mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
updates to litedebugger dashboard
This commit is contained in:
parent
943cd26288
commit
e659c66a75
8 changed files with 13 additions and 10 deletions
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -6,7 +6,8 @@ class LiteDebugger:
|
||||||
dashboard_url = None
|
dashboard_url = None
|
||||||
|
|
||||||
def __init__(self, email=None):
|
def __init__(self, email=None):
|
||||||
self.api_url = "https://api.litellm.ai/debugger"
|
# self.api_url = "https://api.litellm.ai/debugger"
|
||||||
|
self.api_url = "http://0.0.0.0:4000/debugger"
|
||||||
self.validate_environment(email)
|
self.validate_environment(email)
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
@ -88,13 +89,14 @@ class LiteDebugger:
|
||||||
headers={"content-type": "application/json"},
|
headers={"content-type": "application/json"},
|
||||||
data=json.dumps(litellm_data_obj),
|
data=json.dumps(litellm_data_obj),
|
||||||
)
|
)
|
||||||
elif "embedding" in response_obj:
|
elif "data" in response_obj and isinstance(response_obj["data"], list) and len(response_obj["data"]) > 0 and "embedding" in response_obj["data"][0]:
|
||||||
|
print(f"messages: {messages}")
|
||||||
litellm_data_obj = {
|
litellm_data_obj = {
|
||||||
"response_time": response_time,
|
"response_time": response_time,
|
||||||
"model": response_obj["model"],
|
"model": response_obj["model"],
|
||||||
"total_cost": total_cost,
|
"total_cost": total_cost,
|
||||||
"messages": messages,
|
"messages": messages,
|
||||||
"response": response_obj["embedding"][:5],
|
"response": str(response_obj["data"][0]["embedding"][:5]),
|
||||||
"end_user": end_user,
|
"end_user": end_user,
|
||||||
"litellm_call_id": litellm_call_id,
|
"litellm_call_id": litellm_call_id,
|
||||||
"status": "success",
|
"status": "success",
|
||||||
|
|
|
@ -815,7 +815,7 @@ def embedding(
|
||||||
)
|
)
|
||||||
## EMBEDDING CALL
|
## EMBEDDING CALL
|
||||||
response = openai.Embedding.create(input=input, engine=model)
|
response = openai.Embedding.create(input=input, engine=model)
|
||||||
print_verbose(f"response_value: {str(response)[:50]}")
|
print_verbose(f"response_value: {str(response)[:100]}")
|
||||||
elif model in litellm.open_ai_embedding_models:
|
elif model in litellm.open_ai_embedding_models:
|
||||||
openai.api_type = "openai"
|
openai.api_type = "openai"
|
||||||
openai.api_base = "https://api.openai.com/v1"
|
openai.api_base = "https://api.openai.com/v1"
|
||||||
|
@ -833,7 +833,7 @@ def embedding(
|
||||||
)
|
)
|
||||||
## EMBEDDING CALL
|
## EMBEDDING CALL
|
||||||
response = openai.Embedding.create(input=input, model=model)
|
response = openai.Embedding.create(input=input, model=model)
|
||||||
print_verbose(f"response_value: {str(response)[:50]}")
|
print_verbose(f"response_value: {str(response)[:100]}")
|
||||||
else:
|
else:
|
||||||
args = locals()
|
args = locals()
|
||||||
raise ValueError(f"No valid embedding model args passed in - {args}")
|
raise ValueError(f"No valid embedding model args passed in - {args}")
|
||||||
|
|
|
@ -9,7 +9,7 @@ import litellm
|
||||||
from litellm import embedding, completion
|
from litellm import embedding, completion
|
||||||
from infisical import InfisicalClient
|
from infisical import InfisicalClient
|
||||||
|
|
||||||
# # litellm.set_verbose = True
|
litellm.set_verbose = True
|
||||||
# litellm.secret_manager_client = InfisicalClient(token=os.environ["INFISICAL_TOKEN"])
|
# litellm.secret_manager_client = InfisicalClient(token=os.environ["INFISICAL_TOKEN"])
|
||||||
|
|
||||||
|
|
||||||
|
@ -19,6 +19,7 @@ def test_openai_embedding():
|
||||||
model="text-embedding-ada-002", input=["good morning from litellm"]
|
model="text-embedding-ada-002", input=["good morning from litellm"]
|
||||||
)
|
)
|
||||||
# Add any assertions here to check the response
|
# Add any assertions here to check the response
|
||||||
print(f"response: {str(response)}")
|
# print(f"response: {str(response)}")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
pytest.fail(f"Error occurred: {e}")
|
pytest.fail(f"Error occurred: {e}")
|
||||||
|
test_openai_embedding()
|
|
@ -899,7 +899,7 @@ def handle_failure(exception, traceback_exception, start_time, end_time, args,
|
||||||
print_verbose("reaches lite_debugger for logging!")
|
print_verbose("reaches lite_debugger for logging!")
|
||||||
print_verbose(f"liteDebuggerClient: {liteDebuggerClient}")
|
print_verbose(f"liteDebuggerClient: {liteDebuggerClient}")
|
||||||
model = args[0] if len(args) > 0 else kwargs["model"]
|
model = args[0] if len(args) > 0 else kwargs["model"]
|
||||||
messages = args[1] if len(args) > 1 else kwargs.get("messages", {"role": "user", "content": kwargs.get("input", "")})
|
messages = args[1] if len(args) > 1 else kwargs.get("messages", [{"role": "user", "content": ' '.join(kwargs.get("input", ""))}])
|
||||||
result = {
|
result = {
|
||||||
"model": model,
|
"model": model,
|
||||||
"created": time.time(),
|
"created": time.time(),
|
||||||
|
@ -1031,7 +1031,7 @@ def handle_success(args, kwargs, result, start_time, end_time):
|
||||||
elif callback == "lite_debugger":
|
elif callback == "lite_debugger":
|
||||||
print_verbose("reaches lite_debugger for logging!")
|
print_verbose("reaches lite_debugger for logging!")
|
||||||
print_verbose(f"liteDebuggerClient: {liteDebuggerClient}")
|
print_verbose(f"liteDebuggerClient: {liteDebuggerClient}")
|
||||||
messages = args[1] if len(args) > 1 else kwargs.get("messages", {"role": "user", "content": kwargs.get("input")})
|
messages = args[1] if len(args) > 1 else kwargs.get("messages", [{"role": "user", "content": ' '.join(kwargs.get("input", ""))}])
|
||||||
liteDebuggerClient.log_event(
|
liteDebuggerClient.log_event(
|
||||||
model=model,
|
model=model,
|
||||||
messages=messages,
|
messages=messages,
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
[tool.poetry]
|
[tool.poetry]
|
||||||
name = "litellm"
|
name = "litellm"
|
||||||
version = "0.1.459"
|
version = "0.1.460"
|
||||||
description = "Library to easily interface with LLM API providers"
|
description = "Library to easily interface with LLM API providers"
|
||||||
authors = ["BerriAI"]
|
authors = ["BerriAI"]
|
||||||
license = "MIT License"
|
license = "MIT License"
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue