add mistral prompt templating

This commit is contained in:
Krrish Dholakia 2023-09-29 21:41:19 -07:00
parent 82c642f78d
commit e8ec3e8795
6 changed files with 85 additions and 43 deletions

View file

@ -22,6 +22,28 @@ def llama_2_chat_pt(messages):
)
return prompt
def mistral_instruct_pt(messages):
prompt = custom_prompt(
initial_prompt_value="<s>",
role_dict={
"system": {
"pre_message": "[INST]",
"post_message": "[/INST]"
},
"user": {
"pre_message": "[INST]",
"post_message": "[/INST]"
},
"assistant": {
"pre_message": "[INST]",
"post_message": "[/INST]"
}
},
final_prompt_value="</s>",
messages=messages
)
return prompt
# Falcon prompt template - from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py#L110
def falcon_instruct_pt(messages):
prompt = ""
@ -116,4 +138,6 @@ def prompt_factory(model: str, messages: list):
return phind_codellama_pt(messages=messages)
elif "togethercomputer/llama-2" in model and ("instruct" in model or "chat" in model):
return llama_2_chat_pt(messages=messages)
elif "mistralai/mistral" in model and "instruct" in model:
return mistral_instruct_pt(messages=messages)
return default_pt(messages=messages) # default that covers Bloom, T-5, any non-chat tuned model (e.g. base Llama2)

View file

@ -199,9 +199,9 @@ def test_get_hf_task_for_model():
# def hf_test_completion_tgi():
# try:
# response = litellm.completion(
# model="huggingface/glaiveai/glaive-coder-7b",
# model="huggingface/mistralai/Mistral-7B-Instruct-v0.1",
# messages=[{ "content": "Hello, how are you?","role": "user"}],
# api_base="https://wjiegasee9bmqke2.us-east-1.aws.endpoints.huggingface.cloud",
# api_base="https://n9ox93a8sv5ihsow.us-east-1.aws.endpoints.huggingface.cloud",
# )
# # Add any assertions here to check the response
# print(response)
@ -646,16 +646,7 @@ def test_completion_azure_deployment_id():
# pytest.fail(f"Error occurred: {e}")
# test_completion_anthropic_litellm_proxy()
# def test_hf_conversational_task():
# try:
# messages = [{ "content": "There's a llama in my garden 😱 What should I do?","role": "user"}]
# # e.g. Call 'facebook/blenderbot-400M-distill' hosted on HF Inference endpoints
# response = completion(model="huggingface/facebook/blenderbot-400M-distill", messages=messages, task="conversational")
# print(f"response: {response}")
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# test_hf_conversational_task()
# Replicate API endpoints are unstable -> throw random CUDA errors -> this means our tests can fail even if our tests weren't incorrect.
# def test_completion_replicate_llama_2():
@ -792,7 +783,7 @@ def test_completion_bedrock_claude():
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_bedrock_claude()
# test_completion_bedrock_claude()
def test_completion_bedrock_claude_stream():
print("calling claude")

View file

@ -314,33 +314,58 @@ def test_completion_cohere_stream_bad_key():
# test_completion_nlp_cloud_bad_key()
# def test_completion_hf_stream():
# try:
# messages = [
# {
# "content": "Hello! How are you today?",
# "role": "user"
# },
# ]
# response = completion(
# model="huggingface/meta-llama/Llama-2-7b-chat-hf", messages=messages, api_base="https://a8l9e3ucxinyl3oj.us-east-1.aws.endpoints.huggingface.cloud", stream=True, max_tokens=1000
# )
# complete_response = ""
# # Add any assertions here to check the response
# for idx, chunk in enumerate(response):
# chunk, finished = streaming_format_tests(idx, chunk)
# if finished:
# break
# complete_response += chunk
# if complete_response.strip() == "":
# raise Exception("Empty response received")
# print(f"completion_response: {complete_response}")
# except InvalidRequestError as e:
# pass
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
def test_completion_hf_stream():
try:
litellm.set_verbose = True
# messages = [
# {
# "content": "Hello! How are you today?",
# "role": "user"
# },
# ]
# response = completion(
# model="huggingface/mistralai/Mistral-7B-Instruct-v0.1", messages=messages, api_base="https://n9ox93a8sv5ihsow.us-east-1.aws.endpoints.huggingface.cloud", stream=True, max_tokens=1000
# )
# complete_response = ""
# # Add any assertions here to check the response
# for idx, chunk in enumerate(response):
# chunk, finished = streaming_format_tests(idx, chunk)
# if finished:
# break
# complete_response += chunk
# if complete_response.strip() == "":
# raise Exception("Empty response received")
# completion_response_1 = complete_response
messages = [
{
"content": "Hello! How are you today?",
"role": "user"
},
{
"content": "I'm doing well, thank you for asking! I'm excited to be here and help you with any questions or concerns you may have. What can I assist you with today?</s>",
"role": "assistant"
},
]
response = completion(
model="huggingface/mistralai/Mistral-7B-Instruct-v0.1", messages=messages, api_base="https://n9ox93a8sv5ihsow.us-east-1.aws.endpoints.huggingface.cloud", stream=True, max_tokens=1000
)
complete_response = ""
# Add any assertions here to check the response
for idx, chunk in enumerate(response):
chunk, finished = streaming_format_tests(idx, chunk)
if finished:
break
complete_response += chunk
if complete_response.strip() == "":
raise Exception("Empty response received")
# print(f"completion_response_1: {completion_response_1}")
print(f"completion_response: {complete_response}")
except InvalidRequestError as e:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# # test_completion_hf_stream()
test_completion_hf_stream()
# def test_completion_hf_stream_bad_key():
# try:
@ -680,7 +705,7 @@ def test_completion_sagemaker_stream():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_sagemaker_stream()
# test_completion_sagemaker_stream()
# test on openai completion call
def test_openai_text_completion_call():

View file

@ -2916,12 +2916,14 @@ class CustomStreamWrapper:
print_verbose(f"data json: {data_json}")
if "token" in data_json and "text" in data_json["token"]:
text = data_json["token"]["text"]
if "meta-llama/Llama-2" in self.model: #clean eos tokens like </s> from the returned output text
if any(token in text for token in llama_2_special_tokens):
text = text.replace("<s>", "").replace("</s>", "")
if data_json.get("details", False) and data_json["details"].get("finish_reason", False):
is_finished = True
finish_reason = data_json["details"]["finish_reason"]
elif data_json.get("generated_text", False): # if full generated text exists, then stream is complete
text = "" # don't return the final bos token
is_finished = True
finish_reason = "stop"
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
elif "error" in chunk:
raise ValueError(chunk)

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "0.1.799"
version = "0.1.800"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT License"