mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
Litellm dev 12 12 2024 (#7203)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 47s
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 47s
* fix(azure/): support passing headers to azure openai endpoints
Fixes https://github.com/BerriAI/litellm/issues/6217
* fix(utils.py): move default tokenizer to just openai
hf tokenizer makes network calls when trying to get the tokenizer - this slows down execution time calls
* fix(router.py): fix pattern matching router - add generic "*" to it as well
Fixes issue where generic "*" model access group wouldn't show up
* fix(pattern_match_deployments.py): match to more specific pattern
match to more specific pattern
allows setting generic wildcard model access group and excluding specific models more easily
* fix(proxy_server.py): fix _delete_deployment to handle base case where db_model list is empty
don't delete all router models b/c of empty list
Fixes https://github.com/BerriAI/litellm/issues/7196
* fix(anthropic/): fix handling response_format for anthropic messages with anthropic api
* fix(fireworks_ai/): support passing response_format + tool call in same message
Addresses https://github.com/BerriAI/litellm/issues/7135
* Revert "fix(fireworks_ai/): support passing response_format + tool call in same message"
This reverts commit 6a30dc6929
.
* test: fix test
* fix(replicate/): fix replicate default retry/polling logic
* test: add unit testing for router pattern matching
* test: update test to use default oai tokenizer
* test: mark flaky test
* test: skip flaky test
This commit is contained in:
parent
15a0572a06
commit
e68bb4e051
19 changed files with 496 additions and 103 deletions
|
@ -3171,6 +3171,7 @@ def embedding( # noqa: PLR0915
|
|||
proxy_server_request = kwargs.get("proxy_server_request", None)
|
||||
aembedding = kwargs.get("aembedding", None)
|
||||
extra_headers = kwargs.get("extra_headers", None)
|
||||
headers = kwargs.get("headers", None)
|
||||
### CUSTOM MODEL COST ###
|
||||
input_cost_per_token = kwargs.get("input_cost_per_token", None)
|
||||
output_cost_per_token = kwargs.get("output_cost_per_token", None)
|
||||
|
@ -3281,9 +3282,6 @@ def embedding( # noqa: PLR0915
|
|||
"azure_ad_token", None
|
||||
) or get_secret_str("AZURE_AD_TOKEN")
|
||||
|
||||
if extra_headers is not None:
|
||||
optional_params["extra_headers"] = extra_headers
|
||||
|
||||
api_key = (
|
||||
api_key
|
||||
or litellm.api_key
|
||||
|
@ -3311,6 +3309,7 @@ def embedding( # noqa: PLR0915
|
|||
client=client,
|
||||
aembedding=aembedding,
|
||||
max_retries=max_retries,
|
||||
headers=headers or extra_headers,
|
||||
)
|
||||
elif (
|
||||
model in litellm.open_ai_embedding_models
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue