build(pyproject.toml): add new dev dependencies - for type checking (#9631)

* build(pyproject.toml): add new dev dependencies - for type checking

* build: reformat files to fit black

* ci: reformat to fit black

* ci(test-litellm.yml): make tests run clear

* build(pyproject.toml): add ruff

* fix: fix ruff checks

* build(mypy/): fix mypy linting errors

* fix(hashicorp_secret_manager.py): fix passing cert for tls auth

* build(mypy/): resolve all mypy errors

* test: update test

* fix: fix black formatting

* build(pre-commit-config.yaml): use poetry run black

* fix(proxy_server.py): fix linting error

* fix: fix ruff safe representation error
This commit is contained in:
Krish Dholakia 2025-03-29 11:02:13 -07:00 committed by GitHub
parent 72198737f8
commit d7b294dd0a
214 changed files with 1553 additions and 1433 deletions

View file

@ -496,9 +496,9 @@ class BedrockLLM(BaseAWSLLM):
content=None,
)
model_response.choices[0].message = _message # type: ignore
model_response._hidden_params["original_response"] = (
outputText # allow user to access raw anthropic tool calling response
)
model_response._hidden_params[
"original_response"
] = outputText # allow user to access raw anthropic tool calling response
if (
_is_function_call is True
and stream is not None
@ -806,9 +806,9 @@ class BedrockLLM(BaseAWSLLM):
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
if stream is True:
inference_params["stream"] = (
True # cohere requires stream = True in inference params
)
inference_params[
"stream"
] = True # cohere requires stream = True in inference params
data = json.dumps({"prompt": prompt, **inference_params})
elif provider == "anthropic":
if model.startswith("anthropic.claude-3"):
@ -1205,7 +1205,6 @@ class BedrockLLM(BaseAWSLLM):
def get_response_stream_shape():
global _response_stream_shape_cache
if _response_stream_shape_cache is None:
from botocore.loaders import Loader
from botocore.model import ServiceModel
@ -1539,7 +1538,6 @@ class AmazonDeepSeekR1StreamDecoder(AWSEventStreamDecoder):
model: str,
sync_stream: bool,
) -> None:
super().__init__(model=model)
from litellm.llms.bedrock.chat.invoke_transformations.amazon_deepseek_transformation import (
AmazonDeepseekR1ResponseIterator,