Count tokens for tools

This commit is contained in:
Pamela Fox 2024-07-15 11:07:52 -07:00
parent 3dc2ec8119
commit d43dbc756b
4 changed files with 863 additions and 11 deletions

View file

@ -0,0 +1,706 @@
system_message_short = {
"message": {
"role": "system",
"content": "You are a bot.",
},
"count": 12
}
system_message = {
"message": {
"role": "system",
"content": "You are a helpful, pattern-following assistant that translates corporate jargon into plain English.",
},
"count": 25
}
system_message_long = {
"message": {
"role": "system",
"content": "Assistant helps the company employees with their healthcare plan questions, and questions about the employee handbook. Be brief in your answers.",
},
"count": 31
}
system_message_unicode = {
"message": {
"role": "system",
"content": "á",
},
"count": 8
}
system_message_with_name = {
"message": {
"role": "system",
"name": "example_user",
"content": "New synergies will help drive top-line growth.",
},
"count": 20
}
user_message = {
"message": {
"role": "user",
"content": "Hello, how are you?",
},
"count": 13
}
user_message_unicode = {
"message": {
"role": "user",
"content": "á",
},
"count": 8
}
user_message_perf = {
"message": {
"role": "user",
"content": "What happens in a performance review?",
},
"count": 14
}
assistant_message_perf = {
"message": {
"role": "assistant",
"content": "During the performance review at Contoso Electronics, the supervisor will discuss the employee's performance over the past year and provide feedback on areas for improvement. They will also provide an opportunity for the employee to discuss their goals and objectives for the upcoming year. The review is a two-way dialogue between managers and employees, and employees will receive a written summary of their performance review which will include a rating of their performance, feedback, and goals and objectives for the upcoming year [employee_handbook-3.pdf].",
},
"count": 106
}
assistant_message_perf_short = {
"message": {
"role": "assistant",
"content": "The supervisor will discuss the employee's performance and provide feedback on areas for improvement. They will also provide an opportunity for the employee to discuss their goals and objectives for the upcoming year. The review is a two-way dialogue between managers and employees, and employees will receive a written summary of their performance review which will include a rating of their performance, feedback, and goals for the upcoming year [employee_handbook-3.pdf].",
},
"count": 91
}
user_message_dresscode = {
"message": {
"role": "user",
"content": "Is there a dress code?",
},
"count": 13
}
assistant_message_dresscode = {
"message": {
"role": "assistant",
"content": "Yes, there is a dress code at Contoso Electronics. Look sharp! [employee_handbook-1.pdf]",
},
"count": 30
}
user_message_pm = {
"message": {
"role": "user",
"content": "What does a Product Manager do?",
},
"count": 14
}
text_and_image_message = {
"message": {
"role": "user",
"content": [
{"type": "text", "text": "Describe this picture:"},
{
"type": "image_url",
"image_url": {
"url": "",
"detail": "high",
},
},
],
},
"count": 266
}
search_sources_toolchoice_auto = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "search_sources",
"description": "Retrieve sources from the Azure AI Search index",
"parameters": {
"type": "object",
"properties": {
"search_query": {
"type": "string",
"description": "Query string to retrieve documents from azure search eg: 'Health care plan'",
}
},
"required": ["search_query"],
},
},
}
],
"tool_choice": "auto",
"count": 66,
}
search_sources_toolchoice_none = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "search_sources",
"description": "Retrieve sources from the Azure AI Search index",
"parameters": {
"type": "object",
"properties": {
"search_query": {
"type": "string",
"description": "Query string to retrieve documents from azure search eg: 'Health care plan'",
}
},
"required": ["search_query"],
},
},
}
],
"tool_choice": "none",
"count": 67,
}
search_sources_toolchoice_name = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "search_sources",
"description": "Retrieve sources from the Azure AI Search index",
"parameters": {
"type": "object",
"properties": {
"search_query": {
"type": "string",
"description": "Query string to retrieve documents from azure search eg: 'Health care plan'",
}
},
"required": ["search_query"],
},
},
}
],
"tool_choice": {"type": "function", "function": {"name": "search_sources"}},
"count": 75,
}
integer_enum = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "data_demonstration",
"description": "This is the main function description",
"parameters": {"type": "object", "properties": {"integer_enum": {"type": "integer", "enum": [-1, 1]}}},
},
}
],
"tool_choice": "none",
"count": 54,
}
integer_enum_tool_choice_name = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "data_demonstration",
"description": "This is the main function description",
"parameters": {"type": "object", "properties": {"integer_enum": {"type": "integer", "enum": [-1, 1]}}},
},
}
],
"tool_choice": {
"type": "function",
"function": {"name": "data_demonstration"},
}, # 4 tokens for "data_demonstration"
"count": 64,
}
no_parameters = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "search_sources",
"description": "Retrieve sources from the Azure AI Search index",
},
}
],
"tool_choice": "auto",
"count": 42,
}
no_parameters_tool_choice_name = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "search_sources",
"description": "Retrieve sources from the Azure AI Search index",
},
}
],
"tool_choice": {"type": "function", "function": {"name": "search_sources"}}, # 2 tokens for "search_sources"
"count": 51,
}
no_parameter_description_or_required = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "search_sources",
"description": "Retrieve sources from the Azure AI Search index",
"parameters": {"type": "object", "properties": {"search_query": {"type": "string"}}},
},
}
],
"tool_choice": "auto",
"count": 49,
}
no_parameter_description = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "search_sources",
"description": "Retrieve sources from the Azure AI Search index",
"parameters": {
"type": "object",
"properties": {"search_query": {"type": "string"}},
"required": ["search_query"],
},
},
}
],
"tool_choice": "auto",
"count": 49,
}
string_enum = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "summarize_order",
"description": "Summarize the customer order request",
"parameters": {
"type": "object",
"properties": {
"product_name": {
"type": "string",
"description": "Product name ordered by customer",
},
"quantity": {
"type": "integer",
"description": "Quantity ordered by customer",
},
"unit": {
"type": "string",
"enum": ["meals", "days"],
"description": "unit of measurement of the customer order",
},
},
"required": ["product_name", "quantity", "unit"],
},
},
}
],
"tool_choice": "none",
"count": 86,
}
inner_object = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "data_demonstration",
"description": "This is the main function description",
"parameters": {
"type": "object",
"properties": {
"object_1": {
"type": "object",
"description": "The object data type as a property",
"properties": {
"string1": {"type": "string"},
},
}
},
"required": ["object_1"],
},
},
}
],
"tool_choice": "none",
"count": 65, # counted 67, over by 2
}
"""
namespace functions {
// This is the main function description
type data_demonstration = (_: {
// The object data type as a property
object_1: {
string1?: string,
},
}) => any;
} // namespace functions
"""
inner_object_with_enum_only = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "data_demonstration",
"description": "This is the main function description",
"parameters": {
"type": "object",
"properties": {
"object_1": {
"type": "object",
"description": "The object data type as a property",
"properties": {"string_2a": {"type": "string", "enum": ["Happy", "Sad"]}},
}
},
"required": ["object_1"],
},
},
}
],
"tool_choice": "none",
"count": 73, # counted 74, over by 1
}
"""
namespace functions {
// This is the main function description
type data_demonstration = (_: {
// The object data type as a property
object_1: {
string_2a?: "Happy" | "Sad",
},
}) => any;
} // namespace functions
"""
inner_object_with_enum = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "data_demonstration",
"description": "This is the main function description",
"parameters": {
"type": "object",
"properties": {
"object_1": {
"type": "object",
"description": "The object data type as a property",
"properties": {
"string_2a": {"type": "string", "enum": ["Happy", "Sad"]},
"string_2b": {
"type": "string",
"description": "Description in a second object is lost",
},
},
}
},
"required": ["object_1"],
},
},
}
],
"tool_choice": "none",
"count": 89, # counted 92, over by 3
}
"""
namespace functions {
// This is the main function description
type data_demonstration = (_: {
// The object data type as a property
object_1: {
string_2a?: "Happy" | "Sad",
// Description in a second object is lost
string_2b?: string,
},
}) => any;
} // namespace functions
"""
inner_object_and_string = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "data_demonstration",
"description": "This is the main function description",
"parameters": {
"type": "object",
"properties": {
"object_1": {
"type": "object",
"description": "The object data type as a property",
"properties": {
"string_2a": {"type": "string", "enum": ["Happy", "Sad"]},
"string_2b": {
"type": "string",
"description": "Description in a second object is lost",
},
},
},
"string_1": {"type": "string", "description": "Not required gets a question mark"},
},
"required": ["object_1"],
},
},
}
],
"tool_choice": "none",
"count": 103, # counted 106, over by 3
}
"""
namespace functions {
// This is the main function description
type data_demonstration = (_: {
// The object data type as a property
object_1: {
string_2a?: "Happy" | "Sad",
// Description in a second object is lost
string_2b?: string,
},
// Not required gets a question mark
string_1?: string,
}) => any;
} // namespace functions
"""
boolean = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "human_escalation",
"description": "Check if user wants to escalate to a human",
"parameters": {
"type": "object",
"properties": {
"requires_escalation": {
"type": "boolean",
"description": "If user is showing signs of frustration or anger in the query. Also if the user says they want to talk to a real person and not a chat bot.",
}
},
"required": ["requires_escalation"],
},
},
}
],
"tool_choice": "none",
"count": 89, # over by 3
}
array = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "get_coordinates",
"description": "Get the latitude and longitude of multiple mailing addresses",
"parameters": {
"type": "object",
"properties": {
"addresses": {
"type": "array",
"description": "The mailing addresses to be located",
"items": {"type": "string"},
}
},
"required": ["addresses"],
},
},
}
],
"tool_choice": "none",
"count": 59,
}
null = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "get_null",
"description": "Get the null value",
"parameters": {
"type": "object",
"properties": {
"null_value": {
"type": "null",
"description": "The null value to be returned",
}
},
"required": ["null_value"],
},
},
}
],
"tool_choice": "none",
"count": 55,
}
no_type = {
"system_message": {
"role": "system",
"content": "You are a bot.",
},
"tools": [
{
"type": "function",
"function": {
"name": "get_no_type",
"description": "Get the no type value",
"parameters": {
"type": "object",
"properties": {
"no_type_value": {
"description": "The no type value to be returned",
}
},
"required": ["no_type_value"],
},
},
}
],
"tool_choice": "none",
"count": 59,
}
MESSAGES_TEXT = [
system_message,
system_message_short,
system_message_long,
system_message_unicode,
system_message_with_name,
user_message,
user_message_unicode,
user_message_perf,
user_message_dresscode,
user_message_pm,
assistant_message_perf,
assistant_message_perf_short,
assistant_message_dresscode
]
MESSAGES_WITH_IMAGES = [
text_and_image_message
]
MESSAGES_WITH_TOOLS = [
inner_object,
inner_object_and_string,
inner_object_with_enum_only,
inner_object_with_enum,
search_sources_toolchoice_auto,
search_sources_toolchoice_none,
search_sources_toolchoice_name,
integer_enum,
integer_enum_tool_choice_name,
no_parameters,
no_parameters_tool_choice_name,
no_parameter_description_or_required,
no_parameter_description,
string_enum,
boolean,
array,
no_type,
null,
]

View file

@ -3,15 +3,14 @@
import os import os
import sys import sys
import traceback import time
from unittest.mock import MagicMock
import pytest import pytest
sys.path.insert( sys.path.insert(
0, os.path.abspath("../..") 0, os.path.abspath("../..")
) # Adds the parent directory to the system path ) # Adds the parent directory to the system path
import time
from unittest.mock import AsyncMock, MagicMock, patch
from litellm import ( from litellm import (
create_pretrained_tokenizer, create_pretrained_tokenizer,
@ -21,7 +20,7 @@ from litellm import (
token_counter, token_counter,
) )
from litellm.tests.large_text import text from litellm.tests.large_text import text
from litellm.tests.messages_with_counts import MESSAGES_TEXT, MESSAGES_WITH_IMAGES, MESSAGES_WITH_TOOLS
def test_token_counter_normal_plus_function_calling(): def test_token_counter_normal_plus_function_calling():
try: try:
@ -56,9 +55,48 @@ def test_token_counter_normal_plus_function_calling():
except Exception as e: except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}") pytest.fail(f"An exception occurred - {str(e)}")
# test_token_counter_normal_plus_function_calling() # test_token_counter_normal_plus_function_calling()
@pytest.mark.parametrize(
"message_count_pair",
MESSAGES_TEXT,
)
def test_token_counter_textonly(message_count_pair):
counted_tokens = token_counter(
model="gpt-35-turbo",
messages=[message_count_pair["message"]]
)
assert counted_tokens == message_count_pair["count"]
@pytest.mark.parametrize(
"message_count_pair",
MESSAGES_WITH_IMAGES,
)
def test_token_counter_with_images(message_count_pair):
counted_tokens = token_counter(
model="gpt-4o",
messages=[message_count_pair["message"]]
)
assert counted_tokens == message_count_pair["count"]
@pytest.mark.parametrize(
"message_count_pair",
MESSAGES_WITH_TOOLS,
)
def test_token_counter_with_tools(message_count_pair):
counted_tokens = token_counter(
model="gpt-35-turbo",
messages=[message_count_pair["system_message"]],
tools=message_count_pair["tools"],
tool_choice=message_count_pair["tool_choice"],
)
expected_tokens = message_count_pair["count"]
diff = counted_tokens - expected_tokens
assert (
diff >= 0 and diff <= 3
), f"Expected {expected_tokens} tokens, got {counted_tokens}. Counted tokens is only allowed to be off by 3 in the over-counting direction."
def test_tokenizers(): def test_tokenizers():
try: try:

View file

@ -401,6 +401,18 @@ class ChatCompletionToolParam(TypedDict):
function: ChatCompletionToolParamFunctionChunk function: ChatCompletionToolParamFunctionChunk
class Function(TypedDict, total=False):
name: Required[str]
"""The name of the function to call."""
class ChatCompletionNamedToolChoiceParam(TypedDict, total=False):
function: Required[Function]
type: Required[Literal["function"]]
"""The type of the tool. Currently, only `function` is supported."""
class ChatCompletionRequest(TypedDict, total=False): class ChatCompletionRequest(TypedDict, total=False):
model: Required[str] model: Required[str]
messages: Required[List[AllMessageValues]] messages: Required[List[AllMessageValues]]

View file

@ -79,6 +79,7 @@ from litellm.types.utils import (
TranscriptionResponse, TranscriptionResponse,
Usage, Usage,
) )
from litellm.types.llms.openai import ChatCompletionToolParam, ChatCompletionNamedToolChoiceParam
oidc_cache = DualCache() oidc_cache = DualCache()
@ -1571,6 +1572,8 @@ def openai_token_counter(
model="gpt-3.5-turbo-0613", model="gpt-3.5-turbo-0613",
text: Optional[str] = None, text: Optional[str] = None,
is_tool_call: Optional[bool] = False, is_tool_call: Optional[bool] = False,
tools: list[ChatCompletionToolParam] | None = None,
tool_choice: ChatCompletionNamedToolChoiceParam | None = None,
count_response_tokens: Optional[ count_response_tokens: Optional[
bool bool
] = False, # Flag passed from litellm.stream_chunk_builder, to indicate counting tokens for LLM Response. We need this because for LLM input we add +3 tokens per message - based on OpenAI's token counter ] = False, # Flag passed from litellm.stream_chunk_builder, to indicate counting tokens for LLM Response. We need this because for LLM input we add +3 tokens per message - based on OpenAI's token counter
@ -1605,6 +1608,7 @@ def openai_token_counter(
f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""" f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
) )
num_tokens = 0 num_tokens = 0
includes_system_message = False
if is_tool_call and text is not None: if is_tool_call and text is not None:
# if it's a tool call we assembled 'text' in token_counter() # if it's a tool call we assembled 'text' in token_counter()
@ -1612,6 +1616,8 @@ def openai_token_counter(
elif messages is not None: elif messages is not None:
for message in messages: for message in messages:
num_tokens += tokens_per_message num_tokens += tokens_per_message
if message.get("role", None) == "system":
includes_system_message = True
for key, value in message.items(): for key, value in message.items():
if isinstance(value, str): if isinstance(value, str):
num_tokens += len(encoding.encode(value, disallowed_special=())) num_tokens += len(encoding.encode(value, disallowed_special=()))
@ -1629,12 +1635,12 @@ def openai_token_counter(
image_url_dict = c["image_url"] image_url_dict = c["image_url"]
detail = image_url_dict.get("detail", "auto") detail = image_url_dict.get("detail", "auto")
url = image_url_dict.get("url") url = image_url_dict.get("url")
num_tokens += calculage_img_tokens( num_tokens += _calculate_img_tokens(
data=url, mode=detail data=url, mode=detail
) )
elif isinstance(c["image_url"], str): elif isinstance(c["image_url"], str):
image_url_str = c["image_url"] image_url_str = c["image_url"]
num_tokens += calculage_img_tokens( num_tokens += _calculate_img_tokens(
data=image_url_str, mode="auto" data=image_url_str, mode="auto"
) )
elif text is not None and count_response_tokens == True: elif text is not None and count_response_tokens == True:
@ -1644,6 +1650,22 @@ def openai_token_counter(
elif text is not None: elif text is not None:
num_tokens = len(encoding.encode(text, disallowed_special=())) num_tokens = len(encoding.encode(text, disallowed_special=()))
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
if tools:
num_tokens += len(encoding.encode(_format_function_definitions(tools)))
num_tokens += 9 # Additional tokens for function definition of tools
# If there's a system message and tools are present, subtract four tokens
if tools and includes_system_message:
num_tokens -= 4
# If tool_choice is 'none', add one token.
# If it's an object, add 4 + the number of tokens in the function name.
# If it's undefined or 'auto', don't add anything.
if tool_choice == "none":
num_tokens += 1
elif isinstance(tool_choice, dict):
num_tokens += 7
num_tokens += len(encoding.encode(tool_choice["function"]["name"]))
return num_tokens return num_tokens
@ -1652,6 +1674,10 @@ def resize_image_high_res(width, height):
max_short_side = 768 max_short_side = 768
max_long_side = 2000 max_long_side = 2000
# Return early if no resizing is needed
if width <= 768 and height <= 768:
return width, height
# Determine the longer and shorter sides # Determine the longer and shorter sides
longer_side = max(width, height) longer_side = max(width, height)
shorter_side = min(width, height) shorter_side = min(width, height)
@ -1723,7 +1749,7 @@ def get_image_dimensions(data):
return None, None return None, None
def calculage_img_tokens( def _calculate_img_tokens(
data, data,
mode: Literal["low", "high", "auto"] = "auto", mode: Literal["low", "high", "auto"] = "auto",
base_tokens: int = 85, # openai default - https://openai.com/pricing base_tokens: int = 85, # openai default - https://openai.com/pricing
@ -1776,6 +1802,70 @@ def create_tokenizer(json: str):
tokenizer = Tokenizer.from_str(json) tokenizer = Tokenizer.from_str(json)
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer} return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
# Based on https://github.com/forestwanglin/openai-java/blob/main/jtokkit/src/main/java/xyz/felh/openai/jtokkit/utils/TikTokenUtils.java
def _format_function_definitions(tools):
lines = []
lines.append("namespace functions {")
lines.append("")
for tool in tools:
function = tool.get("function")
if function_description := function.get("description"):
lines.append(f"// {function_description}")
function_name = function.get("name")
parameters = function.get("parameters", {})
properties = parameters.get("properties")
if properties and properties.keys():
lines.append(f"type {function_name} = (_: {{")
lines.append(_format_object_parameters(parameters, 0))
lines.append("}) => any;")
else:
lines.append(f"type {function_name} = () => any;")
lines.append("")
lines.append("} // namespace functions")
return "\n".join(lines)
def _format_object_parameters(parameters, indent):
properties = parameters.get("properties")
if not properties:
return ""
required_params = parameters.get("required", [])
lines = []
for key, props in properties.items():
description = props.get("description")
if description:
lines.append(f"// {description}")
question = "?"
if required_params and key in required_params:
question = ""
lines.append(f"{key}{question}: {_format_type(props, indent)},")
return "\n".join([" " * max(0, indent) + line for line in lines])
def _format_type(props, indent):
type = props.get("type")
if type == "string":
if "enum" in props:
return " | ".join([f'"{item}"' for item in props["enum"]])
return "string"
elif type == "array":
# items is required, OpenAI throws an error if it's missing
return f"{_format_type(props['items'], indent)}[]"
elif type == "object":
return f"{{\n{_format_object_parameters(props, indent + 2)}\n}}"
elif type in ["integer", "number"]:
if "enum" in props:
return " | ".join([f'"{item}"' for item in props["enum"]])
return "number"
elif type == "boolean":
return "boolean"
elif type == "null":
return "null"
else:
# This is a guess, as an empty string doesn't yield the expected token count
return "any"
def token_counter( def token_counter(
model="", model="",
@ -1783,6 +1873,8 @@ def token_counter(
text: Optional[Union[str, List[str]]] = None, text: Optional[Union[str, List[str]]] = None,
messages: Optional[List] = None, messages: Optional[List] = None,
count_response_tokens: Optional[bool] = False, count_response_tokens: Optional[bool] = False,
tools: list[ChatCompletionToolParam] | None = None,
tool_choice: ChatCompletionNamedToolChoiceParam | None = None,
) -> int: ) -> int:
""" """
Count the number of tokens in a given text using a specified model. Count the number of tokens in a given text using a specified model.
@ -1817,12 +1909,12 @@ def token_counter(
image_url_dict = c["image_url"] image_url_dict = c["image_url"]
detail = image_url_dict.get("detail", "auto") detail = image_url_dict.get("detail", "auto")
url = image_url_dict.get("url") url = image_url_dict.get("url")
num_tokens += calculage_img_tokens( num_tokens += _calculate_img_tokens(
data=url, mode=detail data=url, mode=detail
) )
elif isinstance(c["image_url"], str): elif isinstance(c["image_url"], str):
image_url_str = c["image_url"] image_url_str = c["image_url"]
num_tokens += calculage_img_tokens( num_tokens += _calculate_img_tokens(
data=image_url_str, mode="auto" data=image_url_str, mode="auto"
) )
if "tool_calls" in message: if "tool_calls" in message:
@ -1861,6 +1953,8 @@ def token_counter(
messages=messages, messages=messages,
is_tool_call=is_tool_call, is_tool_call=is_tool_call,
count_response_tokens=count_response_tokens, count_response_tokens=count_response_tokens,
tools=tools,
tool_choice=tool_choice
) )
else: else:
print_verbose( print_verbose(
@ -1872,6 +1966,8 @@ def token_counter(
messages=messages, messages=messages,
is_tool_call=is_tool_call, is_tool_call=is_tool_call,
count_response_tokens=count_response_tokens, count_response_tokens=count_response_tokens,
tools=tools,
tool_choice=tool_choice
) )
else: else:
num_tokens = len(encoding.encode(text, disallowed_special=())) # type: ignore num_tokens = len(encoding.encode(text, disallowed_special=())) # type: ignore
@ -1892,7 +1988,7 @@ def supports_httpx_timeout(custom_llm_provider: str) -> bool:
def supports_system_messages(model: str, custom_llm_provider: Optional[str]) -> bool: def supports_system_messages(model: str, custom_llm_provider: Optional[str]) -> bool:
""" """
Check if the given model supports function calling and return a boolean value. Check if the given model supports system messages and return a boolean value.
Parameters: Parameters:
model (str): The model name to be checked. model (str): The model name to be checked.