mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
(fix) proxy server remove bloat
This commit is contained in:
parent
592fc12710
commit
e0116d2991
2 changed files with 5 additions and 120 deletions
|
@ -401,110 +401,6 @@ def initialize(
|
|||
user_telemetry = telemetry
|
||||
usage_telemetry(feature="local_proxy_server")
|
||||
|
||||
|
||||
def track_cost_callback(
|
||||
kwargs, # kwargs to completion
|
||||
completion_response, # response from completion
|
||||
start_time,
|
||||
end_time, # start/end time
|
||||
):
|
||||
# track cost like this
|
||||
# {
|
||||
# "Oct12": {
|
||||
# "gpt-4": 10,
|
||||
# "claude-2": 12.01,
|
||||
# },
|
||||
# "Oct 15": {
|
||||
# "ollama/llama2": 0.0,
|
||||
# "gpt2": 1.2
|
||||
# }
|
||||
# }
|
||||
try:
|
||||
# for streaming responses
|
||||
if "complete_streaming_response" in kwargs:
|
||||
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
|
||||
completion_response = kwargs["complete_streaming_response"]
|
||||
input_text = kwargs["messages"]
|
||||
output_text = completion_response["choices"][0]["message"]["content"]
|
||||
response_cost = litellm.completion_cost(
|
||||
model=kwargs["model"], messages=input_text, completion=output_text
|
||||
)
|
||||
model = kwargs["model"]
|
||||
|
||||
# for non streaming responses
|
||||
else:
|
||||
# we pass the completion_response obj
|
||||
if kwargs["stream"] != True:
|
||||
response_cost = litellm.completion_cost(
|
||||
completion_response=completion_response
|
||||
)
|
||||
model = completion_response["model"]
|
||||
|
||||
# read/write from json for storing daily model costs
|
||||
cost_data = {}
|
||||
try:
|
||||
with open("costs.json") as f:
|
||||
cost_data = json.load(f)
|
||||
except FileNotFoundError:
|
||||
cost_data = {}
|
||||
import datetime
|
||||
|
||||
date = datetime.datetime.now().strftime("%b-%d-%Y")
|
||||
if date not in cost_data:
|
||||
cost_data[date] = {}
|
||||
|
||||
if kwargs["model"] in cost_data[date]:
|
||||
cost_data[date][kwargs["model"]]["cost"] += response_cost
|
||||
cost_data[date][kwargs["model"]]["num_requests"] += 1
|
||||
else:
|
||||
cost_data[date][kwargs["model"]] = {
|
||||
"cost": response_cost,
|
||||
"num_requests": 1,
|
||||
}
|
||||
|
||||
with open("costs.json", "w") as f:
|
||||
json.dump(cost_data, f, indent=2)
|
||||
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def logger(
|
||||
kwargs, # kwargs to completion
|
||||
completion_response=None, # response from completion
|
||||
start_time=None,
|
||||
end_time=None, # start/end time
|
||||
):
|
||||
log_event_type = kwargs["log_event_type"]
|
||||
try:
|
||||
if log_event_type == "pre_api_call":
|
||||
inference_params = copy.deepcopy(kwargs)
|
||||
timestamp = inference_params.pop("start_time")
|
||||
dt_key = timestamp.strftime("%Y%m%d%H%M%S%f")[:23]
|
||||
log_data = {dt_key: {"pre_api_call": inference_params}}
|
||||
|
||||
try:
|
||||
with open(log_file, "r") as f:
|
||||
existing_data = json.load(f)
|
||||
except FileNotFoundError:
|
||||
existing_data = {}
|
||||
|
||||
existing_data.update(log_data)
|
||||
|
||||
def write_to_log():
|
||||
with open(log_file, "w") as f:
|
||||
json.dump(existing_data, f, indent=2)
|
||||
|
||||
thread = threading.Thread(target=write_to_log, daemon=True)
|
||||
thread.start()
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
litellm.input_callback = [logger]
|
||||
litellm.success_callback = [logger]
|
||||
litellm.failure_callback = [logger]
|
||||
|
||||
# for streaming
|
||||
def data_generator(response):
|
||||
print_verbose("inside generator")
|
||||
|
@ -605,6 +501,7 @@ async def completion(request: Request, model: Optional[str] = None):
|
|||
**data
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`")
|
||||
error_traceback = traceback.format_exc()
|
||||
error_msg = f"{str(e)}\n\n{error_traceback}"
|
||||
return {"error": error_msg}
|
||||
|
@ -638,14 +535,6 @@ async def chat_completion(request: Request, model: Optional[str] = None):
|
|||
error_msg = f"{str(e)}\n\n{error_traceback}"
|
||||
return {"error": error_msg}
|
||||
|
||||
def print_cost_logs():
|
||||
with open("costs.json", "r") as f:
|
||||
# print this in green
|
||||
print("\033[1;32m")
|
||||
print(f.read())
|
||||
print("\033[0m")
|
||||
return
|
||||
|
||||
|
||||
@router.get("/ollama_logs")
|
||||
async def retrieve_server_log(request: Request):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue