mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 19:54:13 +00:00
feat - support vertex ai dimensions
This commit is contained in:
parent
dd22f6aca0
commit
e4b36d71cf
3 changed files with 97 additions and 11 deletions
|
@ -765,7 +765,7 @@ from .llms.gemini import GeminiConfig
|
||||||
from .llms.nlp_cloud import NLPCloudConfig
|
from .llms.nlp_cloud import NLPCloudConfig
|
||||||
from .llms.aleph_alpha import AlephAlphaConfig
|
from .llms.aleph_alpha import AlephAlphaConfig
|
||||||
from .llms.petals import PetalsConfig
|
from .llms.petals import PetalsConfig
|
||||||
from .llms.vertex_ai import VertexAIConfig
|
from .llms.vertex_ai import VertexAIConfig, VertexAITextEmbeddingConfig
|
||||||
from .llms.vertex_ai_anthropic import VertexAIAnthropicConfig
|
from .llms.vertex_ai_anthropic import VertexAIAnthropicConfig
|
||||||
from .llms.sagemaker import SagemakerConfig
|
from .llms.sagemaker import SagemakerConfig
|
||||||
from .llms.ollama import OllamaConfig
|
from .llms.ollama import OllamaConfig
|
||||||
|
|
|
@ -12,7 +12,12 @@ from litellm.llms.prompt_templates.factory import (
|
||||||
convert_to_gemini_tool_call_result,
|
convert_to_gemini_tool_call_result,
|
||||||
convert_to_gemini_tool_call_invoke,
|
convert_to_gemini_tool_call_invoke,
|
||||||
)
|
)
|
||||||
from litellm.types.files import get_file_mime_type_for_file_type, get_file_type_from_extension, is_gemini_1_5_accepted_file_type, is_video_file_type
|
from litellm.types.files import (
|
||||||
|
get_file_mime_type_for_file_type,
|
||||||
|
get_file_type_from_extension,
|
||||||
|
is_gemini_1_5_accepted_file_type,
|
||||||
|
is_video_file_type,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class VertexAIError(Exception):
|
class VertexAIError(Exception):
|
||||||
|
@ -301,15 +306,15 @@ def _process_gemini_image(image_url: str) -> PartType:
|
||||||
# GCS URIs
|
# GCS URIs
|
||||||
if "gs://" in image_url:
|
if "gs://" in image_url:
|
||||||
# Figure out file type
|
# Figure out file type
|
||||||
extension_with_dot = os.path.splitext(image_url)[-1] # Ex: ".png"
|
extension_with_dot = os.path.splitext(image_url)[-1] # Ex: ".png"
|
||||||
extension = extension_with_dot[1:] # Ex: "png"
|
extension = extension_with_dot[1:] # Ex: "png"
|
||||||
|
|
||||||
file_type = get_file_type_from_extension(extension)
|
file_type = get_file_type_from_extension(extension)
|
||||||
|
|
||||||
# Validate the file type is supported by Gemini
|
# Validate the file type is supported by Gemini
|
||||||
if not is_gemini_1_5_accepted_file_type(file_type):
|
if not is_gemini_1_5_accepted_file_type(file_type):
|
||||||
raise Exception(f"File type not supported by gemini - {file_type}")
|
raise Exception(f"File type not supported by gemini - {file_type}")
|
||||||
|
|
||||||
mime_type = get_file_mime_type_for_file_type(file_type)
|
mime_type = get_file_mime_type_for_file_type(file_type)
|
||||||
file_data = FileDataType(mime_type=mime_type, file_uri=image_url)
|
file_data = FileDataType(mime_type=mime_type, file_uri=image_url)
|
||||||
|
|
||||||
|
@ -320,7 +325,7 @@ def _process_gemini_image(image_url: str) -> PartType:
|
||||||
image = _load_image_from_url(image_url)
|
image = _load_image_from_url(image_url)
|
||||||
_blob = BlobType(data=image.data, mime_type=image._mime_type)
|
_blob = BlobType(data=image.data, mime_type=image._mime_type)
|
||||||
return PartType(inline_data=_blob)
|
return PartType(inline_data=_blob)
|
||||||
|
|
||||||
# Base64 encoding
|
# Base64 encoding
|
||||||
elif "base64" in image_url:
|
elif "base64" in image_url:
|
||||||
import base64, re
|
import base64, re
|
||||||
|
@ -1293,6 +1298,70 @@ async def async_streaming(
|
||||||
return streamwrapper
|
return streamwrapper
|
||||||
|
|
||||||
|
|
||||||
|
class VertexAITextEmbeddingConfig:
|
||||||
|
"""
|
||||||
|
Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#TextEmbeddingInput
|
||||||
|
|
||||||
|
Args:
|
||||||
|
auto_truncate: (bool)If True, will truncate input text to fit within the model's max input length.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
auto_truncate: Optional[bool] = None
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
auto_truncate: Optional[bool] = None,
|
||||||
|
) -> None:
|
||||||
|
locals_ = locals()
|
||||||
|
for key, value in locals_.items():
|
||||||
|
if key != "self" and value is not None:
|
||||||
|
setattr(self.__class__, key, value)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def get_config(cls):
|
||||||
|
return {
|
||||||
|
k: v
|
||||||
|
for k, v in cls.__dict__.items()
|
||||||
|
if not k.startswith("__")
|
||||||
|
and not isinstance(
|
||||||
|
v,
|
||||||
|
(
|
||||||
|
types.FunctionType,
|
||||||
|
types.BuiltinFunctionType,
|
||||||
|
classmethod,
|
||||||
|
staticmethod,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
and v is not None
|
||||||
|
}
|
||||||
|
|
||||||
|
def get_supported_openai_params(self):
|
||||||
|
return [
|
||||||
|
"dimensions",
|
||||||
|
]
|
||||||
|
|
||||||
|
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
||||||
|
for param, value in non_default_params.items():
|
||||||
|
if param == "dimensions":
|
||||||
|
optional_params["output_dimensionality"] = value
|
||||||
|
return optional_params
|
||||||
|
|
||||||
|
def get_mapped_special_auth_params(self) -> dict:
|
||||||
|
"""
|
||||||
|
Common auth params across bedrock/vertex_ai/azure/watsonx
|
||||||
|
"""
|
||||||
|
return {"project": "vertex_project", "region_name": "vertex_location"}
|
||||||
|
|
||||||
|
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
|
||||||
|
mapped_params = self.get_mapped_special_auth_params()
|
||||||
|
|
||||||
|
for param, value in non_default_params.items():
|
||||||
|
if param in mapped_params:
|
||||||
|
optional_params[mapped_params[param]] = value
|
||||||
|
return optional_params
|
||||||
|
|
||||||
|
|
||||||
def embedding(
|
def embedding(
|
||||||
model: str,
|
model: str,
|
||||||
input: Union[list, str],
|
input: Union[list, str],
|
||||||
|
@ -1363,7 +1432,8 @@ def embedding(
|
||||||
encoding=encoding,
|
encoding=encoding,
|
||||||
)
|
)
|
||||||
|
|
||||||
request_str = f"""embeddings = llm_model.get_embeddings({input})"""
|
_input_dict = {"texts": input, **optional_params}
|
||||||
|
request_str = f"""embeddings = llm_model.get_embeddings({_input_dict})"""
|
||||||
## LOGGING PRE-CALL
|
## LOGGING PRE-CALL
|
||||||
logging_obj.pre_call(
|
logging_obj.pre_call(
|
||||||
input=input,
|
input=input,
|
||||||
|
@ -1375,7 +1445,7 @@ def embedding(
|
||||||
)
|
)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
embeddings = llm_model.get_embeddings(input)
|
embeddings = llm_model.get_embeddings(**_input_dict)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise VertexAIError(status_code=500, message=str(e))
|
raise VertexAIError(status_code=500, message=str(e))
|
||||||
|
|
||||||
|
@ -1420,7 +1490,8 @@ async def async_embedding(
|
||||||
"""
|
"""
|
||||||
Async embedding implementation
|
Async embedding implementation
|
||||||
"""
|
"""
|
||||||
request_str = f"""embeddings = llm_model.get_embeddings({input})"""
|
_input_dict = {"texts": input, **optional_params}
|
||||||
|
request_str = f"""embeddings = llm_model.get_embeddings({_input_dict})"""
|
||||||
## LOGGING PRE-CALL
|
## LOGGING PRE-CALL
|
||||||
logging_obj.pre_call(
|
logging_obj.pre_call(
|
||||||
input=input,
|
input=input,
|
||||||
|
@ -1432,7 +1503,7 @@ async def async_embedding(
|
||||||
)
|
)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
embeddings = await client.get_embeddings_async(input)
|
embeddings = await client.get_embeddings_async(**_input_dict)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise VertexAIError(status_code=500, message=str(e))
|
raise VertexAIError(status_code=500, message=str(e))
|
||||||
|
|
||||||
|
|
|
@ -4898,6 +4898,18 @@ def get_optional_params_embeddings(
|
||||||
)
|
)
|
||||||
final_params = {**optional_params, **kwargs}
|
final_params = {**optional_params, **kwargs}
|
||||||
return final_params
|
return final_params
|
||||||
|
if custom_llm_provider == "vertex_ai":
|
||||||
|
supported_params = get_supported_openai_params(
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider="vertex_ai",
|
||||||
|
request_type="embeddings",
|
||||||
|
)
|
||||||
|
_check_valid_arg(supported_params=supported_params)
|
||||||
|
optional_params = litellm.VertexAITextEmbeddingConfig().map_openai_params(
|
||||||
|
non_default_params=non_default_params, optional_params={}
|
||||||
|
)
|
||||||
|
final_params = {**optional_params, **kwargs}
|
||||||
|
return final_params
|
||||||
if custom_llm_provider == "vertex_ai":
|
if custom_llm_provider == "vertex_ai":
|
||||||
if len(non_default_params.keys()) > 0:
|
if len(non_default_params.keys()) > 0:
|
||||||
if litellm.drop_params is True: # drop the unsupported non-default values
|
if litellm.drop_params is True: # drop the unsupported non-default values
|
||||||
|
@ -6382,7 +6394,10 @@ def get_supported_openai_params(
|
||||||
elif custom_llm_provider == "palm" or custom_llm_provider == "gemini":
|
elif custom_llm_provider == "palm" or custom_llm_provider == "gemini":
|
||||||
return ["temperature", "top_p", "stream", "n", "stop", "max_tokens"]
|
return ["temperature", "top_p", "stream", "n", "stop", "max_tokens"]
|
||||||
elif custom_llm_provider == "vertex_ai":
|
elif custom_llm_provider == "vertex_ai":
|
||||||
return litellm.VertexAIConfig().get_supported_openai_params()
|
if request_type == "chat_completion":
|
||||||
|
return litellm.VertexAIConfig().get_supported_openai_params()
|
||||||
|
elif request_type == "embeddings":
|
||||||
|
return litellm.VertexAITextEmbeddingConfig().get_supported_openai_params()
|
||||||
elif custom_llm_provider == "sagemaker":
|
elif custom_llm_provider == "sagemaker":
|
||||||
return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
|
return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
|
||||||
elif custom_llm_provider == "aleph_alpha":
|
elif custom_llm_provider == "aleph_alpha":
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue