fix(openai.py): fix openai response for /audio/speech endpoint

This commit is contained in:
Krrish Dholakia 2024-05-30 16:41:06 -07:00
parent 1e89a1f56e
commit eb159b64e1
7 changed files with 311 additions and 127 deletions

View file

@ -1195,7 +1195,7 @@ class OpenAIChatCompletion(BaseLLM):
timeout: Union[float, httpx.Timeout],
aspeech: Optional[bool] = None,
client=None,
) -> ResponseContextManager[StreamedBinaryAPIResponse]:
) -> HttpxBinaryResponseContent:
if aspeech is not None and aspeech == True:
return self.async_audio_speech(
@ -1225,15 +1225,15 @@ class OpenAIChatCompletion(BaseLLM):
else:
openai_client = client
response = openai_client.audio.speech.with_streaming_response.create(
model="tts-1",
voice="alloy",
input="the quick brown fox jumped over the lazy dogs",
response = openai_client.audio.speech.create(
model=model,
voice=voice, # type: ignore
input=input,
**optional_params,
)
return response
def async_audio_speech(
async def async_audio_speech(
self,
model: str,
input: str,
@ -1246,7 +1246,7 @@ class OpenAIChatCompletion(BaseLLM):
max_retries: int,
timeout: Union[float, httpx.Timeout],
client=None,
) -> AsyncResponseContextManager[AsyncStreamedBinaryAPIResponse]:
) -> HttpxBinaryResponseContent:
if client is None:
openai_client = AsyncOpenAI(
@ -1261,12 +1261,13 @@ class OpenAIChatCompletion(BaseLLM):
else:
openai_client = client
response = openai_client.audio.speech.with_streaming_response.create(
model="tts-1",
voice="alloy",
input="the quick brown fox jumped over the lazy dogs",
response = await openai_client.audio.speech.create(
model=model,
voice=voice, # type: ignore
input=input,
**optional_params,
)
return response
async def ahealth_check(

View file

@ -91,12 +91,7 @@ import tiktoken
from concurrent.futures import ThreadPoolExecutor
from typing import Callable, List, Optional, Dict, Union, Mapping
from .caching import enable_cache, disable_cache, update_cache
from .types.llms.openai import (
StreamedBinaryAPIResponse,
ResponseContextManager,
AsyncResponseContextManager,
AsyncStreamedBinaryAPIResponse,
)
from .types.llms.openai import HttpxBinaryResponseContent
encoding = tiktoken.get_encoding("cl100k_base")
from litellm.utils import (
@ -4169,9 +4164,7 @@ def transcription(
return response
def aspeech(
*args, **kwargs
) -> AsyncResponseContextManager[AsyncStreamedBinaryAPIResponse]:
async def aspeech(*args, **kwargs) -> HttpxBinaryResponseContent:
"""
Calls openai tts endpoints.
"""
@ -4181,25 +4174,25 @@ def aspeech(
kwargs["aspeech"] = True
custom_llm_provider = kwargs.get("custom_llm_provider", None)
try:
# # Use a partial function to pass your keyword arguments
# func = partial(speech, *args, **kwargs)
# Use a partial function to pass your keyword arguments
func = partial(speech, *args, **kwargs)
# # Add the context to the function
# ctx = contextvars.copy_context()
# func_with_context = partial(ctx.run, func)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
# _, custom_llm_provider, _, _ = get_llm_provider(
# model=model, api_base=kwargs.get("api_base", None)
# )
_, custom_llm_provider, _, _ = get_llm_provider(
model=model, api_base=kwargs.get("api_base", None)
)
# # Await normally
# init_response = await loop.run_in_executor(None, func_with_context)
# if asyncio.iscoroutine(init_response):
# response = await init_response
# else:
# # Call the synchronous function using run_in_executor
# response = await loop.run_in_executor(None, func_with_context)
return speech(*args, **kwargs) # type: ignore
# Await normally
init_response = await loop.run_in_executor(None, func_with_context)
if asyncio.iscoroutine(init_response):
response = await init_response
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context)
return response # type: ignore
except Exception as e:
custom_llm_provider = custom_llm_provider or "openai"
raise exception_type(
@ -4215,12 +4208,12 @@ def speech(
model: str,
input: str,
voice: str,
optional_params: dict,
api_key: Optional[str],
api_base: Optional[str],
organization: Optional[str],
project: Optional[str],
max_retries: int,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
organization: Optional[str] = None,
project: Optional[str] = None,
max_retries: Optional[int] = None,
metadata: Optional[dict] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
response_format: Optional[str] = None,
speed: Optional[int] = None,
@ -4228,7 +4221,8 @@ def speech(
headers: Optional[dict] = None,
custom_llm_provider: Optional[str] = None,
aspeech: Optional[bool] = None,
) -> ResponseContextManager[StreamedBinaryAPIResponse]:
**kwargs,
) -> HttpxBinaryResponseContent:
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider, api_base=api_base) # type: ignore
@ -4236,12 +4230,14 @@ def speech(
if response_format is not None:
optional_params["response_format"] = response_format
if speed is not None:
optional_params["speed"] = speed
optional_params["speed"] = speed # type: ignore
if timeout is None:
timeout = litellm.request_timeout
response: Optional[ResponseContextManager[StreamedBinaryAPIResponse]] = None
if max_retries is None:
max_retries = litellm.num_retries or openai.DEFAULT_MAX_RETRIES
response: Optional[HttpxBinaryResponseContent] = None
if custom_llm_provider == "openai":
api_base = (
api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there

View file

@ -1,31 +1,3 @@
general_settings:
alert_to_webhook_url:
budget_alerts: https://hooks.slack.com/services/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
daily_reports: https://hooks.slack.com/services/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
db_exceptions: https://hooks.slack.com/services/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
llm_exceptions: https://hooks.slack.com/services/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
llm_requests_hanging: https://hooks.slack.com/services/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
llm_too_slow: https://hooks.slack.com/services/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
outage_alerts: https://hooks.slack.com/services/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
alert_types:
- llm_exceptions
- llm_too_slow
- llm_requests_hanging
- budget_alerts
- db_exceptions
- daily_reports
- spend_reports
- cooldown_deployment
- new_model_added
- outage_alerts
alerting:
- slack
database_connection_pool_limit: 100
database_connection_timeout: 60
health_check_interval: 300
ui_access_mode: all
# litellm_settings:
# json_logs: true
model_list:
- litellm_params:
api_base: http://0.0.0.0:8080
@ -52,10 +24,8 @@ model_list:
api_version: '2023-05-15'
model: azure/chatgpt-v-2
model_name: gpt-3.5-turbo
- model_name: mistral
- model_name: tts
litellm_params:
model: azure/mistral-large-latest
api_base: https://Mistral-large-nmefg-serverless.eastus2.inference.ai.azure.com/v1/
api_key: zEJhgmw1FAKk0XzPWoLEg7WU1cXbWYYn
model: openai/tts-1
router_settings:
enable_pre_call_checks: true

View file

@ -79,6 +79,9 @@ def generate_feedback_box():
import litellm
from litellm.types.llms.openai import (
HttpxBinaryResponseContent,
)
from litellm.proxy.utils import (
PrismaClient,
DBClient,
@ -4875,6 +4878,143 @@ async def image_generation(
)
@router.post(
"/v1/audio/speech",
dependencies=[Depends(user_api_key_auth)],
tags=["audio"],
)
@router.post(
"/audio/speech",
dependencies=[Depends(user_api_key_auth)],
tags=["audio"],
)
async def audio_speech(
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Same params as:
https://platform.openai.com/docs/api-reference/audio/createSpeech
"""
global proxy_logging_obj
data: Dict = {}
try:
# Use orjson to parse JSON data, orjson speeds up requests significantly
body = await request.body()
data = orjson.loads(body)
# Include original request and headers in the data
data["proxy_server_request"] = { # type: ignore
"url": str(request.url),
"method": request.method,
"headers": dict(request.headers),
"body": copy.copy(data), # use copy instead of deepcopy
}
if data.get("user", None) is None and user_api_key_dict.user_id is not None:
data["user"] = user_api_key_dict.user_id
if user_model:
data["model"] = user_model
if "metadata" not in data:
data["metadata"] = {}
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
data["metadata"]["user_api_key_metadata"] = user_api_key_dict.metadata
_headers = dict(request.headers)
_headers.pop(
"authorization", None
) # do not store the original `sk-..` api key in the db
data["metadata"]["headers"] = _headers
data["metadata"]["user_api_key_alias"] = getattr(
user_api_key_dict, "key_alias", None
)
data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id
data["metadata"]["user_api_key_team_id"] = getattr(
user_api_key_dict, "team_id", None
)
data["metadata"]["global_max_parallel_requests"] = general_settings.get(
"global_max_parallel_requests", None
)
data["metadata"]["user_api_key_team_alias"] = getattr(
user_api_key_dict, "team_alias", None
)
data["metadata"]["endpoint"] = str(request.url)
### TEAM-SPECIFIC PARAMS ###
if user_api_key_dict.team_id is not None:
team_config = await proxy_config.load_team_config(
team_id=user_api_key_dict.team_id
)
if len(team_config) == 0:
pass
else:
team_id = team_config.pop("team_id", None)
data["metadata"]["team_id"] = team_id
data = {
**team_config,
**data,
} # add the team-specific configs to the completion call
router_model_names = llm_router.model_names if llm_router is not None else []
### CALL HOOKS ### - modify incoming data / reject request before calling the model
data = await proxy_logging_obj.pre_call_hook(
user_api_key_dict=user_api_key_dict, data=data, call_type="image_generation"
)
## ROUTE TO CORRECT ENDPOINT ##
# skip router if user passed their key
if "api_key" in data:
response = await litellm.aspeech(**data)
elif (
llm_router is not None and data["model"] in router_model_names
): # model in router model list
response = await llm_router.aspeech(**data)
elif (
llm_router is not None and data["model"] in llm_router.deployment_names
): # model in router deployments, calling a specific deployment on the router
response = await llm_router.aspeech(**data, specific_deployment=True)
elif (
llm_router is not None
and llm_router.model_group_alias is not None
and data["model"] in llm_router.model_group_alias
): # model set in model_group_alias
response = await llm_router.aspeech(
**data
) # ensure this goes the llm_router, router will do the correct alias mapping
elif (
llm_router is not None
and data["model"] not in router_model_names
and llm_router.default_deployment is not None
): # model in router deployments, calling a specific deployment on the router
response = await llm_router.aspeech(**data)
elif user_model is not None: # `litellm --model <your-model-name>`
response = await litellm.aspeech(**data)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={
"error": "audio_speech: Invalid model name passed in model="
+ data.get("model", "")
},
)
# Printing each chunk size
async def generate(_response: HttpxBinaryResponseContent):
_generator = await _response.aiter_bytes(chunk_size=1024)
async for chunk in _generator:
yield chunk
return StreamingResponse(generate(response), media_type="audio/mpeg")
except Exception as e:
traceback.print_exc()
raise e
@router.post(
"/v1/audio/transcriptions",
dependencies=[Depends(user_api_key_auth)],

View file

@ -1202,6 +1202,84 @@ class Router:
self.fail_calls[model_name] += 1
raise e
async def aspeech(self, model: str, input: str, voice: str, **kwargs):
"""
Example Usage:
```
from litellm import Router
client = Router(model_list = [
{
"model_name": "tts",
"litellm_params": {
"model": "tts-1",
},
},
])
async with client.aspeech(
model="tts",
voice="alloy",
input="the quick brown fox jumped over the lazy dogs",
api_base=None,
api_key=None,
organization=None,
project=None,
max_retries=1,
timeout=600,
client=None,
optional_params={},
) as response:
response.stream_to_file(speech_file_path)
```
"""
try:
kwargs["input"] = input
kwargs["voice"] = voice
deployment = await self.async_get_available_deployment(
model=model,
messages=[{"role": "user", "content": "prompt"}],
specific_deployment=kwargs.pop("specific_deployment", None),
)
kwargs.setdefault("metadata", {}).update(
{
"deployment": deployment["litellm_params"]["model"],
"model_info": deployment.get("model_info", {}),
}
)
kwargs["model_info"] = deployment.get("model_info", {})
data = deployment["litellm_params"].copy()
model_name = data["model"]
for k, v in self.default_litellm_params.items():
if (
k not in kwargs
): # prioritize model-specific params > default router params
kwargs[k] = v
elif k == "metadata":
kwargs[k].update(v)
potential_model_client = self._get_client(
deployment=deployment, kwargs=kwargs, client_type="async"
)
# check if provided keys == client keys #
dynamic_api_key = kwargs.get("api_key", None)
if (
dynamic_api_key is not None
and potential_model_client is not None
and dynamic_api_key != potential_model_client.api_key
):
model_client = None
else:
model_client = potential_model_client
response = await litellm.aspeech(**data, **kwargs)
return response
except Exception as e:
raise e
async def amoderation(self, model: str, input: str, **kwargs):
try:
kwargs["model"] = model

View file

@ -16,51 +16,13 @@ import litellm, openai
from pathlib import Path
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_audio_speech_openai(sync_mode):
speech_file_path = Path(__file__).parent / "speech.mp3"
openai_chat_completions = litellm.OpenAIChatCompletion()
if sync_mode:
with openai_chat_completions.audio_speech(
model="tts-1",
voice="alloy",
input="the quick brown fox jumped over the lazy dogs",
api_base=None,
api_key=None,
organization=None,
project=None,
max_retries=1,
timeout=600,
client=None,
optional_params={},
) as response:
response.stream_to_file(speech_file_path)
else:
async with openai_chat_completions.async_audio_speech(
model="tts-1",
voice="alloy",
input="the quick brown fox jumped over the lazy dogs",
api_base=None,
api_key=None,
organization=None,
project=None,
max_retries=1,
timeout=600,
client=None,
optional_params={},
) as response:
speech = await response.parse()
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_audio_speech_litellm(sync_mode):
speech_file_path = Path(__file__).parent / "speech.mp3"
if sync_mode:
with litellm.speech(
response = litellm.speech(
model="openai/tts-1",
voice="alloy",
input="the quick brown fox jumped over the lazy dogs",
@ -72,10 +34,13 @@ async def test_audio_speech_litellm(sync_mode):
timeout=600,
client=None,
optional_params={},
) as response:
response.stream_to_file(speech_file_path)
)
from litellm.llms.openai import HttpxBinaryResponseContent
assert isinstance(response, HttpxBinaryResponseContent)
else:
async with litellm.aspeech(
response = await litellm.aspeech(
model="openai/tts-1",
voice="alloy",
input="the quick brown fox jumped over the lazy dogs",
@ -87,5 +52,45 @@ async def test_audio_speech_litellm(sync_mode):
timeout=600,
client=None,
optional_params={},
) as response:
await response.stream_to_file(speech_file_path)
)
from litellm.llms.openai import HttpxBinaryResponseContent
assert isinstance(response, HttpxBinaryResponseContent)
@pytest.mark.parametrize("mode", ["iterator"]) # "file",
@pytest.mark.asyncio
async def test_audio_speech_router(mode):
speech_file_path = Path(__file__).parent / "speech.mp3"
from litellm import Router
client = Router(
model_list=[
{
"model_name": "tts",
"litellm_params": {
"model": "openai/tts-1",
},
},
]
)
response = await client.aspeech(
model="tts",
voice="alloy",
input="the quick brown fox jumped over the lazy dogs",
api_base=None,
api_key=None,
organization=None,
project=None,
max_retries=1,
timeout=600,
client=None,
optional_params={},
)
from litellm.llms.openai import HttpxBinaryResponseContent
assert isinstance(response, HttpxBinaryResponseContent)

View file

@ -20,12 +20,6 @@ from openai.pagination import SyncCursorPage
from os import PathLike
from openai.types import FileObject, Batch
from openai._legacy_response import HttpxBinaryResponseContent
from openai._response import (
StreamedBinaryAPIResponse,
ResponseContextManager,
AsyncStreamedBinaryAPIResponse,
AsyncResponseContextManager,
)
from typing import TypedDict, List, Optional, Tuple, Mapping, IO
FileContent = Union[IO[bytes], bytes, PathLike]