mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
add mistral prompt templating
This commit is contained in:
parent
82c642f78d
commit
e8ec3e8795
6 changed files with 85 additions and 43 deletions
Binary file not shown.
|
@ -22,6 +22,28 @@ def llama_2_chat_pt(messages):
|
|||
)
|
||||
return prompt
|
||||
|
||||
def mistral_instruct_pt(messages):
|
||||
prompt = custom_prompt(
|
||||
initial_prompt_value="<s>",
|
||||
role_dict={
|
||||
"system": {
|
||||
"pre_message": "[INST]",
|
||||
"post_message": "[/INST]"
|
||||
},
|
||||
"user": {
|
||||
"pre_message": "[INST]",
|
||||
"post_message": "[/INST]"
|
||||
},
|
||||
"assistant": {
|
||||
"pre_message": "[INST]",
|
||||
"post_message": "[/INST]"
|
||||
}
|
||||
},
|
||||
final_prompt_value="</s>",
|
||||
messages=messages
|
||||
)
|
||||
return prompt
|
||||
|
||||
# Falcon prompt template - from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py#L110
|
||||
def falcon_instruct_pt(messages):
|
||||
prompt = ""
|
||||
|
@ -116,4 +138,6 @@ def prompt_factory(model: str, messages: list):
|
|||
return phind_codellama_pt(messages=messages)
|
||||
elif "togethercomputer/llama-2" in model and ("instruct" in model or "chat" in model):
|
||||
return llama_2_chat_pt(messages=messages)
|
||||
elif "mistralai/mistral" in model and "instruct" in model:
|
||||
return mistral_instruct_pt(messages=messages)
|
||||
return default_pt(messages=messages) # default that covers Bloom, T-5, any non-chat tuned model (e.g. base Llama2)
|
|
@ -199,9 +199,9 @@ def test_get_hf_task_for_model():
|
|||
# def hf_test_completion_tgi():
|
||||
# try:
|
||||
# response = litellm.completion(
|
||||
# model="huggingface/glaiveai/glaive-coder-7b",
|
||||
# model="huggingface/mistralai/Mistral-7B-Instruct-v0.1",
|
||||
# messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
# api_base="https://wjiegasee9bmqke2.us-east-1.aws.endpoints.huggingface.cloud",
|
||||
# api_base="https://n9ox93a8sv5ihsow.us-east-1.aws.endpoints.huggingface.cloud",
|
||||
# )
|
||||
# # Add any assertions here to check the response
|
||||
# print(response)
|
||||
|
@ -646,16 +646,7 @@ def test_completion_azure_deployment_id():
|
|||
# pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# test_completion_anthropic_litellm_proxy()
|
||||
# def test_hf_conversational_task():
|
||||
# try:
|
||||
# messages = [{ "content": "There's a llama in my garden 😱 What should I do?","role": "user"}]
|
||||
# # e.g. Call 'facebook/blenderbot-400M-distill' hosted on HF Inference endpoints
|
||||
# response = completion(model="huggingface/facebook/blenderbot-400M-distill", messages=messages, task="conversational")
|
||||
# print(f"response: {response}")
|
||||
# except Exception as e:
|
||||
# pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# test_hf_conversational_task()
|
||||
# Replicate API endpoints are unstable -> throw random CUDA errors -> this means our tests can fail even if our tests weren't incorrect.
|
||||
|
||||
# def test_completion_replicate_llama_2():
|
||||
|
@ -792,7 +783,7 @@ def test_completion_bedrock_claude():
|
|||
print(response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
test_completion_bedrock_claude()
|
||||
# test_completion_bedrock_claude()
|
||||
|
||||
def test_completion_bedrock_claude_stream():
|
||||
print("calling claude")
|
||||
|
|
|
@ -314,33 +314,58 @@ def test_completion_cohere_stream_bad_key():
|
|||
|
||||
# test_completion_nlp_cloud_bad_key()
|
||||
|
||||
# def test_completion_hf_stream():
|
||||
# try:
|
||||
# messages = [
|
||||
# {
|
||||
# "content": "Hello! How are you today?",
|
||||
# "role": "user"
|
||||
# },
|
||||
# ]
|
||||
# response = completion(
|
||||
# model="huggingface/meta-llama/Llama-2-7b-chat-hf", messages=messages, api_base="https://a8l9e3ucxinyl3oj.us-east-1.aws.endpoints.huggingface.cloud", stream=True, max_tokens=1000
|
||||
# )
|
||||
# complete_response = ""
|
||||
# # Add any assertions here to check the response
|
||||
# for idx, chunk in enumerate(response):
|
||||
# chunk, finished = streaming_format_tests(idx, chunk)
|
||||
# if finished:
|
||||
# break
|
||||
# complete_response += chunk
|
||||
# if complete_response.strip() == "":
|
||||
# raise Exception("Empty response received")
|
||||
# print(f"completion_response: {complete_response}")
|
||||
# except InvalidRequestError as e:
|
||||
# pass
|
||||
# except Exception as e:
|
||||
# pytest.fail(f"Error occurred: {e}")
|
||||
def test_completion_hf_stream():
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
# messages = [
|
||||
# {
|
||||
# "content": "Hello! How are you today?",
|
||||
# "role": "user"
|
||||
# },
|
||||
# ]
|
||||
# response = completion(
|
||||
# model="huggingface/mistralai/Mistral-7B-Instruct-v0.1", messages=messages, api_base="https://n9ox93a8sv5ihsow.us-east-1.aws.endpoints.huggingface.cloud", stream=True, max_tokens=1000
|
||||
# )
|
||||
# complete_response = ""
|
||||
# # Add any assertions here to check the response
|
||||
# for idx, chunk in enumerate(response):
|
||||
# chunk, finished = streaming_format_tests(idx, chunk)
|
||||
# if finished:
|
||||
# break
|
||||
# complete_response += chunk
|
||||
# if complete_response.strip() == "":
|
||||
# raise Exception("Empty response received")
|
||||
# completion_response_1 = complete_response
|
||||
messages = [
|
||||
{
|
||||
"content": "Hello! How are you today?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "I'm doing well, thank you for asking! I'm excited to be here and help you with any questions or concerns you may have. What can I assist you with today?</s>",
|
||||
"role": "assistant"
|
||||
},
|
||||
]
|
||||
response = completion(
|
||||
model="huggingface/mistralai/Mistral-7B-Instruct-v0.1", messages=messages, api_base="https://n9ox93a8sv5ihsow.us-east-1.aws.endpoints.huggingface.cloud", stream=True, max_tokens=1000
|
||||
)
|
||||
complete_response = ""
|
||||
# Add any assertions here to check the response
|
||||
for idx, chunk in enumerate(response):
|
||||
chunk, finished = streaming_format_tests(idx, chunk)
|
||||
if finished:
|
||||
break
|
||||
complete_response += chunk
|
||||
if complete_response.strip() == "":
|
||||
raise Exception("Empty response received")
|
||||
# print(f"completion_response_1: {completion_response_1}")
|
||||
print(f"completion_response: {complete_response}")
|
||||
except InvalidRequestError as e:
|
||||
pass
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# # test_completion_hf_stream()
|
||||
test_completion_hf_stream()
|
||||
|
||||
# def test_completion_hf_stream_bad_key():
|
||||
# try:
|
||||
|
@ -680,7 +705,7 @@ def test_completion_sagemaker_stream():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
test_completion_sagemaker_stream()
|
||||
# test_completion_sagemaker_stream()
|
||||
|
||||
# test on openai completion call
|
||||
def test_openai_text_completion_call():
|
||||
|
|
|
@ -2916,12 +2916,14 @@ class CustomStreamWrapper:
|
|||
print_verbose(f"data json: {data_json}")
|
||||
if "token" in data_json and "text" in data_json["token"]:
|
||||
text = data_json["token"]["text"]
|
||||
if "meta-llama/Llama-2" in self.model: #clean eos tokens like </s> from the returned output text
|
||||
if any(token in text for token in llama_2_special_tokens):
|
||||
text = text.replace("<s>", "").replace("</s>", "")
|
||||
if data_json.get("details", False) and data_json["details"].get("finish_reason", False):
|
||||
is_finished = True
|
||||
finish_reason = data_json["details"]["finish_reason"]
|
||||
elif data_json.get("generated_text", False): # if full generated text exists, then stream is complete
|
||||
text = "" # don't return the final bos token
|
||||
is_finished = True
|
||||
finish_reason = "stop"
|
||||
|
||||
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
|
||||
elif "error" in chunk:
|
||||
raise ValueError(chunk)
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm"
|
||||
version = "0.1.799"
|
||||
version = "0.1.800"
|
||||
description = "Library to easily interface with LLM API providers"
|
||||
authors = ["BerriAI"]
|
||||
license = "MIT License"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue