mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
Merge pull request #3888 from BerriAI/litellm_add_files_proxy
[Feat] LiteLLM Proxy Add `POST /v1/files` and `GET /v1/files`
This commit is contained in:
commit
d8245cbccb
6 changed files with 680 additions and 2 deletions
|
@ -30,6 +30,8 @@ from ..types.llms.openai import (
|
|||
FileTypes,
|
||||
FileObject,
|
||||
Batch,
|
||||
FileContentRequest,
|
||||
HttpxBinaryResponseContent,
|
||||
)
|
||||
|
||||
####### ENVIRONMENT VARIABLES ###################
|
||||
|
@ -170,6 +172,134 @@ def create_file(
|
|||
raise e
|
||||
|
||||
|
||||
async def afile_content(
|
||||
file_id: str,
|
||||
custom_llm_provider: Literal["openai"] = "openai",
|
||||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
) -> Coroutine[Any, Any, HttpxBinaryResponseContent]:
|
||||
"""
|
||||
Async: Get file contents
|
||||
|
||||
LiteLLM Equivalent of GET https://api.openai.com/v1/files
|
||||
"""
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
kwargs["afile_content"] = True
|
||||
|
||||
# Use a partial function to pass your keyword arguments
|
||||
func = partial(
|
||||
file_content,
|
||||
file_id,
|
||||
custom_llm_provider,
|
||||
extra_headers,
|
||||
extra_body,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Add the context to the function
|
||||
ctx = contextvars.copy_context()
|
||||
func_with_context = partial(ctx.run, func)
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
if asyncio.iscoroutine(init_response):
|
||||
response = await init_response
|
||||
else:
|
||||
response = init_response # type: ignore
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
def file_content(
|
||||
file_id: str,
|
||||
custom_llm_provider: Literal["openai"] = "openai",
|
||||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
) -> Union[HttpxBinaryResponseContent, Coroutine[Any, Any, HttpxBinaryResponseContent]]:
|
||||
"""
|
||||
Returns the contents of the specified file.
|
||||
|
||||
LiteLLM Equivalent of POST: POST https://api.openai.com/v1/files
|
||||
"""
|
||||
try:
|
||||
optional_params = GenericLiteLLMParams(**kwargs)
|
||||
if custom_llm_provider == "openai":
|
||||
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
||||
api_base = (
|
||||
optional_params.api_base
|
||||
or litellm.api_base
|
||||
or os.getenv("OPENAI_API_BASE")
|
||||
or "https://api.openai.com/v1"
|
||||
)
|
||||
organization = (
|
||||
optional_params.organization
|
||||
or litellm.organization
|
||||
or os.getenv("OPENAI_ORGANIZATION", None)
|
||||
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
||||
)
|
||||
# set API KEY
|
||||
api_key = (
|
||||
optional_params.api_key
|
||||
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
||||
or litellm.openai_key
|
||||
or os.getenv("OPENAI_API_KEY")
|
||||
)
|
||||
### TIMEOUT LOGIC ###
|
||||
timeout = (
|
||||
optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
||||
)
|
||||
# set timeout for 10 minutes by default
|
||||
|
||||
if (
|
||||
timeout is not None
|
||||
and isinstance(timeout, httpx.Timeout)
|
||||
and supports_httpx_timeout(custom_llm_provider) == False
|
||||
):
|
||||
read_timeout = timeout.read or 600
|
||||
timeout = read_timeout # default 10 min timeout
|
||||
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
||||
timeout = float(timeout) # type: ignore
|
||||
elif timeout is None:
|
||||
timeout = 600.0
|
||||
|
||||
_file_content_request = FileContentRequest(
|
||||
file_id=file_id,
|
||||
extra_headers=extra_headers,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
_is_async = kwargs.pop("afile_content", False) is True
|
||||
|
||||
response = openai_files_instance.file_content(
|
||||
_is_async=_is_async,
|
||||
file_content_request=_file_content_request,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
timeout=timeout,
|
||||
max_retries=optional_params.max_retries,
|
||||
organization=organization,
|
||||
)
|
||||
else:
|
||||
raise litellm.exceptions.BadRequestError(
|
||||
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format(
|
||||
custom_llm_provider
|
||||
),
|
||||
model="n/a",
|
||||
llm_provider=custom_llm_provider,
|
||||
response=httpx.Response(
|
||||
status_code=400,
|
||||
content="Unsupported provider",
|
||||
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
||||
),
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
async def acreate_batch(
|
||||
completion_window: Literal["24h"],
|
||||
endpoint: Literal["/v1/chat/completions", "/v1/embeddings", "/v1/completions"],
|
||||
|
|
|
@ -1585,6 +1585,54 @@ class OpenAIFilesAPI(BaseLLM):
|
|||
response = openai_client.files.create(**create_file_data)
|
||||
return response
|
||||
|
||||
async def afile_content(
|
||||
self,
|
||||
file_content_request: FileContentRequest,
|
||||
openai_client: AsyncOpenAI,
|
||||
) -> HttpxBinaryResponseContent:
|
||||
response = await openai_client.files.content(**file_content_request)
|
||||
return response
|
||||
|
||||
def file_content(
|
||||
self,
|
||||
_is_async: bool,
|
||||
file_content_request: FileContentRequest,
|
||||
api_base: str,
|
||||
api_key: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
organization: Optional[str],
|
||||
client: Optional[Union[OpenAI, AsyncOpenAI]] = None,
|
||||
) -> Union[
|
||||
HttpxBinaryResponseContent, Coroutine[Any, Any, HttpxBinaryResponseContent]
|
||||
]:
|
||||
openai_client: Optional[Union[OpenAI, AsyncOpenAI]] = self.get_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
organization=organization,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
if openai_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(openai_client, AsyncOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.afile_content( # type: ignore
|
||||
file_content_request=file_content_request,
|
||||
openai_client=openai_client,
|
||||
)
|
||||
response = openai_client.files.content(**file_content_request)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
class OpenAIBatchesAPI(BaseLLM):
|
||||
"""
|
||||
|
|
|
@ -99,6 +99,14 @@ class LiteLLMRoutes(enum.Enum):
|
|||
# moderations
|
||||
"/moderations",
|
||||
"/v1/moderations",
|
||||
# batches
|
||||
"/v1/batches",
|
||||
"/batches",
|
||||
"/v1/batches{batch_id}",
|
||||
"/batches{batch_id}",
|
||||
# files
|
||||
"/v1/files",
|
||||
"/files",
|
||||
# models
|
||||
"/models",
|
||||
"/v1/models",
|
||||
|
@ -1215,6 +1223,7 @@ class InvitationModel(LiteLLMBase):
|
|||
updated_at: datetime
|
||||
updated_by: str
|
||||
|
||||
|
||||
class ConfigFieldInfo(LiteLLMBase):
|
||||
field_name: str
|
||||
field_value: Any
|
||||
|
|
|
@ -100,6 +100,13 @@ from litellm.proxy.utils import (
|
|||
encrypt_value,
|
||||
decrypt_value,
|
||||
)
|
||||
from litellm import (
|
||||
CreateBatchRequest,
|
||||
RetrieveBatchRequest,
|
||||
ListBatchRequest,
|
||||
CancelBatchRequest,
|
||||
CreateFileRequest,
|
||||
)
|
||||
from litellm.proxy.secret_managers.google_kms import load_google_kms
|
||||
from litellm.proxy.secret_managers.aws_secret_manager import load_aws_secret_manager
|
||||
import pydantic
|
||||
|
@ -142,6 +149,7 @@ from fastapi import (
|
|||
Request,
|
||||
HTTPException,
|
||||
status,
|
||||
Path,
|
||||
Depends,
|
||||
Header,
|
||||
Response,
|
||||
|
@ -5027,6 +5035,447 @@ async def audio_transcriptions(
|
|||
)
|
||||
|
||||
|
||||
######################################################################
|
||||
|
||||
# /v1/batches Endpoints
|
||||
|
||||
|
||||
######################################################################
|
||||
@router.post(
|
||||
"/v1/batches",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.post(
|
||||
"/batches",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
async def create_batch(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
Create large batches of API requests for asynchronous processing.
|
||||
This is the equivalent of POST https://api.openai.com/v1/batch
|
||||
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch
|
||||
|
||||
Example Curl
|
||||
```
|
||||
curl http://localhost:4000/v1/batches \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"input_file_id": "file-abc123",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"completion_window": "24h"
|
||||
}'
|
||||
```
|
||||
"""
|
||||
global proxy_logging_obj
|
||||
data: Dict = {}
|
||||
try:
|
||||
# Use orjson to parse JSON data, orjson speeds up requests significantly
|
||||
form_data = await request.form()
|
||||
data = {key: value for key, value in form_data.items() if key != "file"}
|
||||
|
||||
# Include original request and headers in the data
|
||||
data["proxy_server_request"] = { # type: ignore
|
||||
"url": str(request.url),
|
||||
"method": request.method,
|
||||
"headers": dict(request.headers),
|
||||
"body": copy.copy(data), # use copy instead of deepcopy
|
||||
}
|
||||
|
||||
if data.get("user", None) is None and user_api_key_dict.user_id is not None:
|
||||
data["user"] = user_api_key_dict.user_id
|
||||
|
||||
if "metadata" not in data:
|
||||
data["metadata"] = {}
|
||||
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
|
||||
data["metadata"]["user_api_key_metadata"] = user_api_key_dict.metadata
|
||||
_headers = dict(request.headers)
|
||||
_headers.pop(
|
||||
"authorization", None
|
||||
) # do not store the original `sk-..` api key in the db
|
||||
data["metadata"]["headers"] = _headers
|
||||
data["metadata"]["user_api_key_alias"] = getattr(
|
||||
user_api_key_dict, "key_alias", None
|
||||
)
|
||||
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
|
||||
data["metadata"]["user_api_key_team_id"] = getattr(
|
||||
user_api_key_dict, "team_id", None
|
||||
)
|
||||
data["metadata"]["global_max_parallel_requests"] = general_settings.get(
|
||||
"global_max_parallel_requests", None
|
||||
)
|
||||
data["metadata"]["user_api_key_team_alias"] = getattr(
|
||||
user_api_key_dict, "team_alias", None
|
||||
)
|
||||
data["metadata"]["endpoint"] = str(request.url)
|
||||
|
||||
### TEAM-SPECIFIC PARAMS ###
|
||||
if user_api_key_dict.team_id is not None:
|
||||
team_config = await proxy_config.load_team_config(
|
||||
team_id=user_api_key_dict.team_id
|
||||
)
|
||||
if len(team_config) == 0:
|
||||
pass
|
||||
else:
|
||||
team_id = team_config.pop("team_id", None)
|
||||
data["metadata"]["team_id"] = team_id
|
||||
data = {
|
||||
**team_config,
|
||||
**data,
|
||||
} # add the team-specific configs to the completion call
|
||||
|
||||
_create_batch_data = CreateBatchRequest(**data)
|
||||
|
||||
# for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch
|
||||
response = await litellm.acreate_batch(
|
||||
custom_llm_provider="openai", **_create_batch_data
|
||||
)
|
||||
|
||||
### ALERTING ###
|
||||
data["litellm_status"] = "success" # used for alerting
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
data["litellm_status"] = "fail" # used for alerting
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
traceback.print_exc()
|
||||
if isinstance(e, HTTPException):
|
||||
raise ProxyException(
|
||||
message=getattr(e, "message", str(e.detail)),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
||||
)
|
||||
else:
|
||||
error_traceback = traceback.format_exc()
|
||||
error_msg = f"{str(e)}"
|
||||
raise ProxyException(
|
||||
message=getattr(e, "message", error_msg),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", 500),
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/v1/batches{batch_id}",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Batch"],
|
||||
)
|
||||
@router.get(
|
||||
"/batches{batch_id}",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Batch"],
|
||||
)
|
||||
async def retrieve_batch(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
batch_id: str = Path(
|
||||
title="Batch ID to retrieve", description="The ID of the batch to retrieve"
|
||||
),
|
||||
):
|
||||
"""
|
||||
Retrieves a batch.
|
||||
This is the equivalent of GET https://api.openai.com/v1/batches/{batch_id}
|
||||
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/retrieve
|
||||
|
||||
Example Curl
|
||||
```
|
||||
curl http://localhost:4000/v1/batches/batch_abc123 \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
|
||||
```
|
||||
"""
|
||||
global proxy_logging_obj
|
||||
data: Dict = {}
|
||||
try:
|
||||
# Use orjson to parse JSON data, orjson speeds up requests significantly
|
||||
form_data = await request.form()
|
||||
data = {key: value for key, value in form_data.items() if key != "file"}
|
||||
|
||||
# Include original request and headers in the data
|
||||
data["proxy_server_request"] = { # type: ignore
|
||||
"url": str(request.url),
|
||||
"method": request.method,
|
||||
"headers": dict(request.headers),
|
||||
"body": copy.copy(data), # use copy instead of deepcopy
|
||||
}
|
||||
|
||||
if data.get("user", None) is None and user_api_key_dict.user_id is not None:
|
||||
data["user"] = user_api_key_dict.user_id
|
||||
|
||||
if "metadata" not in data:
|
||||
data["metadata"] = {}
|
||||
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
|
||||
data["metadata"]["user_api_key_metadata"] = user_api_key_dict.metadata
|
||||
_headers = dict(request.headers)
|
||||
_headers.pop(
|
||||
"authorization", None
|
||||
) # do not store the original `sk-..` api key in the db
|
||||
data["metadata"]["headers"] = _headers
|
||||
data["metadata"]["user_api_key_alias"] = getattr(
|
||||
user_api_key_dict, "key_alias", None
|
||||
)
|
||||
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
|
||||
data["metadata"]["user_api_key_team_id"] = getattr(
|
||||
user_api_key_dict, "team_id", None
|
||||
)
|
||||
data["metadata"]["global_max_parallel_requests"] = general_settings.get(
|
||||
"global_max_parallel_requests", None
|
||||
)
|
||||
data["metadata"]["user_api_key_team_alias"] = getattr(
|
||||
user_api_key_dict, "team_alias", None
|
||||
)
|
||||
data["metadata"]["endpoint"] = str(request.url)
|
||||
|
||||
### TEAM-SPECIFIC PARAMS ###
|
||||
if user_api_key_dict.team_id is not None:
|
||||
team_config = await proxy_config.load_team_config(
|
||||
team_id=user_api_key_dict.team_id
|
||||
)
|
||||
if len(team_config) == 0:
|
||||
pass
|
||||
else:
|
||||
team_id = team_config.pop("team_id", None)
|
||||
data["metadata"]["team_id"] = team_id
|
||||
data = {
|
||||
**team_config,
|
||||
**data,
|
||||
} # add the team-specific configs to the completion call
|
||||
|
||||
_retrieve_batch_request = RetrieveBatchRequest(
|
||||
batch_id=batch_id,
|
||||
)
|
||||
|
||||
# for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch
|
||||
response = await litellm.aretrieve_batch(
|
||||
custom_llm_provider="openai", **_retrieve_batch_request
|
||||
)
|
||||
|
||||
### ALERTING ###
|
||||
data["litellm_status"] = "success" # used for alerting
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
data["litellm_status"] = "fail" # used for alerting
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
traceback.print_exc()
|
||||
if isinstance(e, HTTPException):
|
||||
raise ProxyException(
|
||||
message=getattr(e, "message", str(e.detail)),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
||||
)
|
||||
else:
|
||||
error_traceback = traceback.format_exc()
|
||||
error_msg = f"{str(e)}"
|
||||
raise ProxyException(
|
||||
message=getattr(e, "message", error_msg),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", 500),
|
||||
)
|
||||
|
||||
|
||||
######################################################################
|
||||
|
||||
# END OF /v1/batches Endpoints Implementation
|
||||
|
||||
######################################################################
|
||||
|
||||
|
||||
######################################################################
|
||||
|
||||
# /v1/files Endpoints
|
||||
|
||||
|
||||
######################################################################
|
||||
@router.post(
|
||||
"/v1/files",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["files"],
|
||||
)
|
||||
@router.post(
|
||||
"/files",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["files"],
|
||||
)
|
||||
async def create_file(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
Upload a file that can be used across - Assistants API, Batch API
|
||||
This is the equivalent of POST https://api.openai.com/v1/files
|
||||
|
||||
Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/create
|
||||
|
||||
Example Curl
|
||||
```
|
||||
curl https://api.openai.com/v1/files \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-F purpose="batch" \
|
||||
-F file="@mydata.jsonl"
|
||||
|
||||
```
|
||||
"""
|
||||
global proxy_logging_obj
|
||||
data: Dict = {}
|
||||
try:
|
||||
# Use orjson to parse JSON data, orjson speeds up requests significantly
|
||||
form_data = await request.form()
|
||||
data = {key: value for key, value in form_data.items() if key != "file"}
|
||||
|
||||
# Include original request and headers in the data
|
||||
data["proxy_server_request"] = { # type: ignore
|
||||
"url": str(request.url),
|
||||
"method": request.method,
|
||||
"headers": dict(request.headers),
|
||||
"body": copy.copy(data), # use copy instead of deepcopy
|
||||
}
|
||||
|
||||
if data.get("user", None) is None and user_api_key_dict.user_id is not None:
|
||||
data["user"] = user_api_key_dict.user_id
|
||||
|
||||
if "metadata" not in data:
|
||||
data["metadata"] = {}
|
||||
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
|
||||
data["metadata"]["user_api_key_metadata"] = user_api_key_dict.metadata
|
||||
_headers = dict(request.headers)
|
||||
_headers.pop(
|
||||
"authorization", None
|
||||
) # do not store the original `sk-..` api key in the db
|
||||
data["metadata"]["headers"] = _headers
|
||||
data["metadata"]["user_api_key_alias"] = getattr(
|
||||
user_api_key_dict, "key_alias", None
|
||||
)
|
||||
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
|
||||
data["metadata"]["user_api_key_team_id"] = getattr(
|
||||
user_api_key_dict, "team_id", None
|
||||
)
|
||||
data["metadata"]["global_max_parallel_requests"] = general_settings.get(
|
||||
"global_max_parallel_requests", None
|
||||
)
|
||||
data["metadata"]["user_api_key_team_alias"] = getattr(
|
||||
user_api_key_dict, "team_alias", None
|
||||
)
|
||||
data["metadata"]["endpoint"] = str(request.url)
|
||||
|
||||
### TEAM-SPECIFIC PARAMS ###
|
||||
if user_api_key_dict.team_id is not None:
|
||||
team_config = await proxy_config.load_team_config(
|
||||
team_id=user_api_key_dict.team_id
|
||||
)
|
||||
if len(team_config) == 0:
|
||||
pass
|
||||
else:
|
||||
team_id = team_config.pop("team_id", None)
|
||||
data["metadata"]["team_id"] = team_id
|
||||
data = {
|
||||
**team_config,
|
||||
**data,
|
||||
} # add the team-specific configs to the completion call
|
||||
|
||||
_create_file_request = CreateFileRequest()
|
||||
|
||||
# for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch
|
||||
response = await litellm.acreate_file(
|
||||
custom_llm_provider="openai", **_create_file_request
|
||||
)
|
||||
|
||||
### ALERTING ###
|
||||
data["litellm_status"] = "success" # used for alerting
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
data["litellm_status"] = "fail" # used for alerting
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
traceback.print_exc()
|
||||
if isinstance(e, HTTPException):
|
||||
raise ProxyException(
|
||||
message=getattr(e, "message", str(e.detail)),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
||||
)
|
||||
else:
|
||||
error_traceback = traceback.format_exc()
|
||||
error_msg = f"{str(e)}"
|
||||
raise ProxyException(
|
||||
message=getattr(e, "message", error_msg),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", 500),
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/v1/moderations",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
|
|
|
@ -60,8 +60,6 @@ def test_create_batch():
|
|||
create_batch_response.input_file_id == batch_input_file_id
|
||||
), f"Failed to create batch, expected input_file_id to be {batch_input_file_id} but got {create_batch_response.input_file_id}"
|
||||
|
||||
time.sleep(30)
|
||||
|
||||
retrieved_batch = litellm.retrieve_batch(
|
||||
batch_id=create_batch_response.id, custom_llm_provider="openai"
|
||||
)
|
||||
|
@ -70,6 +68,17 @@ def test_create_batch():
|
|||
|
||||
assert retrieved_batch.id == create_batch_response.id
|
||||
|
||||
file_content = litellm.file_content(
|
||||
file_id=batch_input_file_id, custom_llm_provider="openai"
|
||||
)
|
||||
|
||||
result = file_content.content
|
||||
|
||||
result_file_name = "batch_job_results_furniture.jsonl"
|
||||
|
||||
with open(result_file_name, "wb") as file:
|
||||
file.write(result)
|
||||
|
||||
pass
|
||||
|
||||
|
||||
|
@ -127,6 +136,18 @@ async def test_async_create_batch():
|
|||
|
||||
assert retrieved_batch.id == create_batch_response.id
|
||||
|
||||
# try to get file content for our original file
|
||||
|
||||
file_content = await litellm.afile_content(
|
||||
file_id=batch_input_file_id, custom_llm_provider="openai"
|
||||
)
|
||||
|
||||
print("file content = ", file_content)
|
||||
|
||||
# # write this file content to a file
|
||||
# with open("file_content.json", "w") as f:
|
||||
# json.dump(file_content, f)
|
||||
|
||||
|
||||
def test_retrieve_batch():
|
||||
pass
|
||||
|
|
|
@ -20,6 +20,7 @@ from openai.types.beta.assistant import Assistant
|
|||
from openai.pagination import SyncCursorPage
|
||||
from os import PathLike
|
||||
from openai.types import FileObject, Batch
|
||||
from openai._legacy_response import HttpxBinaryResponseContent
|
||||
|
||||
from typing import TypedDict, List, Optional, Tuple, Mapping, IO
|
||||
|
||||
|
@ -186,6 +187,26 @@ class CreateFileRequest(TypedDict, total=False):
|
|||
timeout: Optional[float]
|
||||
|
||||
|
||||
class FileContentRequest(TypedDict, total=False):
|
||||
"""
|
||||
FileContentRequest
|
||||
Used by Assistants API, Batches API, and Fine-Tunes API
|
||||
|
||||
Required Params:
|
||||
file_id: str
|
||||
|
||||
Optional Params:
|
||||
extra_headers: Optional[Dict[str, str]]
|
||||
extra_body: Optional[Dict[str, str]] = None
|
||||
timeout: Optional[float] = None
|
||||
"""
|
||||
|
||||
file_id: str
|
||||
extra_headers: Optional[Dict[str, str]]
|
||||
extra_body: Optional[Dict[str, str]]
|
||||
timeout: Optional[float]
|
||||
|
||||
|
||||
# OpenAI Batches Types
|
||||
class CreateBatchRequest(TypedDict, total=False):
|
||||
"""
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue