baseten client mapping

This commit is contained in:
ishaan-jaff 2023-09-04 15:41:36 -07:00
parent 3147bf1d99
commit db4f4c0191
2 changed files with 118 additions and 131 deletions

View file

@ -1,11 +1,11 @@
import os, json
import os
import json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse
class BasetenError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
@ -14,41 +14,30 @@ class BasetenError(Exception):
self.message
) # Call the base class constructor with the parameters it needs
class BasetenLLM:
def __init__(self, encoding, logging_obj, api_key=None):
self.encoding = encoding
self.completion_url_fragment_1 = "https://app.baseten.co/models/"
self.completion_url_fragment_2 = "/predict"
self.api_key = api_key
self.logging_obj = logging_obj
self.validate_environment(api_key=api_key)
def validate_environment(
self, api_key
): # set up the environment required to run the model
# set the api key
if self.api_key == None:
raise ValueError(
"Missing Baseten API Key - A call is being made to baseten but no key is set either in the environment variables or via params"
)
self.api_key = api_key
self.headers = {
def validate_environment(api_key):
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": "Api-Key " + self.api_key,
}
if api_key:
headers["Authorization"] = f"Api-Key {api_key}"
return headers
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
): # logic for parsing in - calling - parsing out model completion calls
):
headers = validate_environment(api_key)
completion_url_fragment_1 = "https://app.baseten.co/models/"
completion_url_fragment_2 = "/predict"
model = model
prompt = ""
for message in messages:
@ -60,24 +49,22 @@ class BasetenLLM:
else:
prompt += f"{message['content']}"
data = {
# "prompt": prompt,
"inputs": prompt, # in case it's a TGI deployed model
# "instruction": prompt, # some baseten models require the prompt to be passed in via the 'instruction' kwarg
# **optional_params,
"inputs": prompt,
"prompt": prompt,
"parameters": optional_params,
"stream": True if "stream" in optional_params and optional_params["stream"] == True else False
}
## LOGGING
self.logging_obj.pre_call(
logging_obj.pre_call(
input=prompt,
api_key=self.api_key,
api_key=api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
response = requests.post(
self.completion_url_fragment_1 + model + self.completion_url_fragment_2,
headers=self.headers,
completion_url_fragment_1 + model + completion_url_fragment_2,
headers=headers,
data=json.dumps(data),
stream=True if "stream" in optional_params and optional_params["stream"] == True else False
)
@ -85,9 +72,9 @@ class BasetenLLM:
return response.iter_lines()
else:
## LOGGING
self.logging_obj.post_call(
logging_obj.post_call(
input=prompt,
api_key=self.api_key,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
@ -141,9 +128,9 @@ class BasetenLLM:
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(self.encoding.encode(prompt))
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
self.encoding.encode(model_response["choices"][0]["message"]["content"])
encoding.encode(model_response["choices"][0]["message"]["content"])
)
model_response["created"] = time.time()
@ -155,7 +142,6 @@ class BasetenLLM:
}
return model_response
def embedding(
self,
): # logic for parsing in - calling - parsing out model embedding calls
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass

View file

@ -26,7 +26,7 @@ from .llms import sagemaker
from .llms import bedrock
from .llms import huggingface_restapi
from .llms import aleph_alpha
from .llms.baseten import BasetenLLM
from .llms import baseten
import tiktoken
from concurrent.futures import ThreadPoolExecutor
@ -751,10 +751,8 @@ def completion(
baseten_key = (
api_key or litellm.baseten_key or os.environ.get("BASETEN_API_KEY")
)
baseten_client = BasetenLLM(
encoding=encoding, api_key=baseten_key, logging_obj=logging
)
model_response = baseten_client.completion(
model_response = baseten.completion(
model=model,
messages=messages,
model_response=model_response,
@ -762,6 +760,9 @@ def completion(
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
encoding=encoding,
api_key=baseten_key,
logging_obj=logging
)
if inspect.isgenerator(model_response) or ("stream" in optional_params and optional_params["stream"] == True):
# don't try to access stream object,