fix(openai.p): adding support for exception mapping for openai-compatible apis via http calls

This commit is contained in:
Krrish Dholakia 2023-10-13 21:56:43 -07:00
parent b455bdfff1
commit ec5e7aa4a9
8 changed files with 4943 additions and 32 deletions

View file

@ -246,30 +246,53 @@ class OpenAIChatCompletion(BaseLLM):
logger_fn=None): logger_fn=None):
super().completion() super().completion()
headers = self.validate_environment(api_key=api_key) headers = self.validate_environment(api_key=api_key)
data = {
"messages": messages, for _ in range(2): # if call fails due to alternating messages, retry with reformatted message
**optional_params data = {
} "model": model,
if "stream" in optional_params and optional_params["stream"] == True: "messages": messages,
response = self._client_session.post( **optional_params
url=f"{api_base}/chat/completions", }
json=data, try:
headers=headers, if "stream" in optional_params and optional_params["stream"] == True:
stream=optional_params["stream"] response = self._client_session.post(
) url=f"{api_base}/chat/completions",
if response.status_code != 200: json=data,
raise CustomOpenAIError(status_code=response.status_code, message=response.text) headers=headers,
stream=optional_params["stream"]
## RESPONSE OBJECT )
return response.iter_lines() if response.status_code != 200:
else: raise CustomOpenAIError(status_code=response.status_code, message=response.text)
response = self._client_session.post(
url=f"{api_base}/chat/completions", ## RESPONSE OBJECT
json=data, return response.iter_lines()
headers=headers, else:
) response = self._client_session.post(
if response.status_code != 200: url=f"{api_base}/chat/completions",
raise CustomOpenAIError(status_code=response.status_code, message=response.text) json=data,
headers=headers,
## RESPONSE OBJECT )
return self.convert_to_model_response_object(response_object=response.json(), model_response_object=model_response) if response.status_code != 200:
raise CustomOpenAIError(status_code=response.status_code, message=response.text)
## RESPONSE OBJECT
return self.convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
except Exception as e:
if "Conversation roles must alternate user/assistant" in str(e) or "user and assistant roles should be alternating" in str(e):
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, add a blank 'user' or 'assistant' message to ensure compatibility
new_messages = []
for i in range(len(messages)-1):
new_messages.append(messages[i])
if messages[i]["role"] == messages[i+1]["role"]:
if messages[i]["role"] == "user":
new_messages.append({"role": "assistant", "content": ""})
else:
new_messages.append({"role": "user", "content": ""})
new_messages.append(messages[-1])
messages = new_messages
elif "Last message must have role `user`" in str(e):
new_messages = messages
new_messages.append({"role": "user", "content": ""})
messages = new_messages
else:
raise e

View file

@ -445,7 +445,7 @@ def completion(
raise e raise e
if "stream" in optional_params and optional_params["stream"] == True: if "stream" in optional_params and optional_params["stream"] == True:
response = CustomStreamWrapper(response, model, custom_llm_provider="openai", logging_obj=logging) response = CustomStreamWrapper(response, model, custom_llm_provider=custom_llm_provider, logging_obj=logging)
return response return response
## LOGGING ## LOGGING
logging.post_call( logging.post_call(

File diff suppressed because it is too large Load diff

View file

@ -332,7 +332,6 @@ def logger(
end_time=None # start/end time end_time=None # start/end time
): ):
log_event_type = kwargs['log_event_type'] log_event_type = kwargs['log_event_type']
print(f"REACHES LOGGER: {log_event_type}")
try: try:
if log_event_type == 'pre_api_call': if log_event_type == 'pre_api_call':
inference_params = copy.deepcopy(kwargs) inference_params = copy.deepcopy(kwargs)
@ -355,7 +354,6 @@ def logger(
with open(log_file, 'w') as f: with open(log_file, 'w') as f:
json.dump(existing_data, f, indent=2) json.dump(existing_data, f, indent=2)
elif log_event_type == 'post_api_call': elif log_event_type == 'post_api_call':
print(f"post api call kwargs: {kwargs}")
if "stream" not in kwargs["optional_params"] or kwargs["optional_params"]["stream"] is False or kwargs.get("complete_streaming_response", False): if "stream" not in kwargs["optional_params"] or kwargs["optional_params"]["stream"] is False or kwargs.get("complete_streaming_response", False):
inference_params = copy.deepcopy(kwargs) inference_params = copy.deepcopy(kwargs)
timestamp = inference_params.pop('start_time') timestamp = inference_params.pop('start_time')
@ -438,7 +436,6 @@ async def completion(request: Request):
@router.post("/chat/completions") @router.post("/chat/completions")
async def chat_completion(request: Request): async def chat_completion(request: Request):
data = await request.json() data = await request.json()
print(f"data passed in: {data}")
response = litellm_completion(data, type="chat_completion") response = litellm_completion(data, type="chat_completion")
return response return response

View file

@ -108,6 +108,28 @@ def test_completion_with_litellm_call_id():
except Exception as e: except Exception as e:
pytest.fail(f"Error occurred: {e}") pytest.fail(f"Error occurred: {e}")
def test_completion_perplexity_api():
try:
litellm.set_verbose=True
messages=[{
"role": "system",
"content": "You're a good bot"
},{
"role": "user",
"content": "Hey",
},{
"role": "user",
"content": "Hey",
}]
response = completion(
model="mistral-7b-instruct",
messages=messages,
api_base="https://api.perplexity.ai")
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_perplexity_api()
# commenting out as this is a flaky test on circle ci # commenting out as this is a flaky test on circle ci
# def test_completion_nlp_cloud(): # def test_completion_nlp_cloud():
# try: # try:

View file

@ -1419,7 +1419,9 @@ def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None, api_
if api_base: if api_base:
for endpoint in litellm.openai_compatible_endpoints: for endpoint in litellm.openai_compatible_endpoints:
if endpoint in api_base: if endpoint in api_base:
custom_llm_provider = "openai" custom_llm_provider = "custom_openai"
if endpoint == "api.perplexity.ai":
litellm.api_key = os.getenv("PERPLEXITYAI_API_KEY")
return model, custom_llm_provider return model, custom_llm_provider
# check if model in known model provider list -> for huggingface models, raise exception as they don't have a fixed provider (can be togetherai, anyscale, baseten, runpod, et.) # check if model in known model provider list -> for huggingface models, raise exception as they don't have a fixed provider (can be togetherai, anyscale, baseten, runpod, et.)
@ -2936,6 +2938,45 @@ def exception_type(
elif custom_llm_provider == "ollama": elif custom_llm_provider == "ollama":
if "no attribute 'async_get_ollama_response_stream" in error_str: if "no attribute 'async_get_ollama_response_stream" in error_str:
raise ImportError("Import error - trying to use async for ollama. import async_generator failed. Try 'pip install async_generator'") raise ImportError("Import error - trying to use async for ollama. import async_generator failed. Try 'pip install async_generator'")
elif custom_llm_provider == "custom_openai":
if hasattr(original_exception, "status_code"):
exception_mapping_worked = True
if original_exception.status_code == 401:
exception_mapping_worked = True
raise AuthenticationError(
message=f"CustomOpenAIException - {original_exception.message}",
llm_provider="custom_openai",
model=model
)
elif original_exception.status_code == 408:
exception_mapping_worked = True
raise Timeout(
message=f"CustomOpenAIException - {original_exception.message}",
model=model,
llm_provider="custom_openai"
)
if original_exception.status_code == 422:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"CustomOpenAIException - {original_exception.message}",
model=model,
llm_provider="custom_openai",
)
elif original_exception.status_code == 429:
exception_mapping_worked = True
raise RateLimitError(
message=f"CustomOpenAIException - {original_exception.message}",
model=model,
llm_provider="custom_openai",
)
else:
exception_mapping_worked = True
raise APIError(
status_code=original_exception.status_code,
message=f"CustomOpenAIException - {original_exception.message}",
llm_provider="custom_openai",
model=model
)
exception_mapping_worked = True exception_mapping_worked = True
raise APIError(status_code=500, message=str(original_exception), llm_provider=custom_llm_provider, model=model) raise APIError(status_code=500, message=str(original_exception), llm_provider=custom_llm_provider, model=model)
except Exception as e: except Exception as e:
@ -3205,6 +3246,30 @@ class CustomStreamWrapper:
except: except:
raise ValueError(f"Unable to parse response. Original response: {chunk}") raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_custom_openai_chat_completion_chunk(self, chunk):
try:
str_line = chunk.decode("utf-8") # Convert bytes to string
text = ""
is_finished = False
finish_reason = None
if str_line.startswith("data:"):
data_json = json.loads(str_line[5:])
print(f"delta content: {data_json['choices'][0]['delta']}")
text = data_json["choices"][0]["delta"].get("content", "")
if data_json["choices"][0].get("finish_reason", None):
is_finished = True
finish_reason = data_json["choices"][0]["finish_reason"]
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
elif "error" in str_line:
raise ValueError(f"Unable to parse response. Original response: {str_line}")
else:
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
except:
traceback.print_exc()
pass
def handle_openai_text_completion_chunk(self, chunk): def handle_openai_text_completion_chunk(self, chunk):
try: try:
return chunk["choices"][0]["text"] return chunk["choices"][0]["text"]
@ -3401,6 +3466,13 @@ class CustomStreamWrapper:
if "error" in chunk: if "error" in chunk:
exception_type(model=self.model, custom_llm_provider=self.custom_llm_provider, original_exception=chunk["error"]) exception_type(model=self.model, custom_llm_provider=self.custom_llm_provider, original_exception=chunk["error"])
completion_obj = chunk completion_obj = chunk
elif self.custom_llm_provider == "custom_openai":
chunk = next(self.completion_stream)
response_obj = self.handle_custom_openai_chat_completion_chunk(chunk)
completion_obj["content"] = response_obj["text"]
print(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
model_response.choices[0].finish_reason = response_obj["finish_reason"]
else: # openai chat/azure models else: # openai chat/azure models
chunk = next(self.completion_stream) chunk = next(self.completion_stream)
model_response = chunk model_response = chunk