mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
fix(factory.py): reduce ollama pt LOC < 50
This commit is contained in:
parent
f18742edbd
commit
d818530265
1 changed files with 85 additions and 150 deletions
|
@ -166,173 +166,108 @@ def convert_to_ollama_image(openai_image_url: str):
|
|||
)
|
||||
|
||||
|
||||
def _handle_ollama_system_message(
|
||||
messages: list, prompt: str, msg_i: int
|
||||
) -> Tuple[str, int]:
|
||||
system_content_str = ""
|
||||
## MERGE CONSECUTIVE SYSTEM CONTENT ##
|
||||
while msg_i < len(messages) and messages[msg_i]["role"] == "system":
|
||||
msg_content = convert_content_list_to_str(messages[msg_i])
|
||||
system_content_str += msg_content
|
||||
|
||||
msg_i += 1
|
||||
|
||||
return system_content_str, msg_i
|
||||
|
||||
|
||||
def ollama_pt(
|
||||
model, messages
|
||||
) -> Union[
|
||||
str, OllamaVisionModelObject
|
||||
]: # https://github.com/ollama/ollama/blob/af4cf55884ac54b9e637cd71dadfe9b7a5685877/docs/modelfile.md#template
|
||||
if "instruct" in model:
|
||||
prompt = custom_prompt(
|
||||
role_dict={
|
||||
"system": {"pre_message": "### System:\n", "post_message": "\n"},
|
||||
"user": {
|
||||
"pre_message": "### User:\n",
|
||||
"post_message": "\n",
|
||||
},
|
||||
"assistant": {
|
||||
"pre_message": "### Response:\n",
|
||||
"post_message": "\n",
|
||||
},
|
||||
},
|
||||
final_prompt_value="### Response:",
|
||||
messages=messages,
|
||||
user_message_types = {"user", "tool", "function"}
|
||||
msg_i = 0
|
||||
images = []
|
||||
prompt = ""
|
||||
while msg_i < len(messages):
|
||||
init_msg_i = msg_i
|
||||
user_content_str = ""
|
||||
## MERGE CONSECUTIVE USER CONTENT ##
|
||||
while msg_i < len(messages) and messages[msg_i]["role"] in user_message_types:
|
||||
msg_content = messages[msg_i].get("content")
|
||||
if msg_content:
|
||||
if isinstance(msg_content, list):
|
||||
for m in msg_content:
|
||||
if m.get("type", "") == "image_url":
|
||||
if isinstance(m["image_url"], str):
|
||||
images.append(m["image_url"])
|
||||
elif isinstance(m["image_url"], dict):
|
||||
images.append(m["image_url"]["url"])
|
||||
elif m.get("type", "") == "text":
|
||||
user_content_str += m["text"]
|
||||
else:
|
||||
# Tool message content will always be a string
|
||||
user_content_str += msg_content
|
||||
|
||||
msg_i += 1
|
||||
|
||||
if user_content_str:
|
||||
prompt += f"### User:\n{user_content_str}\n\n"
|
||||
|
||||
system_content_str, msg_i = _handle_ollama_system_message(
|
||||
messages, prompt, msg_i
|
||||
)
|
||||
else:
|
||||
user_message_types = {"user", "tool", "function"}
|
||||
msg_i = 0
|
||||
images = []
|
||||
prompt = ""
|
||||
while msg_i < len(messages):
|
||||
init_msg_i = msg_i
|
||||
user_content_str = ""
|
||||
## MERGE CONSECUTIVE USER CONTENT ##
|
||||
while (
|
||||
msg_i < len(messages) and messages[msg_i]["role"] in user_message_types
|
||||
):
|
||||
msg_content = messages[msg_i].get("content")
|
||||
if msg_content:
|
||||
if isinstance(msg_content, list):
|
||||
for m in msg_content:
|
||||
if m.get("type", "") == "image_url":
|
||||
if isinstance(m["image_url"], str):
|
||||
images.append(m["image_url"])
|
||||
elif isinstance(m["image_url"], dict):
|
||||
images.append(m["image_url"]["url"])
|
||||
elif m.get("type", "") == "text":
|
||||
user_content_str += m["text"]
|
||||
else:
|
||||
# Tool message content will always be a string
|
||||
user_content_str += msg_content
|
||||
if system_content_str:
|
||||
prompt += f"### System:\n{system_content_str}\n\n"
|
||||
|
||||
msg_i += 1
|
||||
assistant_content_str = ""
|
||||
## MERGE CONSECUTIVE ASSISTANT CONTENT ##
|
||||
while msg_i < len(messages) and messages[msg_i]["role"] == "assistant":
|
||||
assistant_content_str += convert_content_list_to_str(messages[msg_i])
|
||||
msg_i += 1
|
||||
|
||||
if user_content_str:
|
||||
prompt += f"### User:\n{user_content_str}\n\n"
|
||||
tool_calls = messages[msg_i].get("tool_calls")
|
||||
ollama_tool_calls = []
|
||||
if tool_calls:
|
||||
for call in tool_calls:
|
||||
call_id: str = call["id"]
|
||||
function_name: str = call["function"]["name"]
|
||||
arguments = json.loads(call["function"]["arguments"])
|
||||
|
||||
system_content_str = ""
|
||||
## MERGE CONSECUTIVE SYSTEM CONTENT ##
|
||||
while (
|
||||
msg_i < len(messages) and messages[msg_i]["role"] == "system"
|
||||
):
|
||||
msg_content = messages[msg_i].get("content")
|
||||
if msg_content:
|
||||
if isinstance(msg_content, list):
|
||||
for m in msg_content:
|
||||
if m.get("type", "") == "image_url":
|
||||
if isinstance(m["image_url"], str):
|
||||
images.append(m["image_url"])
|
||||
elif isinstance(m["image_url"], dict):
|
||||
images.append(m["image_url"]["url"])
|
||||
elif m.get("type", "") == "text":
|
||||
system_content_str += m["text"]
|
||||
else:
|
||||
# Tool message content will always be a string
|
||||
system_content_str += msg_content
|
||||
|
||||
msg_i += 1
|
||||
|
||||
if system_content_str:
|
||||
prompt += f"### System:\n{system_content_str}\n\n"
|
||||
|
||||
assistant_content_str = ""
|
||||
## MERGE CONSECUTIVE ASSISTANT CONTENT ##
|
||||
while msg_i < len(messages) and messages[msg_i]["role"] == "assistant":
|
||||
msg_content = messages[msg_i].get("content")
|
||||
if msg_content:
|
||||
if isinstance(msg_content, list):
|
||||
for m in msg_content:
|
||||
if m.get("type", "") == "text":
|
||||
assistant_content_str += m["text"]
|
||||
elif isinstance(msg_content, str):
|
||||
# Tool message content will always be a string
|
||||
assistant_content_str += msg_content
|
||||
|
||||
tool_calls = messages[msg_i].get("tool_calls")
|
||||
ollama_tool_calls = []
|
||||
if tool_calls:
|
||||
for call in tool_calls:
|
||||
call_id: str = call["id"]
|
||||
function_name: str = call["function"]["name"]
|
||||
arguments = json.loads(call["function"]["arguments"])
|
||||
|
||||
ollama_tool_calls.append(
|
||||
{
|
||||
"id": call_id,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": function_name,
|
||||
"arguments": arguments,
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
if ollama_tool_calls:
|
||||
assistant_content_str += (
|
||||
f"Tool Calls: {json.dumps(ollama_tool_calls, indent=2)}"
|
||||
ollama_tool_calls.append(
|
||||
{
|
||||
"id": call_id,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": function_name,
|
||||
"arguments": arguments,
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
msg_i += 1
|
||||
|
||||
if assistant_content_str:
|
||||
prompt += f"### Assistant:\n{assistant_content_str}\n\n"
|
||||
|
||||
if msg_i == init_msg_i: # prevent infinite loops
|
||||
raise litellm.BadRequestError(
|
||||
message=BAD_MESSAGE_ERROR_STR + f"passed in {messages[msg_i]}",
|
||||
model=model,
|
||||
llm_provider="ollama",
|
||||
if ollama_tool_calls:
|
||||
assistant_content_str += (
|
||||
f"Tool Calls: {json.dumps(ollama_tool_calls, indent=2)}"
|
||||
)
|
||||
# prompt = ""
|
||||
# images = []
|
||||
# for message in messages:
|
||||
# if isinstance(message["content"], str):
|
||||
# prompt += message["content"]
|
||||
# elif isinstance(message["content"], list):
|
||||
# # see https://docs.litellm.ai/docs/providers/openai#openai-vision-models
|
||||
# for element in message["content"]:
|
||||
# if isinstance(element, dict):
|
||||
# if element["type"] == "text":
|
||||
# prompt += element["text"]
|
||||
# elif element["type"] == "image_url":
|
||||
# base64_image = convert_to_ollama_image(
|
||||
# element["image_url"]["url"]
|
||||
# )
|
||||
# images.append(base64_image)
|
||||
|
||||
# if "tool_calls" in message:
|
||||
# tool_calls = []
|
||||
msg_i += 1
|
||||
|
||||
# for call in message["tool_calls"]:
|
||||
# call_id: str = call["id"]
|
||||
# function_name: str = call["function"]["name"]
|
||||
# arguments = json.loads(call["function"]["arguments"])
|
||||
if assistant_content_str:
|
||||
prompt += f"### Assistant:\n{assistant_content_str}\n\n"
|
||||
|
||||
# tool_calls.append(
|
||||
# {
|
||||
# "id": call_id,
|
||||
# "type": "function",
|
||||
# "function": {"name": function_name, "arguments": arguments},
|
||||
# }
|
||||
# )
|
||||
if msg_i == init_msg_i: # prevent infinite loops
|
||||
raise litellm.BadRequestError(
|
||||
message=BAD_MESSAGE_ERROR_STR + f"passed in {messages[msg_i]}",
|
||||
model=model,
|
||||
llm_provider="ollama",
|
||||
)
|
||||
|
||||
# prompt += f"### Assistant:\nTool Calls: {json.dumps(tool_calls, indent=2)}\n\n"
|
||||
response_dict: OllamaVisionModelObject = {
|
||||
"prompt": prompt,
|
||||
"images": images,
|
||||
}
|
||||
|
||||
# elif "tool_call_id" in message:
|
||||
# prompt += f"### User:\n{message['content']}\n\n"
|
||||
|
||||
return {"prompt": prompt, "images": images}
|
||||
|
||||
return prompt
|
||||
return response_dict
|
||||
|
||||
|
||||
def mistral_instruct_pt(messages):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue