mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
Code Quality Improvement - use vertex_ai/
as folder name for vertexAI (#7166)
* fix rename vertex ai * run ci/cd again
This commit is contained in:
parent
26918487d6
commit
e09d3761d8
47 changed files with 58 additions and 58 deletions
|
@ -0,0 +1,295 @@
|
|||
import json
|
||||
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
AsyncHTTPHandler,
|
||||
HTTPHandler,
|
||||
get_async_httpx_client,
|
||||
)
|
||||
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
|
||||
VertexAIError,
|
||||
VertexLLM,
|
||||
)
|
||||
from litellm.types.llms.vertex_ai import (
|
||||
Instance,
|
||||
InstanceImage,
|
||||
InstanceVideo,
|
||||
MultimodalPrediction,
|
||||
MultimodalPredictions,
|
||||
VertexMultimodalEmbeddingRequest,
|
||||
)
|
||||
from litellm.types.utils import Embedding
|
||||
from litellm.utils import is_base64_encoded
|
||||
|
||||
|
||||
class VertexMultimodalEmbedding(VertexLLM):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.SUPPORTED_MULTIMODAL_EMBEDDING_MODELS = [
|
||||
"multimodalembedding",
|
||||
"multimodalembedding@001",
|
||||
]
|
||||
|
||||
def multimodal_embedding(
|
||||
self,
|
||||
model: str,
|
||||
input: Union[list, str],
|
||||
print_verbose,
|
||||
model_response: litellm.EmbeddingResponse,
|
||||
custom_llm_provider: Literal["gemini", "vertex_ai"],
|
||||
optional_params: dict,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
encoding=None,
|
||||
vertex_project=None,
|
||||
vertex_location=None,
|
||||
vertex_credentials=None,
|
||||
aembedding=False,
|
||||
timeout=300,
|
||||
client=None,
|
||||
) -> litellm.EmbeddingResponse:
|
||||
|
||||
_auth_header, vertex_project = self._ensure_access_token(
|
||||
credentials=vertex_credentials,
|
||||
project_id=vertex_project,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
)
|
||||
|
||||
auth_header, url = self._get_token_and_url(
|
||||
model=model,
|
||||
auth_header=_auth_header,
|
||||
gemini_api_key=api_key,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=vertex_location,
|
||||
vertex_credentials=vertex_credentials,
|
||||
stream=None,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
api_base=api_base,
|
||||
should_use_v1beta1_features=False,
|
||||
mode="embedding",
|
||||
)
|
||||
|
||||
if client is None:
|
||||
_params = {}
|
||||
if timeout is not None:
|
||||
if isinstance(timeout, float) or isinstance(timeout, int):
|
||||
_httpx_timeout = httpx.Timeout(timeout)
|
||||
_params["timeout"] = _httpx_timeout
|
||||
else:
|
||||
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
|
||||
|
||||
sync_handler: HTTPHandler = HTTPHandler(**_params) # type: ignore
|
||||
else:
|
||||
sync_handler = client # type: ignore
|
||||
|
||||
optional_params = optional_params or {}
|
||||
|
||||
request_data = VertexMultimodalEmbeddingRequest()
|
||||
|
||||
if "instances" in optional_params:
|
||||
request_data["instances"] = optional_params["instances"]
|
||||
elif isinstance(input, list):
|
||||
vertex_instances: List[Instance] = self.process_openai_embedding_input(
|
||||
_input=input
|
||||
)
|
||||
request_data["instances"] = vertex_instances
|
||||
|
||||
else:
|
||||
# construct instances
|
||||
vertex_request_instance = Instance(**optional_params)
|
||||
|
||||
if isinstance(input, str):
|
||||
vertex_request_instance = self._process_input_element(input)
|
||||
|
||||
request_data["instances"] = [vertex_request_instance]
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json; charset=utf-8",
|
||||
"Authorization": f"Bearer {auth_header}",
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=input,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": request_data,
|
||||
"api_base": url,
|
||||
"headers": headers,
|
||||
},
|
||||
)
|
||||
|
||||
if aembedding is True:
|
||||
return self.async_multimodal_embedding( # type: ignore
|
||||
model=model,
|
||||
api_base=url,
|
||||
data=request_data,
|
||||
timeout=timeout,
|
||||
headers=headers,
|
||||
client=client,
|
||||
model_response=model_response,
|
||||
)
|
||||
|
||||
response = sync_handler.post(
|
||||
url=url,
|
||||
headers=headers,
|
||||
data=json.dumps(request_data),
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise Exception(f"Error: {response.status_code} {response.text}")
|
||||
|
||||
_json_response = response.json()
|
||||
if "predictions" not in _json_response:
|
||||
raise litellm.InternalServerError(
|
||||
message=f"embedding response does not contain 'predictions', got {_json_response}",
|
||||
llm_provider="vertex_ai",
|
||||
model=model,
|
||||
)
|
||||
_predictions = _json_response["predictions"]
|
||||
vertex_predictions = MultimodalPredictions(predictions=_predictions)
|
||||
model_response.data = self.transform_embedding_response_to_openai(
|
||||
predictions=vertex_predictions
|
||||
)
|
||||
model_response.model = model
|
||||
|
||||
return model_response
|
||||
|
||||
async def async_multimodal_embedding(
|
||||
self,
|
||||
model: str,
|
||||
api_base: str,
|
||||
data: VertexMultimodalEmbeddingRequest,
|
||||
model_response: litellm.EmbeddingResponse,
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
headers={},
|
||||
client: Optional[AsyncHTTPHandler] = None,
|
||||
) -> litellm.EmbeddingResponse:
|
||||
if client is None:
|
||||
_params = {}
|
||||
if timeout is not None:
|
||||
if isinstance(timeout, float) or isinstance(timeout, int):
|
||||
timeout = httpx.Timeout(timeout)
|
||||
_params["timeout"] = timeout
|
||||
client = get_async_httpx_client(
|
||||
llm_provider=litellm.LlmProviders.VERTEX_AI,
|
||||
params={"timeout": timeout},
|
||||
)
|
||||
else:
|
||||
client = client # type: ignore
|
||||
|
||||
try:
|
||||
response = await client.post(api_base, headers=headers, json=data) # type: ignore
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise VertexAIError(status_code=error_code, message=err.response.text)
|
||||
except httpx.TimeoutException:
|
||||
raise VertexAIError(status_code=408, message="Timeout error occurred.")
|
||||
|
||||
_json_response = response.json()
|
||||
if "predictions" not in _json_response:
|
||||
raise litellm.InternalServerError(
|
||||
message=f"embedding response does not contain 'predictions', got {_json_response}",
|
||||
llm_provider="vertex_ai",
|
||||
model=model,
|
||||
)
|
||||
_predictions = _json_response["predictions"]
|
||||
|
||||
vertex_predictions = MultimodalPredictions(predictions=_predictions)
|
||||
model_response.data = self.transform_embedding_response_to_openai(
|
||||
predictions=vertex_predictions
|
||||
)
|
||||
model_response.model = model
|
||||
|
||||
return model_response
|
||||
|
||||
def _process_input_element(self, input_element: str) -> Instance:
|
||||
"""
|
||||
Process the input element for multimodal embedding requests. checks if the if the input is gcs uri, base64 encoded image or plain text.
|
||||
|
||||
Args:
|
||||
input_element (str): The input element to process.
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: A dictionary representing the processed input element.
|
||||
"""
|
||||
if len(input_element) == 0:
|
||||
return Instance(text=input_element)
|
||||
elif "gs://" in input_element:
|
||||
if "mp4" in input_element:
|
||||
return Instance(video=InstanceVideo(gcsUri=input_element))
|
||||
else:
|
||||
return Instance(image=InstanceImage(gcsUri=input_element))
|
||||
elif is_base64_encoded(s=input_element):
|
||||
return Instance(image=InstanceImage(bytesBase64Encoded=input_element))
|
||||
else:
|
||||
return Instance(text=input_element)
|
||||
|
||||
def process_openai_embedding_input(
|
||||
self, _input: Union[list, str]
|
||||
) -> List[Instance]:
|
||||
"""
|
||||
Process the input for multimodal embedding requests.
|
||||
|
||||
Args:
|
||||
_input (Union[list, str]): The input data to process.
|
||||
|
||||
Returns:
|
||||
List[Instance]: A list of processed VertexAI Instance objects.
|
||||
"""
|
||||
|
||||
_input_list = None
|
||||
if not isinstance(_input, list):
|
||||
_input_list = [_input]
|
||||
else:
|
||||
_input_list = _input
|
||||
|
||||
processed_instances = []
|
||||
for element in _input_list:
|
||||
if isinstance(element, str):
|
||||
instance = Instance(**self._process_input_element(element))
|
||||
elif isinstance(element, dict):
|
||||
instance = Instance(**element)
|
||||
else:
|
||||
raise ValueError(f"Unsupported input type: {type(element)}")
|
||||
processed_instances.append(instance)
|
||||
|
||||
return processed_instances
|
||||
|
||||
def transform_embedding_response_to_openai(
|
||||
self, predictions: MultimodalPredictions
|
||||
) -> List[Embedding]:
|
||||
|
||||
openai_embeddings: List[Embedding] = []
|
||||
if "predictions" in predictions:
|
||||
for idx, _prediction in enumerate(predictions["predictions"]):
|
||||
if _prediction:
|
||||
if "textEmbedding" in _prediction:
|
||||
openai_embedding_object = Embedding(
|
||||
embedding=_prediction["textEmbedding"],
|
||||
index=idx,
|
||||
object="embedding",
|
||||
)
|
||||
openai_embeddings.append(openai_embedding_object)
|
||||
elif "imageEmbedding" in _prediction:
|
||||
openai_embedding_object = Embedding(
|
||||
embedding=_prediction["imageEmbedding"],
|
||||
index=idx,
|
||||
object="embedding",
|
||||
)
|
||||
openai_embeddings.append(openai_embedding_object)
|
||||
elif "videoEmbeddings" in _prediction:
|
||||
for video_embedding in _prediction["videoEmbeddings"]:
|
||||
openai_embedding_object = Embedding(
|
||||
embedding=video_embedding["embedding"],
|
||||
index=idx,
|
||||
object="embedding",
|
||||
)
|
||||
openai_embeddings.append(openai_embedding_object)
|
||||
return openai_embeddings
|
Loading…
Add table
Add a link
Reference in a new issue