docs litellm mcp

This commit is contained in:
Ishaan Jaff 2025-03-29 22:28:03 -07:00
parent cc80370e0c
commit df01337bd8
2 changed files with 161 additions and 168 deletions

View file

@ -4,21 +4,177 @@ import Image from '@theme/IdealImage';
# /mcp [BETA] - Model Context Protocol
Use Model Context Protocol with LiteLLM
## Expose MCP tools on LiteLLM Proxy Server
This allows you to define tools that can be called by any MCP compatible client. Define your `mcp_servers` with LiteLLM and all your clients can list and call available tools.
<Image
img={require('../img/litellm_mcp.png')}
img={require('../img/mcp_2.png')}
style={{width: '100%', display: 'block', margin: '2rem auto'}}
/>
<p style={{textAlign: 'left', color: '#666'}}>
LiteLLM MCP Architecture: Use MCP tools with all LiteLLM supported models
</p>
#### How it works
## Overview
LiteLLM exposes the following MCP endpoints:
LiteLLM acts as a MCP bridge to utilize MCP tools with all LiteLLM supported models. LiteLLM offers the following features for using MCP
- `/mcp/tools/list` - List all available tools
- `/mcp/tools/call` - Call a specific tool with the provided arguments
When MCP clients connect to LiteLLM they can follow this workflow:
1. Connect to the LiteLLM MCP server
2. List all available tools on LiteLLM
3. Client makes LLM API request with tool call(s)
4. LLM API returns which tools to call and with what arguments
5. MCP client makes MCP tool calls to LiteLLM
6. LiteLLM makes the tool calls to the appropriate MCP server
7. LiteLLM returns the tool call results to the MCP client
#### Usage
#### 1. Define your tools on under `mcp_servers` in your config.yaml file.
LiteLLM allows you to define your tools on the `mcp_servers` section in your config.yaml file. All tools listed here will be available to MCP clients (when they connect to LiteLLM and call `list_tools`).
```yaml title="config.yaml" showLineNumbers
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: sk-xxxxxxx
mcp_servers:
{
"zapier_mcp": {
"url": "https://actions.zapier.com/mcp/sk-akxxxxx/sse"
},
"fetch": {
"url": "http://localhost:8000/sse"
}
}
```
#### 2. Start LiteLLM Gateway
<Tabs>
<TabItem value="docker" label="Docker Run">
```shell title="Docker Run" showLineNumbers
docker run -d \
-p 4000:4000 \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
--name my-app \
-v $(pwd)/my_config.yaml:/app/config.yaml \
my-app:latest \
--config /app/config.yaml \
--port 4000 \
--detailed_debug \
```
</TabItem>
<TabItem value="py" label="litellm pip">
```shell title="litellm pip" showLineNumbers
litellm --config config.yaml --detailed_debug
```
</TabItem>
</Tabs>
#### 3. Make an LLM API request
In this example we will do the following:
1. Use MCP client to list MCP tools on LiteLLM Proxy
2. Use `transform_mcp_tool_to_openai_tool` to convert MCP tools to OpenAI tools
3. Provide the MCP tools to `gpt-4o`
4. Handle tool call from `gpt-4o`
5. Convert OpenAI tool call to MCP tool call
6. Execute tool call on MCP server
```python title="MCP Client List Tools" showLineNumbers
import asyncio
from openai import AsyncOpenAI
from openai.types.chat import ChatCompletionUserMessageParam
from mcp import ClientSession
from mcp.client.sse import sse_client
from litellm.experimental_mcp_client.tools import (
transform_mcp_tool_to_openai_tool,
transform_openai_tool_call_request_to_mcp_tool_call_request,
)
async def main():
# Initialize clients
# point OpenAI client to LiteLLM Proxy
client = AsyncOpenAI(api_key="sk-1234", base_url="http://localhost:4000")
# Point MCP client to LiteLLM Proxy
async with sse_client("http://localhost:4000/mcp/") as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
# 1. List MCP tools on LiteLLM Proxy
mcp_tools = await session.list_tools()
print("List of MCP tools for MCP server:", mcp_tools.tools)
# Create message
messages = [
ChatCompletionUserMessageParam(
content="Send an email about LiteLLM supporting MCP", role="user"
)
]
# 2. Use `transform_mcp_tool_to_openai_tool` to convert MCP tools to OpenAI tools
# Since OpenAI only supports tools in the OpenAI format, we need to convert the MCP tools to the OpenAI format.
openai_tools = [
transform_mcp_tool_to_openai_tool(tool) for tool in mcp_tools.tools
]
# 3. Provide the MCP tools to `gpt-4o`
response = await client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=openai_tools,
tool_choice="auto",
)
# 4. Handle tool call from `gpt-4o`
if response.choices[0].message.tool_calls:
tool_call = response.choices[0].message.tool_calls[0]
if tool_call:
# 5. Convert OpenAI tool call to MCP tool call
# Since MCP servers expect tools in the MCP format, we need to convert the OpenAI tool call to the MCP format.
# This is done using litellm.experimental_mcp_client.tools.transform_openai_tool_call_request_to_mcp_tool_call_request
mcp_call = (
transform_openai_tool_call_request_to_mcp_tool_call_request(
openai_tool=tool_call.model_dump()
)
)
# 6. Execute tool call on MCP server
result = await session.call_tool(
name=mcp_call.name, arguments=mcp_call.arguments
)
print("Result:", result)
# Run it
asyncio.run(main())
```
## LiteLLM Python SDK MCP Bridge
LiteLLM Python SDK acts as a MCP bridge to utilize MCP tools with all LiteLLM supported models. LiteLLM offers the following features for using MCP
- **List** Available MCP Tools: OpenAI clients can view all available MCP tools
- `litellm.experimental_mcp_client.load_mcp_tools` to list all available MCP tools
@ -26,8 +182,6 @@ LiteLLM acts as a MCP bridge to utilize MCP tools with all LiteLLM supported mod
- `litellm.experimental_mcp_client.call_openai_tool` to call an OpenAI tool on an MCP server
## Usage
### 1. List Available MCP Tools
In this example we'll use `litellm.experimental_mcp_client.load_mcp_tools` to list all available MCP tools on any MCP server. This method can be used in two ways:
@ -270,165 +424,4 @@ async with stdio_client(server_params) as (read, write):
```
</TabItem>
</Tabs>
## Advanced
### Expose MCP tools on LiteLLM Proxy Server
This allows you to define tools that can be called by any MCP compatible client. Define your `mcp_servers` with LiteLLM and all your clients can list and call available tools.
#### How it works
LiteLLM exposes the following MCP endpoints:
- `/mcp/tools/list` - List all available tools
- `/mcp/tools/call` - Call a specific tool with the provided arguments
When MCP clients connect to LiteLLM they can follow this workflow:
1. Connect to the LiteLLM MCP server
2. List all available tools on LiteLLM
3. Client makes LLM API request with tool call(s)
4. LLM API returns which tools to call and with what arguments
5. MCP client makes MCP tool calls to LiteLLM
6. LiteLLM makes the tool calls to the appropriate MCP server
7. LiteLLM returns the tool call results to the MCP client
#### Usage
#### 1. Define your tools on under `mcp_servers` in your config.yaml file.
LiteLLM allows you to define your tools on the `mcp_servers` section in your config.yaml file. All tools listed here will be available to MCP clients (when they connect to LiteLLM and call `list_tools`).
```yaml title="config.yaml" showLineNumbers
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: sk-xxxxxxx
mcp_servers:
{
"zapier_mcp": {
"url": "https://actions.zapier.com/mcp/sk-akxxxxx/sse"
},
"fetch": {
"url": "http://localhost:8000/sse"
}
}
```
#### 2. Start LiteLLM Gateway
<Tabs>
<TabItem value="docker" label="Docker Run">
```shell title="Docker Run" showLineNumbers
docker run -d \
-p 4000:4000 \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
--name my-app \
-v $(pwd)/my_config.yaml:/app/config.yaml \
my-app:latest \
--config /app/config.yaml \
--port 4000 \
--detailed_debug \
```
</TabItem>
<TabItem value="py" label="litellm pip">
```shell title="litellm pip" showLineNumbers
litellm --config config.yaml --detailed_debug
```
</TabItem>
</Tabs>
#### 3. Make an LLM API request
In this example we will do the following:
1. Use MCP client to list MCP tools on LiteLLM Proxy
2. Use `transform_mcp_tool_to_openai_tool` to convert MCP tools to OpenAI tools
3. Provide the MCP tools to `gpt-4o`
4. Handle tool call from `gpt-4o`
5. Convert OpenAI tool call to MCP tool call
6. Execute tool call on MCP server
```python title="MCP Client List Tools" showLineNumbers
import asyncio
from openai import AsyncOpenAI
from openai.types.chat import ChatCompletionUserMessageParam
from mcp import ClientSession
from mcp.client.sse import sse_client
from litellm.experimental_mcp_client.tools import (
transform_mcp_tool_to_openai_tool,
transform_openai_tool_call_request_to_mcp_tool_call_request,
)
async def main():
# Initialize clients
# point OpenAI client to LiteLLM Proxy
client = AsyncOpenAI(api_key="sk-1234", base_url="http://localhost:4000")
# Point MCP client to LiteLLM Proxy
async with sse_client("http://localhost:4000/mcp/") as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
# 1. List MCP tools on LiteLLM Proxy
mcp_tools = await session.list_tools()
print("List of MCP tools for MCP server:", mcp_tools.tools)
# Create message
messages = [
ChatCompletionUserMessageParam(
content="Send an email about LiteLLM supporting MCP", role="user"
)
]
# 2. Use `transform_mcp_tool_to_openai_tool` to convert MCP tools to OpenAI tools
# Since OpenAI only supports tools in the OpenAI format, we need to convert the MCP tools to the OpenAI format.
openai_tools = [
transform_mcp_tool_to_openai_tool(tool) for tool in mcp_tools.tools
]
# 3. Provide the MCP tools to `gpt-4o`
response = await client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=openai_tools,
tool_choice="auto",
)
# 4. Handle tool call from `gpt-4o`
if response.choices[0].message.tool_calls:
tool_call = response.choices[0].message.tool_calls[0]
if tool_call:
# 5. Convert OpenAI tool call to MCP tool call
# Since MCP servers expect tools in the MCP format, we need to convert the OpenAI tool call to the MCP format.
# This is done using litellm.experimental_mcp_client.tools.transform_openai_tool_call_request_to_mcp_tool_call_request
mcp_call = (
transform_openai_tool_call_request_to_mcp_tool_call_request(
openai_tool=tool_call.model_dump()
)
)
# 6. Execute tool call on MCP server
result = await session.call_tool(
name=mcp_call.name, arguments=mcp_call.arguments
)
print("Result:", result)
# Run it
asyncio.run(main())
```
</Tabs>

Binary file not shown.

After

Width:  |  Height:  |  Size: 133 KiB