mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
Merge pull request #2401 from BerriAI/litellm_transcription_endpoints
feat(main.py): support openai transcription endpoints
This commit is contained in:
commit
e245b1c98a
6 changed files with 516 additions and 12 deletions
|
@ -7,13 +7,15 @@ from litellm.utils import (
|
|||
Message,
|
||||
CustomStreamWrapper,
|
||||
convert_to_model_response_object,
|
||||
TranscriptionResponse,
|
||||
)
|
||||
from typing import Callable, Optional
|
||||
from typing import Callable, Optional, BinaryIO
|
||||
from litellm import OpenAIConfig
|
||||
import litellm, json
|
||||
import httpx
|
||||
from .custom_httpx.azure_dall_e_2 import CustomHTTPTransport, AsyncCustomHTTPTransport
|
||||
from openai import AzureOpenAI, AsyncAzureOpenAI
|
||||
import uuid
|
||||
|
||||
|
||||
class AzureOpenAIError(Exception):
|
||||
|
@ -780,6 +782,142 @@ class AzureChatCompletion(BaseLLM):
|
|||
else:
|
||||
raise AzureOpenAIError(status_code=500, message=str(e))
|
||||
|
||||
def audio_transcriptions(
|
||||
self,
|
||||
model: str,
|
||||
audio_file: BinaryIO,
|
||||
optional_params: dict,
|
||||
model_response: TranscriptionResponse,
|
||||
timeout: float,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
client=None,
|
||||
azure_ad_token: Optional[str] = None,
|
||||
max_retries=None,
|
||||
logging_obj=None,
|
||||
atranscriptions: bool = False,
|
||||
):
|
||||
data = {"model": model, "file": audio_file, **optional_params}
|
||||
|
||||
# init AzureOpenAI Client
|
||||
azure_client_params = {
|
||||
"api_version": api_version,
|
||||
"azure_endpoint": api_base,
|
||||
"azure_deployment": model,
|
||||
"max_retries": max_retries,
|
||||
"timeout": timeout,
|
||||
}
|
||||
azure_client_params = select_azure_base_url_or_endpoint(
|
||||
azure_client_params=azure_client_params
|
||||
)
|
||||
if api_key is not None:
|
||||
azure_client_params["api_key"] = api_key
|
||||
elif azure_ad_token is not None:
|
||||
azure_client_params["azure_ad_token"] = azure_ad_token
|
||||
|
||||
if atranscriptions == True:
|
||||
return self.async_audio_transcriptions(
|
||||
audio_file=audio_file,
|
||||
data=data,
|
||||
model_response=model_response,
|
||||
timeout=timeout,
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
client=client,
|
||||
azure_client_params=azure_client_params,
|
||||
max_retries=max_retries,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
if client is None:
|
||||
azure_client = AzureOpenAI(http_client=litellm.client_session, **azure_client_params) # type: ignore
|
||||
else:
|
||||
azure_client = client
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=f"audio_file_{uuid.uuid4()}",
|
||||
api_key=azure_client.api_key,
|
||||
additional_args={
|
||||
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
|
||||
"api_base": azure_client._base_url._uri_reference,
|
||||
"atranscription": True,
|
||||
"complete_input_dict": data,
|
||||
},
|
||||
)
|
||||
|
||||
response = azure_client.audio.transcriptions.create(
|
||||
**data, timeout=timeout # type: ignore
|
||||
)
|
||||
stringified_response = response.model_dump()
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=audio_file.name,
|
||||
api_key=api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
original_response=stringified_response,
|
||||
)
|
||||
final_response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, response_type="audio_transcription") # type: ignore
|
||||
return final_response
|
||||
|
||||
async def async_audio_transcriptions(
|
||||
self,
|
||||
audio_file: BinaryIO,
|
||||
data: dict,
|
||||
model_response: TranscriptionResponse,
|
||||
timeout: float,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
client=None,
|
||||
azure_client_params=None,
|
||||
max_retries=None,
|
||||
logging_obj=None,
|
||||
):
|
||||
response = None
|
||||
try:
|
||||
if client is None:
|
||||
async_azure_client = AsyncAzureOpenAI(
|
||||
**azure_client_params,
|
||||
http_client=litellm.aclient_session,
|
||||
)
|
||||
else:
|
||||
async_azure_client = client
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=f"audio_file_{uuid.uuid4()}",
|
||||
api_key=async_azure_client.api_key,
|
||||
additional_args={
|
||||
"headers": {
|
||||
"Authorization": f"Bearer {async_azure_client.api_key}"
|
||||
},
|
||||
"api_base": async_azure_client._base_url._uri_reference,
|
||||
"atranscription": True,
|
||||
"complete_input_dict": data,
|
||||
},
|
||||
)
|
||||
|
||||
response = await async_azure_client.audio.transcriptions.create(
|
||||
**data, timeout=timeout
|
||||
) # type: ignore
|
||||
stringified_response = response.model_dump()
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=audio_file.name,
|
||||
api_key=api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
original_response=stringified_response,
|
||||
)
|
||||
return convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, response_type="image_generation") # type: ignore
|
||||
except Exception as e:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=input,
|
||||
api_key=api_key,
|
||||
original_response=str(e),
|
||||
)
|
||||
raise e
|
||||
|
||||
async def ahealth_check(
|
||||
self,
|
||||
model: Optional[str],
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Optional, Union, Any
|
||||
from typing import Optional, Union, Any, BinaryIO
|
||||
import types, time, json, traceback
|
||||
import httpx
|
||||
from .base import BaseLLM
|
||||
|
@ -9,6 +9,7 @@ from litellm.utils import (
|
|||
CustomStreamWrapper,
|
||||
convert_to_model_response_object,
|
||||
Usage,
|
||||
TranscriptionResponse,
|
||||
)
|
||||
from typing import Callable, Optional
|
||||
import aiohttp, requests
|
||||
|
@ -774,6 +775,103 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
else:
|
||||
raise OpenAIError(status_code=500, message=str(e))
|
||||
|
||||
def audio_transcriptions(
|
||||
self,
|
||||
model: str,
|
||||
audio_file: BinaryIO,
|
||||
optional_params: dict,
|
||||
model_response: TranscriptionResponse,
|
||||
timeout: float,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
client=None,
|
||||
max_retries=None,
|
||||
logging_obj=None,
|
||||
atranscriptions: bool = False,
|
||||
):
|
||||
data = {"model": model, "file": audio_file, **optional_params}
|
||||
if atranscriptions == True:
|
||||
return self.async_audio_transcriptions(
|
||||
audio_file=audio_file,
|
||||
data=data,
|
||||
model_response=model_response,
|
||||
timeout=timeout,
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
client=client,
|
||||
max_retries=max_retries,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
if client is None:
|
||||
openai_client = OpenAI(
|
||||
api_key=api_key,
|
||||
base_url=api_base,
|
||||
http_client=litellm.client_session,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
)
|
||||
else:
|
||||
openai_client = client
|
||||
response = openai_client.audio.transcriptions.create(
|
||||
**data, timeout=timeout # type: ignore
|
||||
)
|
||||
|
||||
stringified_response = response.model_dump()
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=audio_file.name,
|
||||
api_key=api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
original_response=stringified_response,
|
||||
)
|
||||
final_response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, response_type="audio_transcription") # type: ignore
|
||||
return final_response
|
||||
|
||||
async def async_audio_transcriptions(
|
||||
self,
|
||||
audio_file: BinaryIO,
|
||||
data: dict,
|
||||
model_response: TranscriptionResponse,
|
||||
timeout: float,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
client=None,
|
||||
max_retries=None,
|
||||
logging_obj=None,
|
||||
):
|
||||
response = None
|
||||
try:
|
||||
if client is None:
|
||||
openai_aclient = AsyncOpenAI(
|
||||
api_key=api_key,
|
||||
base_url=api_base,
|
||||
http_client=litellm.aclient_session,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
)
|
||||
else:
|
||||
openai_aclient = client
|
||||
response = await openai_aclient.audio.transcriptions.create(
|
||||
**data, timeout=timeout
|
||||
) # type: ignore
|
||||
stringified_response = response.model_dump()
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=audio_file.name,
|
||||
api_key=api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
original_response=stringified_response,
|
||||
)
|
||||
return convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, response_type="image_generation") # type: ignore
|
||||
except Exception as e:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=input,
|
||||
api_key=api_key,
|
||||
original_response=str(e),
|
||||
)
|
||||
raise e
|
||||
|
||||
async def ahealth_check(
|
||||
self,
|
||||
model: Optional[str],
|
||||
|
|
148
litellm/main.py
148
litellm/main.py
|
@ -8,7 +8,7 @@
|
|||
# Thank you ! We ❤️ you! - Krrish & Ishaan
|
||||
|
||||
import os, openai, sys, json, inspect, uuid, datetime, threading
|
||||
from typing import Any, Literal, Union
|
||||
from typing import Any, Literal, Union, BinaryIO
|
||||
from functools import partial
|
||||
import dotenv, traceback, random, asyncio, time, contextvars
|
||||
from copy import deepcopy
|
||||
|
@ -88,6 +88,7 @@ from litellm.utils import (
|
|||
read_config_args,
|
||||
Choices,
|
||||
Message,
|
||||
TranscriptionResponse,
|
||||
)
|
||||
|
||||
####### ENVIRONMENT VARIABLES ###################
|
||||
|
@ -3048,7 +3049,6 @@ def moderation(
|
|||
return response
|
||||
|
||||
|
||||
##### Moderation #######################
|
||||
@client
|
||||
async def amoderation(input: str, model: str, api_key: Optional[str] = None, **kwargs):
|
||||
# only supports open ai for now
|
||||
|
@ -3071,11 +3071,11 @@ async def aimage_generation(*args, **kwargs):
|
|||
Asynchronously calls the `image_generation` function with the given arguments and keyword arguments.
|
||||
|
||||
Parameters:
|
||||
- `args` (tuple): Positional arguments to be passed to the `embedding` function.
|
||||
- `kwargs` (dict): Keyword arguments to be passed to the `embedding` function.
|
||||
- `args` (tuple): Positional arguments to be passed to the `image_generation` function.
|
||||
- `kwargs` (dict): Keyword arguments to be passed to the `image_generation` function.
|
||||
|
||||
Returns:
|
||||
- `response` (Any): The response returned by the `embedding` function.
|
||||
- `response` (Any): The response returned by the `image_generation` function.
|
||||
"""
|
||||
loop = asyncio.get_event_loop()
|
||||
model = args[0] if len(args) > 0 else kwargs["model"]
|
||||
|
@ -3097,7 +3097,7 @@ async def aimage_generation(*args, **kwargs):
|
|||
# Await normally
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
if isinstance(init_response, dict) or isinstance(
|
||||
init_response, ModelResponse
|
||||
init_response, ImageResponse
|
||||
): ## CACHING SCENARIO
|
||||
response = init_response
|
||||
elif asyncio.iscoroutine(init_response):
|
||||
|
@ -3315,6 +3315,142 @@ def image_generation(
|
|||
)
|
||||
|
||||
|
||||
##### Transcription #######################
|
||||
|
||||
|
||||
async def atranscription(*args, **kwargs):
|
||||
"""
|
||||
Calls openai + azure whisper endpoints.
|
||||
|
||||
Allows router to load balance between them
|
||||
"""
|
||||
loop = asyncio.get_event_loop()
|
||||
model = args[0] if len(args) > 0 else kwargs["model"]
|
||||
### PASS ARGS TO Image Generation ###
|
||||
kwargs["atranscription"] = True
|
||||
custom_llm_provider = None
|
||||
try:
|
||||
# Use a partial function to pass your keyword arguments
|
||||
func = partial(transcription, *args, **kwargs)
|
||||
|
||||
# Add the context to the function
|
||||
ctx = contextvars.copy_context()
|
||||
func_with_context = partial(ctx.run, func)
|
||||
|
||||
_, custom_llm_provider, _, _ = get_llm_provider(
|
||||
model=model, api_base=kwargs.get("api_base", None)
|
||||
)
|
||||
|
||||
# Await normally
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
if isinstance(init_response, dict) or isinstance(
|
||||
init_response, TranscriptionResponse
|
||||
): ## CACHING SCENARIO
|
||||
response = init_response
|
||||
elif asyncio.iscoroutine(init_response):
|
||||
response = await init_response
|
||||
else:
|
||||
# Call the synchronous function using run_in_executor
|
||||
response = await loop.run_in_executor(None, func_with_context)
|
||||
return response
|
||||
except Exception as e:
|
||||
custom_llm_provider = custom_llm_provider or "openai"
|
||||
raise exception_type(
|
||||
model=model,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
original_exception=e,
|
||||
completion_kwargs=args,
|
||||
)
|
||||
|
||||
|
||||
@client
|
||||
def transcription(
|
||||
model: str,
|
||||
file: BinaryIO,
|
||||
## OPTIONAL OPENAI PARAMS ##
|
||||
language: Optional[str] = None,
|
||||
prompt: Optional[str] = None,
|
||||
response_format: Optional[
|
||||
Literal["json", "text", "srt", "verbose_json", "vtt"]
|
||||
] = None,
|
||||
temperature: Optional[int] = None, # openai defaults this to 0
|
||||
## LITELLM PARAMS ##
|
||||
user: Optional[str] = None,
|
||||
timeout=600, # default to 10 minutes
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
litellm_logging_obj=None,
|
||||
custom_llm_provider=None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Calls openai + azure whisper endpoints.
|
||||
|
||||
Allows router to load balance between them
|
||||
"""
|
||||
atranscriptions = kwargs.get("atranscriptions", False)
|
||||
litellm_call_id = kwargs.get("litellm_call_id", None)
|
||||
logger_fn = kwargs.get("logger_fn", None)
|
||||
proxy_server_request = kwargs.get("proxy_server_request", None)
|
||||
model_info = kwargs.get("model_info", None)
|
||||
metadata = kwargs.get("metadata", {})
|
||||
|
||||
model_response = litellm.utils.TranscriptionResponse()
|
||||
|
||||
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider, api_base=api_base) # type: ignore
|
||||
|
||||
optional_params = {
|
||||
"language": language,
|
||||
"prompt": prompt,
|
||||
"response_format": response_format,
|
||||
"temperature": None, # openai defaults this to 0
|
||||
}
|
||||
|
||||
if custom_llm_provider == "azure":
|
||||
# azure configs
|
||||
api_base = api_base or litellm.api_base or get_secret("AZURE_API_BASE")
|
||||
|
||||
api_version = (
|
||||
api_version or litellm.api_version or get_secret("AZURE_API_VERSION")
|
||||
)
|
||||
|
||||
azure_ad_token = kwargs.pop("azure_ad_token", None) or get_secret(
|
||||
"AZURE_AD_TOKEN"
|
||||
)
|
||||
|
||||
api_key = (
|
||||
api_key
|
||||
or litellm.api_key
|
||||
or litellm.azure_key
|
||||
or get_secret("AZURE_API_KEY")
|
||||
)
|
||||
response = azure_chat_completions.audio_transcriptions(
|
||||
model=model,
|
||||
audio_file=file,
|
||||
optional_params=optional_params,
|
||||
model_response=model_response,
|
||||
atranscriptions=atranscriptions,
|
||||
timeout=timeout,
|
||||
logging_obj=litellm_logging_obj,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
azure_ad_token=azure_ad_token,
|
||||
)
|
||||
elif custom_llm_provider == "openai":
|
||||
response = openai_chat_completions.audio_transcriptions(
|
||||
model=model,
|
||||
audio_file=file,
|
||||
optional_params=optional_params,
|
||||
model_response=model_response,
|
||||
atranscriptions=atranscriptions,
|
||||
timeout=timeout,
|
||||
logging_obj=litellm_logging_obj,
|
||||
)
|
||||
return response
|
||||
|
||||
|
||||
##### Health Endpoints #######################
|
||||
|
||||
|
||||
|
|
|
@ -10,7 +10,6 @@
|
|||
import sys, re, binascii, struct
|
||||
import litellm
|
||||
import dotenv, json, traceback, threading, base64, ast
|
||||
|
||||
import subprocess, os
|
||||
from os.path import abspath, join, dirname
|
||||
import litellm, openai
|
||||
|
@ -98,7 +97,7 @@ try:
|
|||
except Exception as e:
|
||||
verbose_logger.debug(f"Exception import enterprise features {str(e)}")
|
||||
|
||||
from typing import cast, List, Dict, Union, Optional, Literal, Any
|
||||
from typing import cast, List, Dict, Union, Optional, Literal, Any, BinaryIO
|
||||
from .caching import Cache
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
|
@ -790,6 +789,38 @@ class ImageResponse(OpenAIObject):
|
|||
return self.dict()
|
||||
|
||||
|
||||
class TranscriptionResponse(OpenAIObject):
|
||||
text: Optional[str] = None
|
||||
|
||||
_hidden_params: dict = {}
|
||||
|
||||
def __init__(self, text=None):
|
||||
super().__init__(text=text)
|
||||
|
||||
def __contains__(self, key):
|
||||
# Define custom behavior for the 'in' operator
|
||||
return hasattr(self, key)
|
||||
|
||||
def get(self, key, default=None):
|
||||
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
||||
return getattr(self, key, default)
|
||||
|
||||
def __getitem__(self, key):
|
||||
# Allow dictionary-style access to attributes
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
# Allow dictionary-style assignment of attributes
|
||||
setattr(self, key, value)
|
||||
|
||||
def json(self, **kwargs):
|
||||
try:
|
||||
return self.model_dump() # noqa
|
||||
except:
|
||||
# if using pydantic v1
|
||||
return self.dict()
|
||||
|
||||
|
||||
############################################################
|
||||
def print_verbose(print_statement, logger_only: bool = False):
|
||||
try:
|
||||
|
@ -815,6 +846,8 @@ class CallTypes(Enum):
|
|||
aimage_generation = "aimage_generation"
|
||||
moderation = "moderation"
|
||||
amoderation = "amoderation"
|
||||
atranscription = "atranscription"
|
||||
transcription = "transcription"
|
||||
|
||||
|
||||
# Logging function -> log the exact model details + what's being sent | Non-BlockingP
|
||||
|
@ -948,6 +981,7 @@ class Logging:
|
|||
curl_command = self.model_call_details
|
||||
|
||||
# only print verbose if verbose logger is not set
|
||||
|
||||
if verbose_logger.level == 0:
|
||||
# this means verbose logger was not switched on - user is in litellm.set_verbose=True
|
||||
print_verbose(f"\033[92m{curl_command}\033[0m\n")
|
||||
|
@ -2293,6 +2327,12 @@ def client(original_function):
|
|||
or call_type == CallTypes.text_completion.value
|
||||
):
|
||||
messages = args[0] if len(args) > 0 else kwargs["prompt"]
|
||||
elif (
|
||||
call_type == CallTypes.atranscription.value
|
||||
or call_type == CallTypes.transcription.value
|
||||
):
|
||||
_file_name: BinaryIO = args[1] if len(args) > 1 else kwargs["file"]
|
||||
messages = _file_name.name
|
||||
stream = True if "stream" in kwargs and kwargs["stream"] == True else False
|
||||
logging_obj = Logging(
|
||||
model=model,
|
||||
|
@ -6264,10 +6304,10 @@ def convert_to_streaming_response(response_object: Optional[dict] = None):
|
|||
def convert_to_model_response_object(
|
||||
response_object: Optional[dict] = None,
|
||||
model_response_object: Optional[
|
||||
Union[ModelResponse, EmbeddingResponse, ImageResponse]
|
||||
Union[ModelResponse, EmbeddingResponse, ImageResponse, TranscriptionResponse]
|
||||
] = None,
|
||||
response_type: Literal[
|
||||
"completion", "embedding", "image_generation"
|
||||
"completion", "embedding", "image_generation", "audio_transcription"
|
||||
] = "completion",
|
||||
stream=False,
|
||||
start_time=None,
|
||||
|
@ -6378,6 +6418,19 @@ def convert_to_model_response_object(
|
|||
model_response_object.data = response_object["data"]
|
||||
|
||||
return model_response_object
|
||||
elif response_type == "audio_transcription" and (
|
||||
model_response_object is None
|
||||
or isinstance(model_response_object, TranscriptionResponse)
|
||||
):
|
||||
if response_object is None:
|
||||
raise Exception("Error in response object format")
|
||||
|
||||
if model_response_object is None:
|
||||
model_response_object = TranscriptionResponse()
|
||||
|
||||
if "text" in response_object:
|
||||
model_response_object.text = response_object["text"]
|
||||
return model_response_object
|
||||
except Exception as e:
|
||||
raise Exception(f"Invalid response object {traceback.format_exc()}")
|
||||
|
||||
|
|
BIN
tests/gettysburg.wav
Normal file
BIN
tests/gettysburg.wav
Normal file
Binary file not shown.
79
tests/test_whisper.py
Normal file
79
tests/test_whisper.py
Normal file
|
@ -0,0 +1,79 @@
|
|||
# What is this?
|
||||
## Tests `litellm.transcription` endpoint
|
||||
import pytest
|
||||
import asyncio, time
|
||||
import aiohttp
|
||||
from openai import AsyncOpenAI
|
||||
import sys, os, dotenv
|
||||
from typing import Optional
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Get the current directory of the file being run
|
||||
pwd = os.path.dirname(os.path.realpath(__file__))
|
||||
print(pwd)
|
||||
|
||||
file_path = os.path.join(pwd, "gettysburg.wav")
|
||||
audio_file = open(file_path, "rb")
|
||||
|
||||
load_dotenv()
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../")
|
||||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
|
||||
|
||||
def test_transcription():
|
||||
transcript = litellm.transcription(
|
||||
model="whisper-1",
|
||||
file=audio_file,
|
||||
)
|
||||
print(f"transcript: {transcript}")
|
||||
|
||||
|
||||
# test_transcription()
|
||||
|
||||
|
||||
def test_transcription_azure():
|
||||
litellm.set_verbose = True
|
||||
transcript = litellm.transcription(
|
||||
model="azure/azure-whisper",
|
||||
file=audio_file,
|
||||
api_base="https://my-endpoint-europe-berri-992.openai.azure.com/",
|
||||
api_key=os.getenv("AZURE_EUROPE_API_KEY"),
|
||||
api_version="2024-02-15-preview",
|
||||
)
|
||||
|
||||
assert transcript.text is not None
|
||||
assert isinstance(transcript.text, str)
|
||||
|
||||
|
||||
# test_transcription_azure()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_transcription_async_azure():
|
||||
transcript = await litellm.atranscription(
|
||||
model="azure/azure-whisper",
|
||||
file=audio_file,
|
||||
api_base="https://my-endpoint-europe-berri-992.openai.azure.com/",
|
||||
api_key=os.getenv("AZURE_EUROPE_API_KEY"),
|
||||
api_version="2024-02-15-preview",
|
||||
)
|
||||
|
||||
assert transcript.text is not None
|
||||
assert isinstance(transcript.text, str)
|
||||
|
||||
|
||||
# asyncio.run(test_transcription_async_azure())
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_transcription_async_openai():
|
||||
transcript = await litellm.atranscription(
|
||||
model="whisper-1",
|
||||
file=audio_file,
|
||||
)
|
||||
|
||||
assert transcript.text is not None
|
||||
assert isinstance(transcript.text, str)
|
Loading…
Add table
Add a link
Reference in a new issue