mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
v0 bedrock support
This commit is contained in:
parent
262022f8e5
commit
f5931a7235
3 changed files with 165 additions and 0 deletions
|
@ -190,6 +190,7 @@ provider_list = [
|
|||
"baseten",
|
||||
"azure",
|
||||
"sagemaker",
|
||||
"bedrock",
|
||||
]
|
||||
|
||||
models_by_provider = {
|
||||
|
|
139
litellm/llms/bedrock.py
Normal file
139
litellm/llms/bedrock.py
Normal file
|
@ -0,0 +1,139 @@
|
|||
import os
|
||||
import json
|
||||
from enum import Enum
|
||||
import requests
|
||||
import time
|
||||
from typing import Callable
|
||||
from litellm.utils import ModelResponse, get_secret
|
||||
import sys
|
||||
|
||||
class BedrockError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
"""
|
||||
BEDROCK AUTH Keys/Vars
|
||||
os.environ['AWS_ACCESS_KEY_ID'] = ""
|
||||
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
|
||||
"""
|
||||
|
||||
# set os.environ['AWS_REGION_NAME'] = <your-region_name>
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
import sys
|
||||
if 'boto3' not in sys.modules:
|
||||
import boto3
|
||||
|
||||
region_name = (
|
||||
get_secret("AWS_REGION_NAME") or
|
||||
"us-west-2" # default to us-west-2
|
||||
)
|
||||
|
||||
client = boto3.client(
|
||||
service_name="bedrock",
|
||||
region_name=region_name
|
||||
)
|
||||
|
||||
model = model
|
||||
prompt = ""
|
||||
for message in messages:
|
||||
if "role" in message:
|
||||
if message["role"] == "user":
|
||||
prompt += (
|
||||
f"{message['content']}"
|
||||
)
|
||||
else:
|
||||
prompt += (
|
||||
f"{message['content']}"
|
||||
)
|
||||
else:
|
||||
prompt += f"{message['content']}"
|
||||
|
||||
|
||||
data = json.dumps({
|
||||
"inputText": prompt,
|
||||
"textGenerationConfig":{
|
||||
"maxTokenCount":4096,
|
||||
"stopSequences":[],
|
||||
"temperature":0,
|
||||
"topP":0.9
|
||||
}
|
||||
})
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
|
||||
## COMPLETION CALL
|
||||
accept = 'application/json'
|
||||
contentType = 'application/json'
|
||||
|
||||
response = client.invoke_model(
|
||||
body=data,
|
||||
modelId=model,
|
||||
accept=accept,
|
||||
contentType=contentType
|
||||
)
|
||||
response_body = json.loads(response.get('body').read())
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response}")
|
||||
## RESPONSE OBJECT
|
||||
outputText = response_body.get('results')[0].get('outputText')
|
||||
print(outputText)
|
||||
if "error" in outputText:
|
||||
raise BedrockError(
|
||||
message=outputText["error"],
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
model_response["choices"][0]["message"]["content"] = outputText
|
||||
except:
|
||||
raise BedrockError(message=json.dumps(outputText), status_code=response.status_code)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
)
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
|
@ -23,6 +23,7 @@ from .llms import anthropic
|
|||
from .llms import together_ai
|
||||
from .llms import ai21
|
||||
from .llms import sagemaker
|
||||
from .llms import bedrock
|
||||
from .llms.huggingface_restapi import HuggingfaceRestAPILLM
|
||||
from .llms.baseten import BasetenLLM
|
||||
from .llms.aleph_alpha import AlephAlphaLLM
|
||||
|
@ -703,6 +704,30 @@ def completion(
|
|||
# )
|
||||
# return response
|
||||
|
||||
## RESPONSE OBJECT
|
||||
response = model_response
|
||||
elif custom_llm_provider == "bedrock":
|
||||
# boto3 reads keys from .env
|
||||
model_response = bedrock.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
logging_obj=logging
|
||||
)
|
||||
|
||||
# TODO: Add streaming for bedrock
|
||||
# if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# # don't try to access stream object,
|
||||
# response = CustomStreamWrapper(
|
||||
# model_response, model, custom_llm_provider="ai21", logging_obj=logging
|
||||
# )
|
||||
# return response
|
||||
|
||||
## RESPONSE OBJECT
|
||||
response = model_response
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue