mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
docs litellm mcp
This commit is contained in:
parent
cc80370e0c
commit
df01337bd8
2 changed files with 161 additions and 168 deletions
|
@ -4,21 +4,177 @@ import Image from '@theme/IdealImage';
|
|||
|
||||
# /mcp [BETA] - Model Context Protocol
|
||||
|
||||
Use Model Context Protocol with LiteLLM
|
||||
## Expose MCP tools on LiteLLM Proxy Server
|
||||
|
||||
This allows you to define tools that can be called by any MCP compatible client. Define your `mcp_servers` with LiteLLM and all your clients can list and call available tools.
|
||||
|
||||
<Image
|
||||
img={require('../img/litellm_mcp.png')}
|
||||
img={require('../img/mcp_2.png')}
|
||||
style={{width: '100%', display: 'block', margin: '2rem auto'}}
|
||||
/>
|
||||
<p style={{textAlign: 'left', color: '#666'}}>
|
||||
LiteLLM MCP Architecture: Use MCP tools with all LiteLLM supported models
|
||||
</p>
|
||||
|
||||
#### How it works
|
||||
|
||||
## Overview
|
||||
LiteLLM exposes the following MCP endpoints:
|
||||
|
||||
LiteLLM acts as a MCP bridge to utilize MCP tools with all LiteLLM supported models. LiteLLM offers the following features for using MCP
|
||||
- `/mcp/tools/list` - List all available tools
|
||||
- `/mcp/tools/call` - Call a specific tool with the provided arguments
|
||||
|
||||
When MCP clients connect to LiteLLM they can follow this workflow:
|
||||
|
||||
1. Connect to the LiteLLM MCP server
|
||||
2. List all available tools on LiteLLM
|
||||
3. Client makes LLM API request with tool call(s)
|
||||
4. LLM API returns which tools to call and with what arguments
|
||||
5. MCP client makes MCP tool calls to LiteLLM
|
||||
6. LiteLLM makes the tool calls to the appropriate MCP server
|
||||
7. LiteLLM returns the tool call results to the MCP client
|
||||
|
||||
#### Usage
|
||||
|
||||
#### 1. Define your tools on under `mcp_servers` in your config.yaml file.
|
||||
|
||||
LiteLLM allows you to define your tools on the `mcp_servers` section in your config.yaml file. All tools listed here will be available to MCP clients (when they connect to LiteLLM and call `list_tools`).
|
||||
|
||||
```yaml title="config.yaml" showLineNumbers
|
||||
model_list:
|
||||
- model_name: gpt-4o
|
||||
litellm_params:
|
||||
model: openai/gpt-4o
|
||||
api_key: sk-xxxxxxx
|
||||
|
||||
mcp_servers:
|
||||
{
|
||||
"zapier_mcp": {
|
||||
"url": "https://actions.zapier.com/mcp/sk-akxxxxx/sse"
|
||||
},
|
||||
"fetch": {
|
||||
"url": "http://localhost:8000/sse"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
#### 2. Start LiteLLM Gateway
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="docker" label="Docker Run">
|
||||
|
||||
```shell title="Docker Run" showLineNumbers
|
||||
docker run -d \
|
||||
-p 4000:4000 \
|
||||
-e OPENAI_API_KEY=$OPENAI_API_KEY \
|
||||
--name my-app \
|
||||
-v $(pwd)/my_config.yaml:/app/config.yaml \
|
||||
my-app:latest \
|
||||
--config /app/config.yaml \
|
||||
--port 4000 \
|
||||
--detailed_debug \
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="py" label="litellm pip">
|
||||
|
||||
```shell title="litellm pip" showLineNumbers
|
||||
litellm --config config.yaml --detailed_debug
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
#### 3. Make an LLM API request
|
||||
|
||||
In this example we will do the following:
|
||||
|
||||
1. Use MCP client to list MCP tools on LiteLLM Proxy
|
||||
2. Use `transform_mcp_tool_to_openai_tool` to convert MCP tools to OpenAI tools
|
||||
3. Provide the MCP tools to `gpt-4o`
|
||||
4. Handle tool call from `gpt-4o`
|
||||
5. Convert OpenAI tool call to MCP tool call
|
||||
6. Execute tool call on MCP server
|
||||
|
||||
```python title="MCP Client List Tools" showLineNumbers
|
||||
import asyncio
|
||||
from openai import AsyncOpenAI
|
||||
from openai.types.chat import ChatCompletionUserMessageParam
|
||||
from mcp import ClientSession
|
||||
from mcp.client.sse import sse_client
|
||||
from litellm.experimental_mcp_client.tools import (
|
||||
transform_mcp_tool_to_openai_tool,
|
||||
transform_openai_tool_call_request_to_mcp_tool_call_request,
|
||||
)
|
||||
|
||||
|
||||
async def main():
|
||||
# Initialize clients
|
||||
|
||||
# point OpenAI client to LiteLLM Proxy
|
||||
client = AsyncOpenAI(api_key="sk-1234", base_url="http://localhost:4000")
|
||||
|
||||
# Point MCP client to LiteLLM Proxy
|
||||
async with sse_client("http://localhost:4000/mcp/") as (read, write):
|
||||
async with ClientSession(read, write) as session:
|
||||
await session.initialize()
|
||||
|
||||
# 1. List MCP tools on LiteLLM Proxy
|
||||
mcp_tools = await session.list_tools()
|
||||
print("List of MCP tools for MCP server:", mcp_tools.tools)
|
||||
|
||||
# Create message
|
||||
messages = [
|
||||
ChatCompletionUserMessageParam(
|
||||
content="Send an email about LiteLLM supporting MCP", role="user"
|
||||
)
|
||||
]
|
||||
|
||||
# 2. Use `transform_mcp_tool_to_openai_tool` to convert MCP tools to OpenAI tools
|
||||
# Since OpenAI only supports tools in the OpenAI format, we need to convert the MCP tools to the OpenAI format.
|
||||
openai_tools = [
|
||||
transform_mcp_tool_to_openai_tool(tool) for tool in mcp_tools.tools
|
||||
]
|
||||
|
||||
# 3. Provide the MCP tools to `gpt-4o`
|
||||
response = await client.chat.completions.create(
|
||||
model="gpt-4o",
|
||||
messages=messages,
|
||||
tools=openai_tools,
|
||||
tool_choice="auto",
|
||||
)
|
||||
|
||||
# 4. Handle tool call from `gpt-4o`
|
||||
if response.choices[0].message.tool_calls:
|
||||
tool_call = response.choices[0].message.tool_calls[0]
|
||||
if tool_call:
|
||||
|
||||
# 5. Convert OpenAI tool call to MCP tool call
|
||||
# Since MCP servers expect tools in the MCP format, we need to convert the OpenAI tool call to the MCP format.
|
||||
# This is done using litellm.experimental_mcp_client.tools.transform_openai_tool_call_request_to_mcp_tool_call_request
|
||||
mcp_call = (
|
||||
transform_openai_tool_call_request_to_mcp_tool_call_request(
|
||||
openai_tool=tool_call.model_dump()
|
||||
)
|
||||
)
|
||||
|
||||
# 6. Execute tool call on MCP server
|
||||
result = await session.call_tool(
|
||||
name=mcp_call.name, arguments=mcp_call.arguments
|
||||
)
|
||||
|
||||
print("Result:", result)
|
||||
|
||||
|
||||
# Run it
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
## LiteLLM Python SDK MCP Bridge
|
||||
|
||||
LiteLLM Python SDK acts as a MCP bridge to utilize MCP tools with all LiteLLM supported models. LiteLLM offers the following features for using MCP
|
||||
|
||||
- **List** Available MCP Tools: OpenAI clients can view all available MCP tools
|
||||
- `litellm.experimental_mcp_client.load_mcp_tools` to list all available MCP tools
|
||||
|
@ -26,8 +182,6 @@ LiteLLM acts as a MCP bridge to utilize MCP tools with all LiteLLM supported mod
|
|||
- `litellm.experimental_mcp_client.call_openai_tool` to call an OpenAI tool on an MCP server
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
### 1. List Available MCP Tools
|
||||
|
||||
In this example we'll use `litellm.experimental_mcp_client.load_mcp_tools` to list all available MCP tools on any MCP server. This method can be used in two ways:
|
||||
|
@ -270,165 +424,4 @@ async with stdio_client(server_params) as (read, write):
|
|||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
## Advanced
|
||||
### Expose MCP tools on LiteLLM Proxy Server
|
||||
|
||||
This allows you to define tools that can be called by any MCP compatible client. Define your `mcp_servers` with LiteLLM and all your clients can list and call available tools.
|
||||
|
||||
#### How it works
|
||||
|
||||
LiteLLM exposes the following MCP endpoints:
|
||||
|
||||
- `/mcp/tools/list` - List all available tools
|
||||
- `/mcp/tools/call` - Call a specific tool with the provided arguments
|
||||
|
||||
When MCP clients connect to LiteLLM they can follow this workflow:
|
||||
|
||||
1. Connect to the LiteLLM MCP server
|
||||
2. List all available tools on LiteLLM
|
||||
3. Client makes LLM API request with tool call(s)
|
||||
4. LLM API returns which tools to call and with what arguments
|
||||
5. MCP client makes MCP tool calls to LiteLLM
|
||||
6. LiteLLM makes the tool calls to the appropriate MCP server
|
||||
7. LiteLLM returns the tool call results to the MCP client
|
||||
|
||||
#### Usage
|
||||
|
||||
#### 1. Define your tools on under `mcp_servers` in your config.yaml file.
|
||||
|
||||
LiteLLM allows you to define your tools on the `mcp_servers` section in your config.yaml file. All tools listed here will be available to MCP clients (when they connect to LiteLLM and call `list_tools`).
|
||||
|
||||
```yaml title="config.yaml" showLineNumbers
|
||||
model_list:
|
||||
- model_name: gpt-4o
|
||||
litellm_params:
|
||||
model: openai/gpt-4o
|
||||
api_key: sk-xxxxxxx
|
||||
|
||||
mcp_servers:
|
||||
{
|
||||
"zapier_mcp": {
|
||||
"url": "https://actions.zapier.com/mcp/sk-akxxxxx/sse"
|
||||
},
|
||||
"fetch": {
|
||||
"url": "http://localhost:8000/sse"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
#### 2. Start LiteLLM Gateway
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="docker" label="Docker Run">
|
||||
|
||||
```shell title="Docker Run" showLineNumbers
|
||||
docker run -d \
|
||||
-p 4000:4000 \
|
||||
-e OPENAI_API_KEY=$OPENAI_API_KEY \
|
||||
--name my-app \
|
||||
-v $(pwd)/my_config.yaml:/app/config.yaml \
|
||||
my-app:latest \
|
||||
--config /app/config.yaml \
|
||||
--port 4000 \
|
||||
--detailed_debug \
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="py" label="litellm pip">
|
||||
|
||||
```shell title="litellm pip" showLineNumbers
|
||||
litellm --config config.yaml --detailed_debug
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
#### 3. Make an LLM API request
|
||||
|
||||
In this example we will do the following:
|
||||
|
||||
1. Use MCP client to list MCP tools on LiteLLM Proxy
|
||||
2. Use `transform_mcp_tool_to_openai_tool` to convert MCP tools to OpenAI tools
|
||||
3. Provide the MCP tools to `gpt-4o`
|
||||
4. Handle tool call from `gpt-4o`
|
||||
5. Convert OpenAI tool call to MCP tool call
|
||||
6. Execute tool call on MCP server
|
||||
|
||||
```python title="MCP Client List Tools" showLineNumbers
|
||||
import asyncio
|
||||
from openai import AsyncOpenAI
|
||||
from openai.types.chat import ChatCompletionUserMessageParam
|
||||
from mcp import ClientSession
|
||||
from mcp.client.sse import sse_client
|
||||
from litellm.experimental_mcp_client.tools import (
|
||||
transform_mcp_tool_to_openai_tool,
|
||||
transform_openai_tool_call_request_to_mcp_tool_call_request,
|
||||
)
|
||||
|
||||
|
||||
async def main():
|
||||
# Initialize clients
|
||||
|
||||
# point OpenAI client to LiteLLM Proxy
|
||||
client = AsyncOpenAI(api_key="sk-1234", base_url="http://localhost:4000")
|
||||
|
||||
# Point MCP client to LiteLLM Proxy
|
||||
async with sse_client("http://localhost:4000/mcp/") as (read, write):
|
||||
async with ClientSession(read, write) as session:
|
||||
await session.initialize()
|
||||
|
||||
# 1. List MCP tools on LiteLLM Proxy
|
||||
mcp_tools = await session.list_tools()
|
||||
print("List of MCP tools for MCP server:", mcp_tools.tools)
|
||||
|
||||
# Create message
|
||||
messages = [
|
||||
ChatCompletionUserMessageParam(
|
||||
content="Send an email about LiteLLM supporting MCP", role="user"
|
||||
)
|
||||
]
|
||||
|
||||
# 2. Use `transform_mcp_tool_to_openai_tool` to convert MCP tools to OpenAI tools
|
||||
# Since OpenAI only supports tools in the OpenAI format, we need to convert the MCP tools to the OpenAI format.
|
||||
openai_tools = [
|
||||
transform_mcp_tool_to_openai_tool(tool) for tool in mcp_tools.tools
|
||||
]
|
||||
|
||||
# 3. Provide the MCP tools to `gpt-4o`
|
||||
response = await client.chat.completions.create(
|
||||
model="gpt-4o",
|
||||
messages=messages,
|
||||
tools=openai_tools,
|
||||
tool_choice="auto",
|
||||
)
|
||||
|
||||
# 4. Handle tool call from `gpt-4o`
|
||||
if response.choices[0].message.tool_calls:
|
||||
tool_call = response.choices[0].message.tool_calls[0]
|
||||
if tool_call:
|
||||
|
||||
# 5. Convert OpenAI tool call to MCP tool call
|
||||
# Since MCP servers expect tools in the MCP format, we need to convert the OpenAI tool call to the MCP format.
|
||||
# This is done using litellm.experimental_mcp_client.tools.transform_openai_tool_call_request_to_mcp_tool_call_request
|
||||
mcp_call = (
|
||||
transform_openai_tool_call_request_to_mcp_tool_call_request(
|
||||
openai_tool=tool_call.model_dump()
|
||||
)
|
||||
)
|
||||
|
||||
# 6. Execute tool call on MCP server
|
||||
result = await session.call_tool(
|
||||
name=mcp_call.name, arguments=mcp_call.arguments
|
||||
)
|
||||
|
||||
print("Result:", result)
|
||||
|
||||
|
||||
# Run it
|
||||
asyncio.run(main())
|
||||
```
|
||||
</Tabs>
|
BIN
docs/my-website/img/mcp_2.png
Normal file
BIN
docs/my-website/img/mcp_2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 133 KiB |
Loading…
Add table
Add a link
Reference in a new issue