mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
fix pydantic obj for FT endpoints
This commit is contained in:
parent
415611b7f2
commit
ef5aeb17a1
4 changed files with 36 additions and 184 deletions
|
@ -18,6 +18,7 @@ import httpx
|
|||
|
||||
import litellm
|
||||
from litellm import get_secret
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.llms.fine_tuning_apis.azure import AzureOpenAIFineTuningAPI
|
||||
from litellm.llms.fine_tuning_apis.openai import (
|
||||
FineTuningJob,
|
||||
|
@ -51,6 +52,9 @@ async def acreate_fine_tuning_job(
|
|||
Async: Creates and executes a batch from an uploaded file of request
|
||||
|
||||
"""
|
||||
verbose_logger.debug(
|
||||
"inside acreate_fine_tuning_job model=%s and kwargs=%s", model, kwargs
|
||||
)
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
kwargs["acreate_fine_tuning_job"] = True
|
||||
|
@ -156,11 +160,15 @@ def create_fine_tuning_job(
|
|||
seed=seed,
|
||||
)
|
||||
|
||||
create_fine_tuning_job_data_dict = create_fine_tuning_job_data.model_dump(
|
||||
exclude_none=True
|
||||
)
|
||||
|
||||
response = openai_fine_tuning_apis_instance.create_fine_tuning_job(
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
organization=organization,
|
||||
create_fine_tuning_job_data=create_fine_tuning_job_data,
|
||||
create_fine_tuning_job_data=create_fine_tuning_job_data_dict,
|
||||
timeout=timeout,
|
||||
max_retries=optional_params.max_retries,
|
||||
_is_async=_is_async,
|
||||
|
|
|
@ -50,18 +50,18 @@ class OpenAIFineTuningAPI(BaseLLM):
|
|||
|
||||
async def acreate_fine_tuning_job(
|
||||
self,
|
||||
create_fine_tuning_job_data: FineTuningJobCreate,
|
||||
create_fine_tuning_job_data: dict,
|
||||
openai_client: AsyncOpenAI,
|
||||
) -> FineTuningJob:
|
||||
response = await openai_client.fine_tuning.jobs.create(
|
||||
**create_fine_tuning_job_data # type: ignore
|
||||
**create_fine_tuning_job_data
|
||||
)
|
||||
return response
|
||||
|
||||
def create_fine_tuning_job(
|
||||
self,
|
||||
_is_async: bool,
|
||||
create_fine_tuning_job_data: FineTuningJobCreate,
|
||||
create_fine_tuning_job_data: dict,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
|
@ -95,7 +95,7 @@ class OpenAIFineTuningAPI(BaseLLM):
|
|||
verbose_logger.debug(
|
||||
"creating fine tuning job, args= %s", create_fine_tuning_job_data
|
||||
)
|
||||
response = openai_client.fine_tuning.jobs.create(**create_fine_tuning_job_data) # type: ignore
|
||||
response = openai_client.fine_tuning.jobs.create(**create_fine_tuning_job_data)
|
||||
return response
|
||||
|
||||
async def acancel_fine_tuning_job(
|
||||
|
|
|
@ -1,157 +0,0 @@
|
|||
#########################################################################
|
||||
|
||||
# /v1/fine_tuning Endpoints
|
||||
|
||||
# Equivalent of https://platform.openai.com/docs/api-reference/fine-tuning
|
||||
##########################################################################
|
||||
|
||||
import asyncio
|
||||
import traceback
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import List, Optional
|
||||
|
||||
import fastapi
|
||||
import httpx
|
||||
from fastapi import (
|
||||
APIRouter,
|
||||
Depends,
|
||||
File,
|
||||
Form,
|
||||
Header,
|
||||
HTTPException,
|
||||
Request,
|
||||
Response,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
|
||||
import litellm
|
||||
from litellm import CreateFileRequest, FileContentRequest
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm.batches.main import FileObject
|
||||
from litellm.proxy._types import *
|
||||
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
from litellm.llms.fine_tuning_apis.openai import (
|
||||
FineTuningJob,
|
||||
FineTuningJobCreate,
|
||||
OpenAIFineTuningAPI,
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/v1/fine_tuning/jobs",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["fine-tuning"],
|
||||
)
|
||||
@router.post(
|
||||
"/fine_tuning/jobs",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["fine-tuning"],
|
||||
)
|
||||
async def create_fine_tuning_job(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
fine_tuning_job: FineTuningJobCreate,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
Creates a fine-tuning job which begins the process of creating a new model from a given dataset.
|
||||
This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs
|
||||
|
||||
Supports Identical Params as: https://platform.openai.com/docs/api-reference/fine-tuning/create
|
||||
|
||||
Example Curl:
|
||||
```
|
||||
curl http://localhost:4000/v1/fine_tuning/jobs \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"training_file": "file-abc123",
|
||||
"hyperparameters": {
|
||||
"n_epochs": 4
|
||||
}
|
||||
}'
|
||||
```
|
||||
"""
|
||||
from litellm.proxy.proxy_server import (
|
||||
add_litellm_data_to_request,
|
||||
general_settings,
|
||||
get_custom_headers,
|
||||
proxy_config,
|
||||
proxy_logging_obj,
|
||||
version,
|
||||
)
|
||||
|
||||
try:
|
||||
# Convert Pydantic model to dict
|
||||
data = fine_tuning_job.dict(exclude_unset=True)
|
||||
|
||||
# Include original request and headers in the data
|
||||
data = await add_litellm_data_to_request(
|
||||
data=data,
|
||||
request=request,
|
||||
general_settings=general_settings,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
version=version,
|
||||
proxy_config=proxy_config,
|
||||
)
|
||||
|
||||
# For now, use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for fine-tuning
|
||||
response = await litellm.acreate_fine_tuning_job(
|
||||
custom_llm_provider="openai", **data
|
||||
)
|
||||
|
||||
### ALERTING ###
|
||||
asyncio.create_task(
|
||||
proxy_logging_obj.update_request_status(
|
||||
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
||||
)
|
||||
)
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
verbose_proxy_logger.error(
|
||||
"litellm.proxy.proxy_server.create_fine_tuning_job(): Exception occurred - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
verbose_proxy_logger.debug(traceback.format_exc())
|
||||
if isinstance(e, HTTPException):
|
||||
raise ProxyException(
|
||||
message=getattr(e, "message", str(e.detail)),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
||||
)
|
||||
else:
|
||||
error_msg = f"{str(e)}"
|
||||
raise ProxyException(
|
||||
message=getattr(e, "message", error_msg),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", 500),
|
||||
)
|
|
@ -9,7 +9,6 @@ from typing import (
|
|||
Mapping,
|
||||
Optional,
|
||||
Tuple,
|
||||
TypedDict,
|
||||
Union,
|
||||
)
|
||||
|
||||
|
@ -31,7 +30,7 @@ from openai.types.beta.threads.message import Message as OpenAIMessage
|
|||
from openai.types.beta.threads.message_content import MessageContent
|
||||
from openai.types.beta.threads.run import Run
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Dict, Required, override
|
||||
from typing_extensions import Dict, Required, TypedDict, override
|
||||
|
||||
FileContent = Union[IO[bytes], bytes, PathLike]
|
||||
|
||||
|
@ -457,15 +456,17 @@ class ChatCompletionUsageBlock(TypedDict):
|
|||
total_tokens: int
|
||||
|
||||
|
||||
class Hyperparameters(TypedDict):
|
||||
batch_size: Optional[Union[str, int]] # "Number of examples in each batch."
|
||||
learning_rate_multiplier: Optional[
|
||||
Union[str, float]
|
||||
] # Scaling factor for the learning rate
|
||||
n_epochs: Optional[Union[str, int]] # "The number of epochs to train the model for"
|
||||
class Hyperparameters(BaseModel):
|
||||
batch_size: Optional[Union[str, int]] = None # "Number of examples in each batch."
|
||||
learning_rate_multiplier: Optional[Union[str, float]] = (
|
||||
None # Scaling factor for the learning rate
|
||||
)
|
||||
n_epochs: Optional[Union[str, int]] = (
|
||||
None # "The number of epochs to train the model for"
|
||||
)
|
||||
|
||||
|
||||
class FineTuningJobCreate(TypedDict):
|
||||
class FineTuningJobCreate(BaseModel):
|
||||
"""
|
||||
FineTuningJobCreate - Create a fine-tuning job
|
||||
|
||||
|
@ -489,16 +490,16 @@ class FineTuningJobCreate(TypedDict):
|
|||
|
||||
model: str # "The name of the model to fine-tune."
|
||||
training_file: str # "The ID of an uploaded file that contains training data."
|
||||
hyperparameters: Optional[
|
||||
Hyperparameters
|
||||
] # "The hyperparameters used for the fine-tuning job."
|
||||
suffix: Optional[
|
||||
str
|
||||
] # "A string of up to 18 characters that will be added to your fine-tuned model name."
|
||||
validation_file: Optional[
|
||||
str
|
||||
] # "The ID of an uploaded file that contains validation data."
|
||||
integrations: Optional[
|
||||
List[str]
|
||||
] # "A list of integrations to enable for your fine-tuning job."
|
||||
seed: Optional[int] # "The seed controls the reproducibility of the job."
|
||||
hyperparameters: Optional[Hyperparameters] = (
|
||||
None # "The hyperparameters used for the fine-tuning job."
|
||||
)
|
||||
suffix: Optional[str] = (
|
||||
None # "A string of up to 18 characters that will be added to your fine-tuned model name."
|
||||
)
|
||||
validation_file: Optional[str] = (
|
||||
None # "The ID of an uploaded file that contains validation data."
|
||||
)
|
||||
integrations: Optional[List[str]] = (
|
||||
None # "A list of integrations to enable for your fine-tuning job."
|
||||
)
|
||||
seed: Optional[int] = None # "The seed controls the reproducibility of the job."
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue