mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
style(test_completion.py): fix merge conflict
This commit is contained in:
parent
396d9d8e38
commit
dd7e397650
22 changed files with 1535 additions and 250 deletions
151
litellm/main.py
151
litellm/main.py
|
@ -45,7 +45,8 @@ from .llms import (
|
|||
cohere,
|
||||
petals,
|
||||
oobabooga,
|
||||
palm)
|
||||
palm,
|
||||
vertex_ai)
|
||||
from .llms.prompt_templates.factory import prompt_factory, custom_prompt
|
||||
import tiktoken
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
@ -810,134 +811,32 @@ def completion(
|
|||
)
|
||||
return response
|
||||
response = model_response
|
||||
elif model in litellm.vertex_chat_models or model in litellm.vertex_code_chat_models:
|
||||
try:
|
||||
import vertexai
|
||||
except:
|
||||
raise Exception("vertexai import failed please run `pip install google-cloud-aiplatform`")
|
||||
from vertexai.preview.language_models import ChatModel, CodeChatModel, InputOutputTextPair
|
||||
elif model in litellm.vertex_chat_models or model in litellm.vertex_code_chat_models or model in litellm.vertex_text_models or model in litellm.vertex_code_text_models:
|
||||
vertex_ai_project = (litellm.vertex_project
|
||||
or get_secret("VERTEXAI_PROJECT"))
|
||||
vertex_ai_location = (litellm.vertex_location
|
||||
or get_secret("VERTEXAI_LOCATION"))
|
||||
|
||||
vertex_project = (litellm.vertex_project or get_secret("VERTEXAI_PROJECT"))
|
||||
vertex_location = (litellm.vertex_location or get_secret("VERTEXAI_LOCATION"))
|
||||
vertexai.init(
|
||||
project=vertex_project, location=vertex_location
|
||||
# palm does not support streaming as yet :(
|
||||
model_response = vertex_ai.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
vertex_location=vertex_ai_location,
|
||||
vertex_project=vertex_ai_project,
|
||||
logging_obj=logging
|
||||
)
|
||||
# vertexai does not use an API key, it looks for credentials.json in the environment
|
||||
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
# contains any default values we need to pass to the provider
|
||||
VertexAIConfig = {
|
||||
"top_k": 40 # override by setting kwarg in completion() - e.g. completion(..., top_k=20)
|
||||
}
|
||||
if model in litellm.vertex_chat_models:
|
||||
chat_model = ChatModel.from_pretrained(model)
|
||||
else: # vertex_code_chat_models
|
||||
chat_model = CodeChatModel.from_pretrained(model)
|
||||
|
||||
chat = chat_model.start_chat()
|
||||
|
||||
## Load Config
|
||||
for k, v in VertexAIConfig.items():
|
||||
if k not in optional_params:
|
||||
optional_params[k] = v
|
||||
|
||||
## LOGGING
|
||||
logging.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params})
|
||||
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
model_response = chat.send_message_streaming(prompt, **optional_params)
|
||||
response = CustomStreamWrapper(
|
||||
model_response, model, custom_llm_provider="vertex_ai", logging_obj=logging
|
||||
)
|
||||
)
|
||||
return response
|
||||
|
||||
completion_response = chat.send_message(prompt, **optional_params)
|
||||
|
||||
## LOGGING
|
||||
logging.post_call(
|
||||
input=prompt, api_key=None, original_response=completion_response
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
model_response["choices"][0]["message"]["content"] = str(completion_response)
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
## CALCULATING USAGE
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
)
|
||||
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
response = model_response
|
||||
elif model in litellm.vertex_text_models or model in litellm.vertex_code_text_models:
|
||||
try:
|
||||
import vertexai
|
||||
except:
|
||||
raise Exception("vertexai import failed please run `pip install google-cloud-aiplatform`")
|
||||
from vertexai.language_models import TextGenerationModel, CodeGenerationModel
|
||||
|
||||
vertexai.init(
|
||||
project=litellm.vertex_project, location=litellm.vertex_location
|
||||
)
|
||||
# vertexai does not use an API key, it looks for credentials.json in the environment
|
||||
|
||||
# contains any default values we need to pass to the provider
|
||||
VertexAIConfig = {
|
||||
"top_k": 40 # override by setting kwarg in completion() - e.g. completion(..., top_k=20)
|
||||
}
|
||||
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
|
||||
if model in litellm.vertex_text_models:
|
||||
vertex_model = TextGenerationModel.from_pretrained(model)
|
||||
else:
|
||||
vertex_model = CodeGenerationModel.from_pretrained(model)
|
||||
|
||||
## Load Config
|
||||
for k, v in VertexAIConfig.items():
|
||||
if k not in optional_params:
|
||||
optional_params[k] = v
|
||||
|
||||
## LOGGING
|
||||
logging.pre_call(input=prompt, api_key=None)
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
model_response = vertex_model.predict_streaming(prompt, **optional_params)
|
||||
response = CustomStreamWrapper(
|
||||
model_response, model, custom_llm_provider="vertexai", logging_obj=logging
|
||||
)
|
||||
return response
|
||||
|
||||
completion_response = vertex_model.predict(prompt, **optional_params)
|
||||
|
||||
## LOGGING
|
||||
logging.post_call(
|
||||
input=prompt, api_key=None, original_response=completion_response
|
||||
)
|
||||
## RESPONSE OBJECT
|
||||
model_response["choices"][0]["message"]["content"] = str(completion_response)
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
## CALCULATING USAGE
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
)
|
||||
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
response = model_response
|
||||
elif model in litellm.ai21_models:
|
||||
custom_llm_provider = "ai21"
|
||||
|
@ -1122,10 +1021,16 @@ def completion(
|
|||
custom_llm_provider == "petals"
|
||||
or model in litellm.petals_models
|
||||
):
|
||||
api_base = (
|
||||
litellm.api_base or
|
||||
api_base
|
||||
)
|
||||
|
||||
custom_llm_provider = "petals"
|
||||
model_response = petals.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=api_base,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue