mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 19:54:13 +00:00
add everyting for docs
This commit is contained in:
parent
36eaaa7d36
commit
d400bccb15
1015 changed files with 185353 additions and 0 deletions
304
docs/extras/use_cases/graph/graph_qa.ipynb
Normal file
304
docs/extras/use_cases/graph/graph_qa.ipynb
Normal file
|
@ -0,0 +1,304 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a6850189",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Graph QA\n",
|
||||
"\n",
|
||||
"This notebook goes over how to do question answering over a graph data structure."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9e516e3e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create the graph\n",
|
||||
"\n",
|
||||
"In this section, we construct an example graph. At the moment, this works best for small pieces of text."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "3849873d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.indexes import GraphIndexCreator\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.document_loaders import TextLoader"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "05d65c87",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"index_creator = GraphIndexCreator(llm=OpenAI(temperature=0))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "0a45a5b9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open(\"../../state_of_the_union.txt\") as f:\n",
|
||||
" all_text = f.read()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3fca3e1b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We will use just a small snippet, because extracting the knowledge triplets is a bit intensive at the moment."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "80522bd6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"text = \"\\n\".join(all_text.split(\"\\n\\n\")[105:108])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "da5aad5a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'It won’t look like much, but if you stop and look closely, you’ll see a “Field of dreams,” the ground on which America’s future will be built. \\nThis is where Intel, the American company that helped build Silicon Valley, is going to build its $20 billion semiconductor “mega site”. \\nUp to eight state-of-the-art factories in one place. 10,000 new good-paying jobs. '"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"text"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "8dad7b59",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"graph = index_creator.from_text(text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2118f363",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can inspect the created graph."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "32878c13",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[('Intel', '$20 billion semiconductor \"mega site\"', 'is going to build'),\n",
|
||||
" ('Intel', 'state-of-the-art factories', 'is building'),\n",
|
||||
" ('Intel', '10,000 new good-paying jobs', 'is creating'),\n",
|
||||
" ('Intel', 'Silicon Valley', 'is helping build'),\n",
|
||||
" ('Field of dreams',\n",
|
||||
" \"America's future will be built\",\n",
|
||||
" 'is the ground on which')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"graph.get_triples()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e9737be1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Querying the graph\n",
|
||||
"We can now use the graph QA chain to ask question of the graph"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "76edc854",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import GraphQAChain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "8e7719b4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain = GraphQAChain.from_llm(OpenAI(temperature=0), graph=graph, verbose=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "f6511169",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[1m> Entering new GraphQAChain chain...\u001b[0m\n",
|
||||
"Entities Extracted:\n",
|
||||
"\u001b[32;1m\u001b[1;3m Intel\u001b[0m\n",
|
||||
"Full Context:\n",
|
||||
"\u001b[32;1m\u001b[1;3mIntel is going to build $20 billion semiconductor \"mega site\"\n",
|
||||
"Intel is building state-of-the-art factories\n",
|
||||
"Intel is creating 10,000 new good-paying jobs\n",
|
||||
"Intel is helping build Silicon Valley\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"' Intel is going to build a $20 billion semiconductor \"mega site\" with state-of-the-art factories, creating 10,000 new good-paying jobs and helping to build Silicon Valley.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.run(\"what is Intel going to build?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "410aafa0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Save the graph\n",
|
||||
"We can also save and load the graph."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "bc72cca0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"graph.write_to_gml(\"graph.gml\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "652760ad",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.indexes.graph import NetworkxEntityGraph"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "eae591fe",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loaded_graph = NetworkxEntityGraph.from_gml(\"graph.gml\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "9439d419",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[('Intel', '$20 billion semiconductor \"mega site\"', 'is going to build'),\n",
|
||||
" ('Intel', 'state-of-the-art factories', 'is building'),\n",
|
||||
" ('Intel', '10,000 new good-paying jobs', 'is creating'),\n",
|
||||
" ('Intel', 'Silicon Valley', 'is helping build'),\n",
|
||||
" ('Field of dreams',\n",
|
||||
" \"America's future will be built\",\n",
|
||||
" 'is the ground on which')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"loaded_graph.get_triples()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "045796cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue