mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
add palm
This commit is contained in:
parent
6eea9da4ab
commit
d6bc20d5be
2 changed files with 130 additions and 0 deletions
103
litellm/llms/palm.py
Normal file
103
litellm/llms/palm.py
Normal file
|
@ -0,0 +1,103 @@
|
|||
import os
|
||||
import json
|
||||
from enum import Enum
|
||||
import requests
|
||||
import time
|
||||
from typing import Callable
|
||||
from litellm.utils import ModelResponse, get_secret
|
||||
import sys
|
||||
|
||||
class PalmError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
api_key: str,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
|
||||
import google.generativeai as palm
|
||||
palm.configure(api_key=api_key)
|
||||
|
||||
model = model
|
||||
prompt = ""
|
||||
for message in messages:
|
||||
if "role" in message:
|
||||
if message["role"] == "user":
|
||||
prompt += (
|
||||
f"{message['content']}"
|
||||
)
|
||||
else:
|
||||
prompt += (
|
||||
f"{message['content']}"
|
||||
)
|
||||
else:
|
||||
prompt += f"{message['content']}"
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
additional_args={"complete_input_dict": {}},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = palm.chat(messages=prompt)
|
||||
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": {}},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = response.last
|
||||
|
||||
if "error" in completion_response:
|
||||
raise PalmError(
|
||||
message=completion_response["error"],
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
model_response["choices"][0]["message"]["content"] = completion_response
|
||||
except:
|
||||
raise PalmError(message=json.dumps(completion_response), status_code=response.status_code)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
)
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = "palm/" + model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
|
@ -44,6 +44,7 @@ from .llms import ollama
|
|||
from .llms import cohere
|
||||
from .llms import petals
|
||||
from .llms import oobabooga
|
||||
from .llms import palm
|
||||
import tiktoken
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Callable, List, Optional, Dict
|
||||
|
@ -792,6 +793,32 @@ def completion(
|
|||
)
|
||||
return response
|
||||
response = model_response
|
||||
elif custom_llm_provider == "palm":
|
||||
api_key = (
|
||||
api_key
|
||||
or get_secret("PALM_API_KEY")
|
||||
or litellm.api_key
|
||||
)
|
||||
|
||||
model_response = palm.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
api_key=api_key,
|
||||
logging_obj=logging
|
||||
)
|
||||
if "stream_tokens" in optional_params and optional_params["stream_tokens"] == True:
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(
|
||||
model_response, model, custom_llm_provider="palm", logging_obj=logging
|
||||
)
|
||||
return response
|
||||
response = model_response
|
||||
elif model in litellm.vertex_chat_models or model in litellm.vertex_code_chat_models:
|
||||
try:
|
||||
import vertexai
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue