Revert "(perf) move s3 logging to Batch logging + async [94% faster p… (#6275)

* Revert "(perf) move s3 logging to Batch logging + async [94% faster perf under 100 RPS on 1 litellm instance] (#6165)"

This reverts commit 2a5624af47.

* fix test s3

* add test_basic_s3_logging
This commit is contained in:
Ishaan Jaff 2024-10-17 16:14:57 +05:30 committed by GitHub
parent 81766e7049
commit dd4f01a75e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 171 additions and 343 deletions

View file

@ -1,67 +1,43 @@
"""
s3 Bucket Logging Integration
#### What this does ####
# On success + failure, log events to Supabase
async_log_success_event: Processes the event, stores it in memory for 10 seconds or until MAX_BATCH_SIZE and then flushes to s3
NOTE 1: S3 does not provide a BATCH PUT API endpoint, so we create tasks to upload each element individually
NOTE 2: We create a httpx client with a concurrent limit of 1 to upload to s3. Files should get uploaded BUT they should not impact latency of LLM calling logic
"""
import asyncio
import json
from datetime import datetime
from typing import Dict, List, Optional
import datetime
import os
import subprocess
import sys
import traceback
import uuid
from typing import Optional
import litellm
from litellm._logging import print_verbose, verbose_logger
from litellm.llms.base_aws_llm import BaseAWSLLM
from litellm.llms.custom_httpx.http_handler import (
_get_httpx_client,
get_async_httpx_client,
httpxSpecialProvider,
)
from litellm.types.integrations.s3 import s3BatchLoggingElement
from litellm.types.utils import StandardLoggingPayload
from .custom_batch_logger import CustomBatchLogger
# Default Flush interval and batch size for s3
# Flush to s3 every 10 seconds OR every 1K requests in memory
DEFAULT_S3_FLUSH_INTERVAL_SECONDS = 10
DEFAULT_S3_BATCH_SIZE = 1000
class S3Logger(CustomBatchLogger, BaseAWSLLM):
class S3Logger:
# Class variables or attributes
def __init__(
self,
s3_bucket_name: Optional[str] = None,
s3_path: Optional[str] = None,
s3_region_name: Optional[str] = None,
s3_api_version: Optional[str] = None,
s3_use_ssl: bool = True,
s3_verify: Optional[bool] = None,
s3_endpoint_url: Optional[str] = None,
s3_aws_access_key_id: Optional[str] = None,
s3_aws_secret_access_key: Optional[str] = None,
s3_aws_session_token: Optional[str] = None,
s3_flush_interval: Optional[int] = DEFAULT_S3_FLUSH_INTERVAL_SECONDS,
s3_batch_size: Optional[int] = DEFAULT_S3_BATCH_SIZE,
s3_bucket_name=None,
s3_path=None,
s3_region_name=None,
s3_api_version=None,
s3_use_ssl=True,
s3_verify=None,
s3_endpoint_url=None,
s3_aws_access_key_id=None,
s3_aws_secret_access_key=None,
s3_aws_session_token=None,
s3_config=None,
**kwargs,
):
import boto3
try:
verbose_logger.debug(
f"in init s3 logger - s3_callback_params {litellm.s3_callback_params}"
)
# IMPORTANT: We use a concurrent limit of 1 to upload to s3
# Files should get uploaded BUT they should not impact latency of LLM calling logic
self.async_httpx_client = get_async_httpx_client(
llm_provider=httpxSpecialProvider.LoggingCallback,
params={"concurrent_limit": 1},
)
if litellm.s3_callback_params is not None:
# read in .env variables - example os.environ/AWS_BUCKET_NAME
for key, value in litellm.s3_callback_params.items():
@ -87,282 +63,107 @@ class S3Logger(CustomBatchLogger, BaseAWSLLM):
s3_path = litellm.s3_callback_params.get("s3_path")
# done reading litellm.s3_callback_params
s3_flush_interval = litellm.s3_callback_params.get(
"s3_flush_interval", DEFAULT_S3_FLUSH_INTERVAL_SECONDS
)
s3_batch_size = litellm.s3_callback_params.get(
"s3_batch_size", DEFAULT_S3_BATCH_SIZE
)
self.bucket_name = s3_bucket_name
self.s3_path = s3_path
verbose_logger.debug(f"s3 logger using endpoint url {s3_endpoint_url}")
self.s3_bucket_name = s3_bucket_name
self.s3_region_name = s3_region_name
self.s3_api_version = s3_api_version
self.s3_use_ssl = s3_use_ssl
self.s3_verify = s3_verify
self.s3_endpoint_url = s3_endpoint_url
self.s3_aws_access_key_id = s3_aws_access_key_id
self.s3_aws_secret_access_key = s3_aws_secret_access_key
self.s3_aws_session_token = s3_aws_session_token
self.s3_config = s3_config
self.init_kwargs = kwargs
asyncio.create_task(self.periodic_flush())
self.flush_lock = asyncio.Lock()
verbose_logger.debug(
f"s3 flush interval: {s3_flush_interval}, s3 batch size: {s3_batch_size}"
# Create an S3 client with custom endpoint URL
self.s3_client = boto3.client(
"s3",
region_name=s3_region_name,
endpoint_url=s3_endpoint_url,
api_version=s3_api_version,
use_ssl=s3_use_ssl,
verify=s3_verify,
aws_access_key_id=s3_aws_access_key_id,
aws_secret_access_key=s3_aws_secret_access_key,
aws_session_token=s3_aws_session_token,
config=s3_config,
**kwargs,
)
# Call CustomLogger's __init__
CustomBatchLogger.__init__(
self,
flush_lock=self.flush_lock,
flush_interval=s3_flush_interval,
batch_size=s3_batch_size,
)
self.log_queue: List[s3BatchLoggingElement] = []
# Call BaseAWSLLM's __init__
BaseAWSLLM.__init__(self)
except Exception as e:
print_verbose(f"Got exception on init s3 client {str(e)}")
raise e
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
async def _async_log_event(
self, kwargs, response_obj, start_time, end_time, print_verbose
):
self.log_event(kwargs, response_obj, start_time, end_time, print_verbose)
def log_event(self, kwargs, response_obj, start_time, end_time, print_verbose):
try:
verbose_logger.debug(
f"s3 Logging - Enters logging function for model {kwargs}"
)
s3_batch_logging_element = self.create_s3_batch_logging_element(
start_time=start_time,
standard_logging_payload=kwargs.get("standard_logging_object", None),
s3_path=self.s3_path,
# construct payload to send to s3
# follows the same params as langfuse.py
litellm_params = kwargs.get("litellm_params", {})
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
# Clean Metadata before logging - never log raw metadata
# the raw metadata can contain circular references which leads to infinite recursion
# we clean out all extra litellm metadata params before logging
clean_metadata = {}
if isinstance(metadata, dict):
for key, value in metadata.items():
# clean litellm metadata before logging
if key in [
"headers",
"endpoint",
"caching_groups",
"previous_models",
]:
continue
else:
clean_metadata[key] = value
# Ensure everything in the payload is converted to str
payload: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
)
if s3_batch_logging_element is None:
raise ValueError("s3_batch_logging_element is None")
if payload is None:
return
verbose_logger.debug(
"\ns3 Logger - Logging payload = %s", s3_batch_logging_element
s3_file_name = litellm.utils.get_logging_id(start_time, payload) or ""
s3_object_key = (
(self.s3_path.rstrip("/") + "/" if self.s3_path else "")
+ start_time.strftime("%Y-%m-%d")
+ "/"
+ s3_file_name
) # we need the s3 key to include the time, so we log cache hits too
s3_object_key += ".json"
s3_object_download_filename = (
"time-"
+ start_time.strftime("%Y-%m-%dT%H-%M-%S-%f")
+ "_"
+ payload["id"]
+ ".json"
)
self.log_queue.append(s3_batch_logging_element)
verbose_logger.debug(
"s3 logging: queue length %s, batch size %s",
len(self.log_queue),
self.batch_size,
import json
payload_str = json.dumps(payload)
print_verbose(f"\ns3 Logger - Logging payload = {payload_str}")
response = self.s3_client.put_object(
Bucket=self.bucket_name,
Key=s3_object_key,
Body=payload_str,
ContentType="application/json",
ContentLanguage="en",
ContentDisposition=f'inline; filename="{s3_object_download_filename}"',
CacheControl="private, immutable, max-age=31536000, s-maxage=0",
)
if len(self.log_queue) >= self.batch_size:
await self.flush_queue()
print_verbose(f"Response from s3:{str(response)}")
print_verbose(f"s3 Layer Logging - final response object: {response_obj}")
return response
except Exception as e:
verbose_logger.exception(f"s3 Layer Error - {str(e)}")
pass
def log_success_event(self, kwargs, response_obj, start_time, end_time):
"""
Synchronous logging function to log to s3
Does not batch logging requests, instantly logs on s3 Bucket
"""
try:
s3_batch_logging_element = self.create_s3_batch_logging_element(
start_time=start_time,
standard_logging_payload=kwargs.get("standard_logging_object", None),
s3_path=self.s3_path,
)
if s3_batch_logging_element is None:
raise ValueError("s3_batch_logging_element is None")
verbose_logger.debug(
"\ns3 Logger - Logging payload = %s", s3_batch_logging_element
)
# log the element sync httpx client
self.upload_data_to_s3(s3_batch_logging_element)
except Exception as e:
verbose_logger.exception(f"s3 Layer Error - {str(e)}")
pass
async def async_upload_data_to_s3(
self, batch_logging_element: s3BatchLoggingElement
):
try:
import hashlib
import boto3
import requests
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
try:
credentials: Credentials = self.get_credentials(
aws_access_key_id=self.s3_aws_access_key_id,
aws_secret_access_key=self.s3_aws_secret_access_key,
aws_session_token=self.s3_aws_session_token,
aws_region_name=self.s3_region_name,
)
# Prepare the URL
url = f"https://{self.bucket_name}.s3.{self.s3_region_name}.amazonaws.com/{batch_logging_element.s3_object_key}"
if self.s3_endpoint_url:
url = self.s3_endpoint_url + "/" + batch_logging_element.s3_object_key
# Convert JSON to string
json_string = json.dumps(batch_logging_element.payload)
# Calculate SHA256 hash of the content
content_hash = hashlib.sha256(json_string.encode("utf-8")).hexdigest()
# Prepare the request
headers = {
"Content-Type": "application/json",
"x-amz-content-sha256": content_hash,
"Content-Language": "en",
"Content-Disposition": f'inline; filename="{batch_logging_element.s3_object_download_filename}"',
"Cache-Control": "private, immutable, max-age=31536000, s-maxage=0",
}
req = requests.Request("PUT", url, data=json_string, headers=headers)
prepped = req.prepare()
# Sign the request
aws_request = AWSRequest(
method=prepped.method,
url=prepped.url,
data=prepped.body,
headers=prepped.headers,
)
SigV4Auth(credentials, "s3", self.s3_region_name).add_auth(aws_request)
# Prepare the signed headers
signed_headers = dict(aws_request.headers.items())
# Make the request
response = await self.async_httpx_client.put(
url, data=json_string, headers=signed_headers
)
response.raise_for_status()
except Exception as e:
verbose_logger.exception(f"Error uploading to s3: {str(e)}")
async def async_send_batch(self):
"""
Sends runs from self.log_queue
Returns: None
Raises: Does not raise an exception, will only verbose_logger.exception()
"""
if not self.log_queue:
return
for payload in self.log_queue:
asyncio.create_task(self.async_upload_data_to_s3(payload))
def create_s3_batch_logging_element(
self,
start_time: datetime,
standard_logging_payload: Optional[StandardLoggingPayload],
s3_path: Optional[str],
) -> Optional[s3BatchLoggingElement]:
"""
Helper function to create an s3BatchLoggingElement.
Args:
start_time (datetime): The start time of the logging event.
standard_logging_payload (Optional[StandardLoggingPayload]): The payload to be logged.
s3_path (Optional[str]): The S3 path prefix.
Returns:
Optional[s3BatchLoggingElement]: The created s3BatchLoggingElement, or None if payload is None.
"""
if standard_logging_payload is None:
return None
s3_file_name = (
litellm.utils.get_logging_id(start_time, standard_logging_payload) or ""
)
s3_object_key = (
(s3_path.rstrip("/") + "/" if s3_path else "")
+ start_time.strftime("%Y-%m-%d")
+ "/"
+ s3_file_name
+ ".json"
)
s3_object_download_filename = f"time-{start_time.strftime('%Y-%m-%dT%H-%M-%S-%f')}_{standard_logging_payload['id']}.json"
return s3BatchLoggingElement(
payload=standard_logging_payload, # type: ignore
s3_object_key=s3_object_key,
s3_object_download_filename=s3_object_download_filename,
)
def upload_data_to_s3(self, batch_logging_element: s3BatchLoggingElement):
try:
import hashlib
import boto3
import requests
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
try:
credentials: Credentials = self.get_credentials(
aws_access_key_id=self.s3_aws_access_key_id,
aws_secret_access_key=self.s3_aws_secret_access_key,
aws_session_token=self.s3_aws_session_token,
aws_region_name=self.s3_region_name,
)
# Prepare the URL
url = f"https://{self.bucket_name}.s3.{self.s3_region_name}.amazonaws.com/{batch_logging_element.s3_object_key}"
if self.s3_endpoint_url:
url = self.s3_endpoint_url + "/" + batch_logging_element.s3_object_key
# Convert JSON to string
json_string = json.dumps(batch_logging_element.payload)
# Calculate SHA256 hash of the content
content_hash = hashlib.sha256(json_string.encode("utf-8")).hexdigest()
# Prepare the request
headers = {
"Content-Type": "application/json",
"x-amz-content-sha256": content_hash,
"Content-Language": "en",
"Content-Disposition": f'inline; filename="{batch_logging_element.s3_object_download_filename}"',
"Cache-Control": "private, immutable, max-age=31536000, s-maxage=0",
}
req = requests.Request("PUT", url, data=json_string, headers=headers)
prepped = req.prepare()
# Sign the request
aws_request = AWSRequest(
method=prepped.method,
url=prepped.url,
data=prepped.body,
headers=prepped.headers,
)
SigV4Auth(credentials, "s3", self.s3_region_name).add_auth(aws_request)
# Prepare the signed headers
signed_headers = dict(aws_request.headers.items())
httpx_client = _get_httpx_client()
# Make the request
response = httpx_client.put(url, data=json_string, headers=signed_headers)
response.raise_for_status()
except Exception as e:
verbose_logger.exception(f"Error uploading to s3: {str(e)}")