mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
Code Quality Improvement - use vertex_ai/
as folder name for vertexAI (#7166)
* fix rename vertex ai * run ci/cd again
This commit is contained in:
parent
26918487d6
commit
e09d3761d8
47 changed files with 58 additions and 58 deletions
236
litellm/llms/vertex_ai/vertex_embeddings/embedding_handler.py
Normal file
236
litellm/llms/vertex_ai/vertex_embeddings/embedding_handler.py
Normal file
|
@ -0,0 +1,236 @@
|
|||
import json
|
||||
import os
|
||||
import types
|
||||
from typing import Any, Literal, Optional, Union, cast
|
||||
|
||||
import httpx
|
||||
from pydantic import BaseModel
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObject
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
AsyncHTTPHandler,
|
||||
HTTPHandler,
|
||||
_get_httpx_client,
|
||||
get_async_httpx_client,
|
||||
)
|
||||
from litellm.llms.vertex_ai.vertex_ai_non_gemini import (
|
||||
VertexAIError,
|
||||
)
|
||||
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase
|
||||
from litellm.types.llms.vertex_ai import *
|
||||
from litellm.utils import Usage
|
||||
|
||||
from .transformation import VertexAITextEmbeddingConfig
|
||||
from .types import *
|
||||
|
||||
|
||||
class VertexEmbedding(VertexBase):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def embedding(
|
||||
self,
|
||||
model: str,
|
||||
input: Union[list, str],
|
||||
print_verbose,
|
||||
model_response: litellm.EmbeddingResponse,
|
||||
optional_params: dict,
|
||||
logging_obj: LiteLLMLoggingObject,
|
||||
custom_llm_provider: Literal[
|
||||
"vertex_ai", "vertex_ai_beta", "gemini"
|
||||
], # if it's vertex_ai or gemini (google ai studio)
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
api_key: Optional[str] = None,
|
||||
encoding=None,
|
||||
aembedding=False,
|
||||
api_base: Optional[str] = None,
|
||||
client: Optional[Union[AsyncHTTPHandler, HTTPHandler]] = None,
|
||||
vertex_project: Optional[str] = None,
|
||||
vertex_location: Optional[str] = None,
|
||||
vertex_credentials: Optional[str] = None,
|
||||
gemini_api_key: Optional[str] = None,
|
||||
extra_headers: Optional[dict] = None,
|
||||
) -> litellm.EmbeddingResponse:
|
||||
if aembedding is True:
|
||||
return self.async_embedding( # type: ignore
|
||||
model=model,
|
||||
input=input,
|
||||
logging_obj=logging_obj,
|
||||
model_response=model_response,
|
||||
optional_params=optional_params,
|
||||
encoding=encoding,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
timeout=timeout,
|
||||
api_base=api_base,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=vertex_location,
|
||||
vertex_credentials=vertex_credentials,
|
||||
gemini_api_key=gemini_api_key,
|
||||
extra_headers=extra_headers,
|
||||
)
|
||||
|
||||
should_use_v1beta1_features = self.is_using_v1beta1_features(
|
||||
optional_params=optional_params
|
||||
)
|
||||
|
||||
_auth_header, vertex_project = self._ensure_access_token(
|
||||
credentials=vertex_credentials,
|
||||
project_id=vertex_project,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
)
|
||||
auth_header, api_base = self._get_token_and_url(
|
||||
model=model,
|
||||
gemini_api_key=gemini_api_key,
|
||||
auth_header=_auth_header,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=vertex_location,
|
||||
vertex_credentials=vertex_credentials,
|
||||
stream=False,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
api_base=api_base,
|
||||
should_use_v1beta1_features=should_use_v1beta1_features,
|
||||
mode="embedding",
|
||||
)
|
||||
headers = self.set_headers(auth_header=auth_header, extra_headers=extra_headers)
|
||||
vertex_request: VertexEmbeddingRequest = (
|
||||
litellm.vertexAITextEmbeddingConfig.transform_openai_request_to_vertex_embedding_request(
|
||||
input=input, optional_params=optional_params, model=model
|
||||
)
|
||||
)
|
||||
|
||||
_client_params = {}
|
||||
if timeout:
|
||||
_client_params["timeout"] = timeout
|
||||
if client is None or not isinstance(client, HTTPHandler):
|
||||
client = _get_httpx_client(params=_client_params)
|
||||
else:
|
||||
client = client # type: ignore
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=vertex_request,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": vertex_request,
|
||||
"api_base": api_base,
|
||||
"headers": headers,
|
||||
},
|
||||
)
|
||||
|
||||
try:
|
||||
response = client.post(api_base, headers=headers, json=vertex_request) # type: ignore
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise VertexAIError(status_code=error_code, message=err.response.text)
|
||||
except httpx.TimeoutException:
|
||||
raise VertexAIError(status_code=408, message="Timeout error occurred.")
|
||||
|
||||
_json_response = response.json()
|
||||
## LOGGING POST-CALL
|
||||
logging_obj.post_call(
|
||||
input=input, api_key=None, original_response=_json_response
|
||||
)
|
||||
|
||||
model_response = (
|
||||
litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
|
||||
response=_json_response, model=model, model_response=model_response
|
||||
)
|
||||
)
|
||||
|
||||
return model_response
|
||||
|
||||
async def async_embedding(
|
||||
self,
|
||||
model: str,
|
||||
input: Union[list, str],
|
||||
model_response: litellm.EmbeddingResponse,
|
||||
logging_obj: LiteLLMLoggingObject,
|
||||
optional_params: dict,
|
||||
custom_llm_provider: Literal[
|
||||
"vertex_ai", "vertex_ai_beta", "gemini"
|
||||
], # if it's vertex_ai or gemini (google ai studio)
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
api_base: Optional[str] = None,
|
||||
client: Optional[AsyncHTTPHandler] = None,
|
||||
vertex_project: Optional[str] = None,
|
||||
vertex_location: Optional[str] = None,
|
||||
vertex_credentials: Optional[str] = None,
|
||||
gemini_api_key: Optional[str] = None,
|
||||
extra_headers: Optional[dict] = None,
|
||||
encoding=None,
|
||||
) -> litellm.EmbeddingResponse:
|
||||
"""
|
||||
Async embedding implementation
|
||||
"""
|
||||
should_use_v1beta1_features = self.is_using_v1beta1_features(
|
||||
optional_params=optional_params
|
||||
)
|
||||
_auth_header, vertex_project = await self._ensure_access_token_async(
|
||||
credentials=vertex_credentials,
|
||||
project_id=vertex_project,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
)
|
||||
auth_header, api_base = self._get_token_and_url(
|
||||
model=model,
|
||||
gemini_api_key=gemini_api_key,
|
||||
auth_header=_auth_header,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=vertex_location,
|
||||
vertex_credentials=vertex_credentials,
|
||||
stream=False,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
api_base=api_base,
|
||||
should_use_v1beta1_features=should_use_v1beta1_features,
|
||||
mode="embedding",
|
||||
)
|
||||
headers = self.set_headers(auth_header=auth_header, extra_headers=extra_headers)
|
||||
vertex_request: VertexEmbeddingRequest = (
|
||||
litellm.vertexAITextEmbeddingConfig.transform_openai_request_to_vertex_embedding_request(
|
||||
input=input, optional_params=optional_params, model=model
|
||||
)
|
||||
)
|
||||
|
||||
_async_client_params = {}
|
||||
if timeout:
|
||||
_async_client_params["timeout"] = timeout
|
||||
if client is None or not isinstance(client, AsyncHTTPHandler):
|
||||
client = get_async_httpx_client(
|
||||
params=_async_client_params, llm_provider=litellm.LlmProviders.VERTEX_AI
|
||||
)
|
||||
else:
|
||||
client = client # type: ignore
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=vertex_request,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": vertex_request,
|
||||
"api_base": api_base,
|
||||
"headers": headers,
|
||||
},
|
||||
)
|
||||
|
||||
try:
|
||||
response = await client.post(api_base, headers=headers, json=vertex_request) # type: ignore
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise VertexAIError(status_code=error_code, message=err.response.text)
|
||||
except httpx.TimeoutException:
|
||||
raise VertexAIError(status_code=408, message="Timeout error occurred.")
|
||||
|
||||
_json_response = response.json()
|
||||
## LOGGING POST-CALL
|
||||
logging_obj.post_call(
|
||||
input=input, api_key=None, original_response=_json_response
|
||||
)
|
||||
|
||||
model_response = (
|
||||
litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
|
||||
response=_json_response, model=model, model_response=model_response
|
||||
)
|
||||
)
|
||||
|
||||
return model_response
|
Loading…
Add table
Add a link
Reference in a new issue