Merge branch 'main' into litellm_batch_completions

This commit is contained in:
Krish Dholakia 2024-05-28 22:38:05 -07:00 committed by GitHub
commit e838bd1c79
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 1780 additions and 45 deletions

View file

@ -100,6 +100,13 @@ from litellm.proxy.utils import (
encrypt_value,
decrypt_value,
)
from litellm import (
CreateBatchRequest,
RetrieveBatchRequest,
ListBatchRequest,
CancelBatchRequest,
CreateFileRequest,
)
from litellm.proxy.secret_managers.google_kms import load_google_kms
from litellm.proxy.secret_managers.aws_secret_manager import load_aws_secret_manager
import pydantic
@ -142,6 +149,7 @@ from fastapi import (
Request,
HTTPException,
status,
Path,
Depends,
Header,
Response,
@ -499,7 +507,7 @@ async def user_api_key_auth(
if route in LiteLLMRoutes.public_routes.value:
# check if public endpoint
return UserAPIKeyAuth()
return UserAPIKeyAuth(user_role="app_owner")
if general_settings.get("enable_jwt_auth", False) == True:
is_jwt = jwt_handler.is_jwt(token=api_key)
@ -1391,7 +1399,9 @@ async def user_api_key_auth(
api_key=api_key, user_role="app_owner", **valid_token_dict
)
else:
return UserAPIKeyAuth(api_key=api_key, **valid_token_dict)
return UserAPIKeyAuth(
api_key=api_key, user_role="app_owner", **valid_token_dict
)
else:
raise Exception()
except Exception as e:
@ -5042,6 +5052,447 @@ async def audio_transcriptions(
)
######################################################################
# /v1/batches Endpoints
######################################################################
@router.post(
"/v1/batches",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
@router.post(
"/batches",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
async def create_batch(
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Create large batches of API requests for asynchronous processing.
This is the equivalent of POST https://api.openai.com/v1/batch
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch
Example Curl
```
curl http://localhost:4000/v1/batches \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"input_file_id": "file-abc123",
"endpoint": "/v1/chat/completions",
"completion_window": "24h"
}'
```
"""
global proxy_logging_obj
data: Dict = {}
try:
# Use orjson to parse JSON data, orjson speeds up requests significantly
form_data = await request.form()
data = {key: value for key, value in form_data.items() if key != "file"}
# Include original request and headers in the data
data["proxy_server_request"] = { # type: ignore
"url": str(request.url),
"method": request.method,
"headers": dict(request.headers),
"body": copy.copy(data), # use copy instead of deepcopy
}
if data.get("user", None) is None and user_api_key_dict.user_id is not None:
data["user"] = user_api_key_dict.user_id
if "metadata" not in data:
data["metadata"] = {}
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
data["metadata"]["user_api_key_metadata"] = user_api_key_dict.metadata
_headers = dict(request.headers)
_headers.pop(
"authorization", None
) # do not store the original `sk-..` api key in the db
data["metadata"]["headers"] = _headers
data["metadata"]["user_api_key_alias"] = getattr(
user_api_key_dict, "key_alias", None
)
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
data["metadata"]["user_api_key_team_id"] = getattr(
user_api_key_dict, "team_id", None
)
data["metadata"]["global_max_parallel_requests"] = general_settings.get(
"global_max_parallel_requests", None
)
data["metadata"]["user_api_key_team_alias"] = getattr(
user_api_key_dict, "team_alias", None
)
data["metadata"]["endpoint"] = str(request.url)
### TEAM-SPECIFIC PARAMS ###
if user_api_key_dict.team_id is not None:
team_config = await proxy_config.load_team_config(
team_id=user_api_key_dict.team_id
)
if len(team_config) == 0:
pass
else:
team_id = team_config.pop("team_id", None)
data["metadata"]["team_id"] = team_id
data = {
**team_config,
**data,
} # add the team-specific configs to the completion call
_create_batch_data = CreateBatchRequest(**data)
# for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch
response = await litellm.acreate_batch(
custom_llm_provider="openai", **_create_batch_data
)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers.update(
get_custom_headers(
user_api_key_dict=user_api_key_dict,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
)
)
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
traceback.print_exc()
if isinstance(e, HTTPException):
raise ProxyException(
message=getattr(e, "message", str(e.detail)),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
)
else:
error_traceback = traceback.format_exc()
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
@router.get(
"/v1/batches{batch_id}",
dependencies=[Depends(user_api_key_auth)],
tags=["Batch"],
)
@router.get(
"/batches{batch_id}",
dependencies=[Depends(user_api_key_auth)],
tags=["Batch"],
)
async def retrieve_batch(
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
batch_id: str = Path(
title="Batch ID to retrieve", description="The ID of the batch to retrieve"
),
):
"""
Retrieves a batch.
This is the equivalent of GET https://api.openai.com/v1/batches/{batch_id}
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/retrieve
Example Curl
```
curl http://localhost:4000/v1/batches/batch_abc123 \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
```
"""
global proxy_logging_obj
data: Dict = {}
try:
# Use orjson to parse JSON data, orjson speeds up requests significantly
form_data = await request.form()
data = {key: value for key, value in form_data.items() if key != "file"}
# Include original request and headers in the data
data["proxy_server_request"] = { # type: ignore
"url": str(request.url),
"method": request.method,
"headers": dict(request.headers),
"body": copy.copy(data), # use copy instead of deepcopy
}
if data.get("user", None) is None and user_api_key_dict.user_id is not None:
data["user"] = user_api_key_dict.user_id
if "metadata" not in data:
data["metadata"] = {}
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
data["metadata"]["user_api_key_metadata"] = user_api_key_dict.metadata
_headers = dict(request.headers)
_headers.pop(
"authorization", None
) # do not store the original `sk-..` api key in the db
data["metadata"]["headers"] = _headers
data["metadata"]["user_api_key_alias"] = getattr(
user_api_key_dict, "key_alias", None
)
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
data["metadata"]["user_api_key_team_id"] = getattr(
user_api_key_dict, "team_id", None
)
data["metadata"]["global_max_parallel_requests"] = general_settings.get(
"global_max_parallel_requests", None
)
data["metadata"]["user_api_key_team_alias"] = getattr(
user_api_key_dict, "team_alias", None
)
data["metadata"]["endpoint"] = str(request.url)
### TEAM-SPECIFIC PARAMS ###
if user_api_key_dict.team_id is not None:
team_config = await proxy_config.load_team_config(
team_id=user_api_key_dict.team_id
)
if len(team_config) == 0:
pass
else:
team_id = team_config.pop("team_id", None)
data["metadata"]["team_id"] = team_id
data = {
**team_config,
**data,
} # add the team-specific configs to the completion call
_retrieve_batch_request = RetrieveBatchRequest(
batch_id=batch_id,
)
# for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch
response = await litellm.aretrieve_batch(
custom_llm_provider="openai", **_retrieve_batch_request
)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers.update(
get_custom_headers(
user_api_key_dict=user_api_key_dict,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
)
)
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
traceback.print_exc()
if isinstance(e, HTTPException):
raise ProxyException(
message=getattr(e, "message", str(e.detail)),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
)
else:
error_traceback = traceback.format_exc()
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
######################################################################
# END OF /v1/batches Endpoints Implementation
######################################################################
######################################################################
# /v1/files Endpoints
######################################################################
@router.post(
"/v1/files",
dependencies=[Depends(user_api_key_auth)],
tags=["files"],
)
@router.post(
"/files",
dependencies=[Depends(user_api_key_auth)],
tags=["files"],
)
async def create_file(
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Upload a file that can be used across - Assistants API, Batch API
This is the equivalent of POST https://api.openai.com/v1/files
Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/create
Example Curl
```
curl https://api.openai.com/v1/files \
-H "Authorization: Bearer sk-1234" \
-F purpose="batch" \
-F file="@mydata.jsonl"
```
"""
global proxy_logging_obj
data: Dict = {}
try:
# Use orjson to parse JSON data, orjson speeds up requests significantly
form_data = await request.form()
data = {key: value for key, value in form_data.items() if key != "file"}
# Include original request and headers in the data
data["proxy_server_request"] = { # type: ignore
"url": str(request.url),
"method": request.method,
"headers": dict(request.headers),
"body": copy.copy(data), # use copy instead of deepcopy
}
if data.get("user", None) is None and user_api_key_dict.user_id is not None:
data["user"] = user_api_key_dict.user_id
if "metadata" not in data:
data["metadata"] = {}
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
data["metadata"]["user_api_key_metadata"] = user_api_key_dict.metadata
_headers = dict(request.headers)
_headers.pop(
"authorization", None
) # do not store the original `sk-..` api key in the db
data["metadata"]["headers"] = _headers
data["metadata"]["user_api_key_alias"] = getattr(
user_api_key_dict, "key_alias", None
)
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
data["metadata"]["user_api_key_team_id"] = getattr(
user_api_key_dict, "team_id", None
)
data["metadata"]["global_max_parallel_requests"] = general_settings.get(
"global_max_parallel_requests", None
)
data["metadata"]["user_api_key_team_alias"] = getattr(
user_api_key_dict, "team_alias", None
)
data["metadata"]["endpoint"] = str(request.url)
### TEAM-SPECIFIC PARAMS ###
if user_api_key_dict.team_id is not None:
team_config = await proxy_config.load_team_config(
team_id=user_api_key_dict.team_id
)
if len(team_config) == 0:
pass
else:
team_id = team_config.pop("team_id", None)
data["metadata"]["team_id"] = team_id
data = {
**team_config,
**data,
} # add the team-specific configs to the completion call
_create_file_request = CreateFileRequest()
# for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch
response = await litellm.acreate_file(
custom_llm_provider="openai", **_create_file_request
)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers.update(
get_custom_headers(
user_api_key_dict=user_api_key_dict,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
)
)
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
traceback.print_exc()
if isinstance(e, HTTPException):
raise ProxyException(
message=getattr(e, "message", str(e.detail)),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
)
else:
error_traceback = traceback.format_exc()
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
@router.post(
"/v1/moderations",
dependencies=[Depends(user_api_key_auth)],
@ -9596,28 +10047,54 @@ async def model_streaming_metrics(
startTime = startTime or datetime.now() - timedelta(days=7) # show over past week
endTime = endTime or datetime.now()
sql_query = """
SELECT
api_base,
model_group,
model,
DATE_TRUNC('day', "startTime")::DATE AS day,
AVG(EXTRACT(epoch FROM ("completionStartTime" - "startTime"))) AS time_to_first_token
FROM
"LiteLLM_SpendLogs"
WHERE
"startTime" BETWEEN $2::timestamp AND $3::timestamp
AND "model_group" = $1 AND "cache_hit" != 'True'
AND "completionStartTime" IS NOT NULL
AND "completionStartTime" != "endTime"
GROUP BY
api_base,
model_group,
model,
day
ORDER BY
time_to_first_token DESC;
"""
is_same_day = startTime.date() == endTime.date()
if is_same_day:
sql_query = """
SELECT
api_base,
model_group,
model,
"startTime",
request_id,
EXTRACT(epoch FROM ("completionStartTime" - "startTime")) AS time_to_first_token
FROM
"LiteLLM_SpendLogs"
WHERE
"model_group" = $1 AND "cache_hit" != 'True'
AND "completionStartTime" IS NOT NULL
AND "completionStartTime" != "endTime"
AND DATE("startTime") = DATE($2::timestamp)
GROUP BY
api_base,
model_group,
model,
request_id
ORDER BY
time_to_first_token DESC;
"""
else:
sql_query = """
SELECT
api_base,
model_group,
model,
DATE_TRUNC('day', "startTime")::DATE AS day,
AVG(EXTRACT(epoch FROM ("completionStartTime" - "startTime"))) AS time_to_first_token
FROM
"LiteLLM_SpendLogs"
WHERE
"startTime" BETWEEN $2::timestamp AND $3::timestamp
AND "model_group" = $1 AND "cache_hit" != 'True'
AND "completionStartTime" IS NOT NULL
AND "completionStartTime" != "endTime"
GROUP BY
api_base,
model_group,
model,
day
ORDER BY
time_to_first_token DESC;
"""
_all_api_bases = set()
db_response = await prisma_client.db.query_raw(
@ -9628,10 +10105,19 @@ async def model_streaming_metrics(
for model_data in db_response:
_api_base = model_data["api_base"]
_model = model_data["model"]
_day = model_data["day"]
time_to_first_token = model_data["time_to_first_token"]
if _day not in _daily_entries:
_daily_entries[_day] = {}
unique_key = ""
if is_same_day:
_request_id = model_data["request_id"]
unique_key = _request_id
if _request_id not in _daily_entries:
_daily_entries[_request_id] = {}
else:
_day = model_data["day"]
unique_key = _day
time_to_first_token = model_data["time_to_first_token"]
if _day not in _daily_entries:
_daily_entries[_day] = {}
_combined_model_name = str(_model)
if "https://" in _api_base:
_combined_model_name = str(_api_base)
@ -9639,7 +10125,8 @@ async def model_streaming_metrics(
_combined_model_name = _combined_model_name.split("/openai/")[0]
_all_api_bases.add(_combined_model_name)
_daily_entries[_day][_combined_model_name] = time_to_first_token
_daily_entries[unique_key][_combined_model_name] = time_to_first_token
"""
each entry needs to be like this: