api_base, json=data, headers=headers)
response_json = response.json()
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response,
additional_args={
"headers": headers,
"api_base": api_base,
},
)
## RESPONSE OBJECT
return self.convert_to_model_response_object(response_object=response_json, model_response_object=model_response)
def streaming(self,
logging_obj,
api_base: str,
data: dict,
headers: dict,
model_response: ModelResponse,
model: str
):
with self._client_session.stream(
url=f"{api_base}",
json=data,
headers=headers,
method="POST"
) as response:
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text(), request=self._client_session.request, response=response)
streamwrapper = CustomStreamWrapper(completion_stream=response.iter_lines(), model=model, custom_llm_provider="text-completion-openai",logging_obj=logging_obj)
for transformed_chunk in streamwrapper:
yield transformed_chunk
async def async_streaming(self,
logging_obj,
api_base: str,
data: dict,
headers: dict,
model_response: ModelResponse,
model: str):
client = httpx.AsyncClient()
async with client.stream(
url=f"{api_base}",
json=data,
headers=headers,
method="POST"
) as response:
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text(), request=self._client_session.request, response=response)
streamwrapper = CustomStreamWrapper(completion_stream=response.aiter_lines(), model=model, custom_llm_provider="text-completion-openai",logging_obj=logging_obj)
async for transformed_chunk in streamwrapper:
yield transformed_chunk