Merge branch 'litellm_contributors_apr_21' into feature/issue-8764-infinity
3
.gitignore
vendored
|
@ -86,4 +86,5 @@ litellm/proxy/db/migrations/0_init/migration.sql
|
|||
litellm/proxy/db/migrations/*
|
||||
litellm/proxy/migrations/*config.yaml
|
||||
litellm/proxy/migrations/*
|
||||
config.yaml
|
||||
config.yaml
|
||||
tests/litellm/litellm_core_utils/llm_cost_calc/log.txt
|
||||
|
|
|
@ -4,7 +4,7 @@ Pass-through endpoints for Cohere - call provider-specific endpoint, in native f
|
|||
|
||||
| Feature | Supported | Notes |
|
||||
|-------|-------|-------|
|
||||
| Cost Tracking | ✅ | works across all integrations |
|
||||
| Cost Tracking | ✅ | Supported for `/v1/chat`, and `/v2/chat` |
|
||||
| Logging | ✅ | works across all integrations |
|
||||
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
|
||||
| Streaming | ✅ | |
|
||||
|
|
217
docs/my-website/docs/pass_through/mistral.md
Normal file
|
@ -0,0 +1,217 @@
|
|||
# Mistral
|
||||
|
||||
Pass-through endpoints for Mistral - call provider-specific endpoint, in native format (no translation).
|
||||
|
||||
| Feature | Supported | Notes |
|
||||
|-------|-------|-------|
|
||||
| Cost Tracking | ❌ | Not supported |
|
||||
| Logging | ✅ | works across all integrations |
|
||||
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
|
||||
| Streaming | ✅ | |
|
||||
|
||||
Just replace `https://api.mistral.ai/v1` with `LITELLM_PROXY_BASE_URL/mistral` 🚀
|
||||
|
||||
#### **Example Usage**
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/ocr' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-d '{
|
||||
"model": "mistral-ocr-latest",
|
||||
"document": {
|
||||
"type": "image_url",
|
||||
"image_url": "https://raw.githubusercontent.com/mistralai/cookbook/refs/heads/main/mistral/ocr/receipt.png"
|
||||
}
|
||||
|
||||
}'
|
||||
```
|
||||
|
||||
Supports **ALL** Mistral Endpoints (including streaming).
|
||||
|
||||
## Quick Start
|
||||
|
||||
Let's call the Mistral [`/chat/completions` endpoint](https://docs.mistral.ai/api/#tag/chat/operation/chat_completion_v1_chat_completions_post)
|
||||
|
||||
1. Add MISTRAL_API_KEY to your environment
|
||||
|
||||
```bash
|
||||
export MISTRAL_API_KEY="sk-1234"
|
||||
```
|
||||
|
||||
2. Start LiteLLM Proxy
|
||||
|
||||
```bash
|
||||
litellm
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
Let's call the Mistral `/ocr` endpoint
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/ocr' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-d '{
|
||||
"model": "mistral-ocr-latest",
|
||||
"document": {
|
||||
"type": "image_url",
|
||||
"image_url": "https://raw.githubusercontent.com/mistralai/cookbook/refs/heads/main/mistral/ocr/receipt.png"
|
||||
}
|
||||
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
## Examples
|
||||
|
||||
Anything after `http://0.0.0.0:4000/mistral` is treated as a provider-specific route, and handled accordingly.
|
||||
|
||||
Key Changes:
|
||||
|
||||
| **Original Endpoint** | **Replace With** |
|
||||
|------------------------------------------------------|-----------------------------------|
|
||||
| `https://api.mistral.ai/v1` | `http://0.0.0.0:4000/mistral` (LITELLM_PROXY_BASE_URL="http://0.0.0.0:4000") |
|
||||
| `bearer $MISTRAL_API_KEY` | `bearer anything` (use `bearer LITELLM_VIRTUAL_KEY` if Virtual Keys are setup on proxy) |
|
||||
|
||||
|
||||
### **Example 1: OCR endpoint**
|
||||
|
||||
#### LiteLLM Proxy Call
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/ocr' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer $LITELLM_API_KEY' \
|
||||
-d '{
|
||||
"model": "mistral-ocr-latest",
|
||||
"document": {
|
||||
"type": "image_url",
|
||||
"image_url": "https://raw.githubusercontent.com/mistralai/cookbook/refs/heads/main/mistral/ocr/receipt.png"
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
#### Direct Mistral API Call
|
||||
|
||||
```bash
|
||||
curl https://api.mistral.ai/v1/ocr \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer ${MISTRAL_API_KEY}" \
|
||||
-d '{
|
||||
"model": "mistral-ocr-latest",
|
||||
"document": {
|
||||
"type": "document_url",
|
||||
"document_url": "https://arxiv.org/pdf/2201.04234"
|
||||
},
|
||||
"include_image_base64": true
|
||||
}'
|
||||
```
|
||||
|
||||
### **Example 2: Chat API**
|
||||
|
||||
#### LiteLLM Proxy Call
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
|
||||
-d '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "I am going to Paris, what should I see?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.1,
|
||||
"model": "mistral-large-latest",
|
||||
}'
|
||||
```
|
||||
|
||||
#### Direct Mistral API Call
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'https://api.mistral.ai/v1/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "I am going to Paris, what should I see?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.1,
|
||||
"model": "mistral-large-latest",
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
## Advanced - Use with Virtual Keys
|
||||
|
||||
Pre-requisites
|
||||
- [Setup proxy with DB](../proxy/virtual_keys.md#setup)
|
||||
|
||||
Use this, to avoid giving developers the raw Mistral API key, but still letting them use Mistral endpoints.
|
||||
|
||||
### Usage
|
||||
|
||||
1. Setup environment
|
||||
|
||||
```bash
|
||||
export DATABASE_URL=""
|
||||
export LITELLM_MASTER_KEY=""
|
||||
export MISTRAL_API_BASE=""
|
||||
```
|
||||
|
||||
```bash
|
||||
litellm
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
2. Generate virtual key
|
||||
|
||||
```bash
|
||||
curl -X POST 'http://0.0.0.0:4000/key/generate' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{}'
|
||||
```
|
||||
|
||||
Expected Response
|
||||
|
||||
```bash
|
||||
{
|
||||
...
|
||||
"key": "sk-1234ewknldferwedojwojw"
|
||||
}
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234ewknldferwedojwojw' \
|
||||
--data '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "I am going to Paris, what should I see?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.1,
|
||||
"model": "qwen2.5-7b-instruct",
|
||||
}'
|
||||
```
|
|
@ -13,6 +13,15 @@ Pass-through endpoints for Vertex AI - call provider-specific endpoint, in nativ
|
|||
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
|
||||
| Streaming | ✅ | |
|
||||
|
||||
## Supported Endpoints
|
||||
|
||||
LiteLLM supports 2 vertex ai passthrough routes:
|
||||
|
||||
1. `/vertex_ai` → routes to `https://{vertex_location}-aiplatform.googleapis.com/`
|
||||
2. `/vertex_ai/discovery` → routes to [`https://discoveryengine.googleapis.com`](https://discoveryengine.googleapis.com/)
|
||||
|
||||
## How to use
|
||||
|
||||
Just replace `https://REGION-aiplatform.googleapis.com` with `LITELLM_PROXY_BASE_URL/vertex_ai`
|
||||
|
||||
LiteLLM supports 3 flows for calling Vertex AI endpoints via pass-through:
|
||||
|
|
185
docs/my-website/docs/pass_through/vllm.md
Normal file
|
@ -0,0 +1,185 @@
|
|||
# VLLM
|
||||
|
||||
Pass-through endpoints for VLLM - call provider-specific endpoint, in native format (no translation).
|
||||
|
||||
| Feature | Supported | Notes |
|
||||
|-------|-------|-------|
|
||||
| Cost Tracking | ❌ | Not supported |
|
||||
| Logging | ✅ | works across all integrations |
|
||||
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
|
||||
| Streaming | ✅ | |
|
||||
|
||||
Just replace `https://my-vllm-server.com` with `LITELLM_PROXY_BASE_URL/vllm` 🚀
|
||||
|
||||
#### **Example Usage**
|
||||
|
||||
```bash
|
||||
curl -L -X GET 'http://0.0.0.0:4000/vllm/metrics' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
```
|
||||
|
||||
Supports **ALL** VLLM Endpoints (including streaming).
|
||||
|
||||
## Quick Start
|
||||
|
||||
Let's call the VLLM [`/metrics` endpoint](https://vllm.readthedocs.io/en/latest/api_reference/api_reference.html)
|
||||
|
||||
1. Add HOSTED VLLM API BASE to your environment
|
||||
|
||||
```bash
|
||||
export HOSTED_VLLM_API_BASE="https://my-vllm-server.com"
|
||||
```
|
||||
|
||||
2. Start LiteLLM Proxy
|
||||
|
||||
```bash
|
||||
litellm
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
Let's call the VLLM `/metrics` endpoint
|
||||
|
||||
```bash
|
||||
curl -L -X GET 'http://0.0.0.0:4000/vllm/metrics' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
```
|
||||
|
||||
|
||||
## Examples
|
||||
|
||||
Anything after `http://0.0.0.0:4000/vllm` is treated as a provider-specific route, and handled accordingly.
|
||||
|
||||
Key Changes:
|
||||
|
||||
| **Original Endpoint** | **Replace With** |
|
||||
|------------------------------------------------------|-----------------------------------|
|
||||
| `https://my-vllm-server.com` | `http://0.0.0.0:4000/vllm` (LITELLM_PROXY_BASE_URL="http://0.0.0.0:4000") |
|
||||
| `bearer $VLLM_API_KEY` | `bearer anything` (use `bearer LITELLM_VIRTUAL_KEY` if Virtual Keys are setup on proxy) |
|
||||
|
||||
|
||||
### **Example 1: Metrics endpoint**
|
||||
|
||||
#### LiteLLM Proxy Call
|
||||
|
||||
```bash
|
||||
curl -L -X GET 'http://0.0.0.0:4000/vllm/metrics' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
|
||||
```
|
||||
|
||||
|
||||
#### Direct VLLM API Call
|
||||
|
||||
```bash
|
||||
curl -L -X GET 'https://my-vllm-server.com/metrics' \
|
||||
-H 'Content-Type: application/json' \
|
||||
```
|
||||
|
||||
### **Example 2: Chat API**
|
||||
|
||||
#### LiteLLM Proxy Call
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/vllm/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
|
||||
-d '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "I am going to Paris, what should I see?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.1,
|
||||
"model": "qwen2.5-7b-instruct",
|
||||
}'
|
||||
```
|
||||
|
||||
#### Direct VLLM API Call
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'https://my-vllm-server.com/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "I am going to Paris, what should I see?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.1,
|
||||
"model": "qwen2.5-7b-instruct",
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
## Advanced - Use with Virtual Keys
|
||||
|
||||
Pre-requisites
|
||||
- [Setup proxy with DB](../proxy/virtual_keys.md#setup)
|
||||
|
||||
Use this, to avoid giving developers the raw Cohere API key, but still letting them use Cohere endpoints.
|
||||
|
||||
### Usage
|
||||
|
||||
1. Setup environment
|
||||
|
||||
```bash
|
||||
export DATABASE_URL=""
|
||||
export LITELLM_MASTER_KEY=""
|
||||
export HOSTED_VLLM_API_BASE=""
|
||||
```
|
||||
|
||||
```bash
|
||||
litellm
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
2. Generate virtual key
|
||||
|
||||
```bash
|
||||
curl -X POST 'http://0.0.0.0:4000/key/generate' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{}'
|
||||
```
|
||||
|
||||
Expected Response
|
||||
|
||||
```bash
|
||||
{
|
||||
...
|
||||
"key": "sk-1234ewknldferwedojwojw"
|
||||
}
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/vllm/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234ewknldferwedojwojw' \
|
||||
--data '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "I am going to Paris, what should I see?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.1,
|
||||
"model": "qwen2.5-7b-instruct",
|
||||
}'
|
||||
```
|
|
@ -1002,8 +1002,125 @@ Expected Response:
|
|||
```
|
||||
|
||||
|
||||
## **Azure Responses API**
|
||||
|
||||
| Property | Details |
|
||||
|-------|-------|
|
||||
| Description | Azure OpenAI Responses API |
|
||||
| `custom_llm_provider` on LiteLLM | `azure/` |
|
||||
| Supported Operations | `/v1/responses`|
|
||||
| Azure OpenAI Responses API | [Azure OpenAI Responses API ↗](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/responses?tabs=python-secure) |
|
||||
| Cost Tracking, Logging Support | ✅ LiteLLM will log, track cost for Responses API Requests |
|
||||
| Supported OpenAI Params | ✅ All OpenAI params are supported, [See here](https://github.com/BerriAI/litellm/blob/0717369ae6969882d149933da48eeb8ab0e691bd/litellm/llms/openai/responses/transformation.py#L23) |
|
||||
|
||||
## Usage
|
||||
|
||||
## Create a model response
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="litellm-sdk" label="LiteLLM SDK">
|
||||
|
||||
#### Non-streaming
|
||||
|
||||
```python showLineNumbers title="Azure Responses API"
|
||||
import litellm
|
||||
|
||||
# Non-streaming response
|
||||
response = litellm.responses(
|
||||
model="azure/o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
max_output_tokens=100,
|
||||
api_key=os.getenv("AZURE_RESPONSES_OPENAI_API_KEY"),
|
||||
api_base="https://litellm8397336933.openai.azure.com/",
|
||||
api_version="2023-03-15-preview",
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="Azure Responses API"
|
||||
import litellm
|
||||
|
||||
# Streaming response
|
||||
response = litellm.responses(
|
||||
model="azure/o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True,
|
||||
api_key=os.getenv("AZURE_RESPONSES_OPENAI_API_KEY"),
|
||||
api_base="https://litellm8397336933.openai.azure.com/",
|
||||
api_version="2023-03-15-preview",
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="OpenAI SDK with LiteLLM Proxy">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml showLineNumbers title="Azure Responses API"
|
||||
model_list:
|
||||
- model_name: o1-pro
|
||||
litellm_params:
|
||||
model: azure/o1-pro
|
||||
api_key: os.environ/AZURE_RESPONSES_OPENAI_API_KEY
|
||||
api_base: https://litellm8397336933.openai.azure.com/
|
||||
api_version: 2023-03-15-preview
|
||||
```
|
||||
|
||||
Start your LiteLLM proxy:
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
Then use the OpenAI SDK pointed to your proxy:
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -39,14 +39,164 @@ response = completion(
|
|||
- temperature
|
||||
- top_p
|
||||
- max_tokens
|
||||
- max_completion_tokens
|
||||
- stream
|
||||
- tools
|
||||
- tool_choice
|
||||
- functions
|
||||
- response_format
|
||||
- n
|
||||
- stop
|
||||
- logprobs
|
||||
- frequency_penalty
|
||||
- modalities
|
||||
- reasoning_content
|
||||
|
||||
**Anthropic Params**
|
||||
- thinking (used to set max budget tokens across anthropic/gemini models)
|
||||
|
||||
[**See Updated List**](https://github.com/BerriAI/litellm/blob/main/litellm/llms/gemini/chat/transformation.py#L70)
|
||||
|
||||
|
||||
|
||||
## Usage - Thinking / `reasoning_content`
|
||||
|
||||
LiteLLM translates OpenAI's `reasoning_effort` to Gemini's `thinking` parameter. [Code](https://github.com/BerriAI/litellm/blob/620664921902d7a9bfb29897a7b27c1a7ef4ddfb/litellm/llms/vertex_ai/gemini/vertex_and_google_ai_studio_gemini.py#L362)
|
||||
|
||||
**Mapping**
|
||||
|
||||
| reasoning_effort | thinking |
|
||||
| ---------------- | -------- |
|
||||
| "low" | "budget_tokens": 1024 |
|
||||
| "medium" | "budget_tokens": 2048 |
|
||||
| "high" | "budget_tokens": 4096 |
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
resp = completion(
|
||||
model="gemini/gemini-2.5-flash-preview-04-17",
|
||||
messages=[{"role": "user", "content": "What is the capital of France?"}],
|
||||
reasoning_effort="low",
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
1. Setup config.yaml
|
||||
|
||||
```yaml
|
||||
- model_name: gemini-2.5-flash
|
||||
litellm_params:
|
||||
model: gemini/gemini-2.5-flash-preview-04-17
|
||||
api_key: os.environ/GEMINI_API_KEY
|
||||
```
|
||||
|
||||
2. Start proxy
|
||||
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
|
||||
-d '{
|
||||
"model": "gemini-2.5-flash",
|
||||
"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"reasoning_effort": "low"
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
**Expected Response**
|
||||
|
||||
```python
|
||||
ModelResponse(
|
||||
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
|
||||
created=1740470510,
|
||||
model='claude-3-7-sonnet-20250219',
|
||||
object='chat.completion',
|
||||
system_fingerprint=None,
|
||||
choices=[
|
||||
Choices(
|
||||
finish_reason='stop',
|
||||
index=0,
|
||||
message=Message(
|
||||
content="The capital of France is Paris.",
|
||||
role='assistant',
|
||||
tool_calls=None,
|
||||
function_call=None,
|
||||
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
|
||||
),
|
||||
)
|
||||
],
|
||||
usage=Usage(
|
||||
completion_tokens=68,
|
||||
prompt_tokens=42,
|
||||
total_tokens=110,
|
||||
completion_tokens_details=None,
|
||||
prompt_tokens_details=PromptTokensDetailsWrapper(
|
||||
audio_tokens=None,
|
||||
cached_tokens=0,
|
||||
text_tokens=None,
|
||||
image_tokens=None
|
||||
),
|
||||
cache_creation_input_tokens=0,
|
||||
cache_read_input_tokens=0
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
### Pass `thinking` to Gemini models
|
||||
|
||||
You can also pass the `thinking` parameter to Gemini models.
|
||||
|
||||
This is translated to Gemini's [`thinkingConfig` parameter](https://ai.google.dev/gemini-api/docs/thinking#set-budget).
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
response = litellm.completion(
|
||||
model="gemini/gemini-2.5-flash-preview-04-17",
|
||||
messages=[{"role": "user", "content": "What is the capital of France?"}],
|
||||
thinking={"type": "enabled", "budget_tokens": 1024},
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer $LITELLM_KEY" \
|
||||
-d '{
|
||||
"model": "gemini/gemini-2.5-flash-preview-04-17",
|
||||
"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"thinking": {"type": "enabled", "budget_tokens": 1024}
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
|
||||
|
||||
[**See Updated List**](https://github.com/BerriAI/litellm/blob/1c747f3ad372399c5b95cc5696b06a5fbe53186b/litellm/llms/vertex_httpx.py#L122)
|
||||
|
||||
## Passing Gemini Specific Params
|
||||
### Response schema
|
||||
|
|
|
@ -163,6 +163,12 @@ os.environ["OPENAI_API_BASE"] = "openaiai-api-base" # OPTIONAL
|
|||
|
||||
| Model Name | Function Call |
|
||||
|-----------------------|-----------------------------------------------------------------|
|
||||
| gpt-4.1 | `response = completion(model="gpt-4.1", messages=messages)` |
|
||||
| gpt-4.1-mini | `response = completion(model="gpt-4.1-mini", messages=messages)` |
|
||||
| gpt-4.1-nano | `response = completion(model="gpt-4.1-nano", messages=messages)` |
|
||||
| o4-mini | `response = completion(model="o4-mini", messages=messages)` |
|
||||
| o3-mini | `response = completion(model="o3-mini", messages=messages)` |
|
||||
| o3 | `response = completion(model="o3", messages=messages)` |
|
||||
| o1-mini | `response = completion(model="o1-mini", messages=messages)` |
|
||||
| o1-preview | `response = completion(model="o1-preview", messages=messages)` |
|
||||
| gpt-4o-mini | `response = completion(model="gpt-4o-mini", messages=messages)` |
|
||||
|
|
|
@ -542,6 +542,154 @@ print(resp)
|
|||
```
|
||||
|
||||
|
||||
### **Thinking / `reasoning_content`**
|
||||
|
||||
LiteLLM translates OpenAI's `reasoning_effort` to Gemini's `thinking` parameter. [Code](https://github.com/BerriAI/litellm/blob/620664921902d7a9bfb29897a7b27c1a7ef4ddfb/litellm/llms/vertex_ai/gemini/vertex_and_google_ai_studio_gemini.py#L362)
|
||||
|
||||
**Mapping**
|
||||
|
||||
| reasoning_effort | thinking |
|
||||
| ---------------- | -------- |
|
||||
| "low" | "budget_tokens": 1024 |
|
||||
| "medium" | "budget_tokens": 2048 |
|
||||
| "high" | "budget_tokens": 4096 |
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
# !gcloud auth application-default login - run this to add vertex credentials to your env
|
||||
|
||||
resp = completion(
|
||||
model="vertex_ai/gemini-2.5-flash-preview-04-17",
|
||||
messages=[{"role": "user", "content": "What is the capital of France?"}],
|
||||
reasoning_effort="low",
|
||||
vertex_project="project-id",
|
||||
vertex_location="us-central1"
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
1. Setup config.yaml
|
||||
|
||||
```yaml
|
||||
- model_name: gemini-2.5-flash
|
||||
litellm_params:
|
||||
model: vertex_ai/gemini-2.5-flash-preview-04-17
|
||||
vertex_credentials: {"project_id": "project-id", "location": "us-central1", "project_key": "project-key"}
|
||||
vertex_project: "project-id"
|
||||
vertex_location: "us-central1"
|
||||
```
|
||||
|
||||
2. Start proxy
|
||||
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
|
||||
-d '{
|
||||
"model": "gemini-2.5-flash",
|
||||
"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"reasoning_effort": "low"
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
**Expected Response**
|
||||
|
||||
```python
|
||||
ModelResponse(
|
||||
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
|
||||
created=1740470510,
|
||||
model='claude-3-7-sonnet-20250219',
|
||||
object='chat.completion',
|
||||
system_fingerprint=None,
|
||||
choices=[
|
||||
Choices(
|
||||
finish_reason='stop',
|
||||
index=0,
|
||||
message=Message(
|
||||
content="The capital of France is Paris.",
|
||||
role='assistant',
|
||||
tool_calls=None,
|
||||
function_call=None,
|
||||
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
|
||||
),
|
||||
)
|
||||
],
|
||||
usage=Usage(
|
||||
completion_tokens=68,
|
||||
prompt_tokens=42,
|
||||
total_tokens=110,
|
||||
completion_tokens_details=None,
|
||||
prompt_tokens_details=PromptTokensDetailsWrapper(
|
||||
audio_tokens=None,
|
||||
cached_tokens=0,
|
||||
text_tokens=None,
|
||||
image_tokens=None
|
||||
),
|
||||
cache_creation_input_tokens=0,
|
||||
cache_read_input_tokens=0
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
#### Pass `thinking` to Gemini models
|
||||
|
||||
You can also pass the `thinking` parameter to Gemini models.
|
||||
|
||||
This is translated to Gemini's [`thinkingConfig` parameter](https://ai.google.dev/gemini-api/docs/thinking#set-budget).
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
# !gcloud auth application-default login - run this to add vertex credentials to your env
|
||||
|
||||
response = litellm.completion(
|
||||
model="vertex_ai/gemini-2.5-flash-preview-04-17",
|
||||
messages=[{"role": "user", "content": "What is the capital of France?"}],
|
||||
thinking={"type": "enabled", "budget_tokens": 1024},
|
||||
vertex_project="project-id",
|
||||
vertex_location="us-central1"
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer $LITELLM_KEY" \
|
||||
-d '{
|
||||
"model": "vertex_ai/gemini-2.5-flash-preview-04-17",
|
||||
"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"thinking": {"type": "enabled", "budget_tokens": 1024}
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
### **Context Caching**
|
||||
|
||||
Use Vertex AI context caching is supported by calling provider api directly. (Unified Endpoint support comin soon.).
|
||||
|
|
|
@ -161,6 +161,120 @@ curl -L -X POST 'http://0.0.0.0:4000/embeddings' \
|
|||
|
||||
Example Implementation from VLLM [here](https://github.com/vllm-project/vllm/pull/10020)
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="files_message" label="(Unified) Files Message">
|
||||
|
||||
Use this to send a video url to VLLM + Gemini in the same format, using OpenAI's `files` message type.
|
||||
|
||||
There are two ways to send a video url to VLLM:
|
||||
|
||||
1. Pass the video url directly
|
||||
|
||||
```
|
||||
{"type": "file", "file": {"file_id": video_url}},
|
||||
```
|
||||
|
||||
2. Pass the video data as base64
|
||||
|
||||
```
|
||||
{"type": "file", "file": {"file_data": f"data:video/mp4;base64,{video_data_base64}"}}
|
||||
```
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Summarize the following video"
|
||||
},
|
||||
{
|
||||
"type": "file",
|
||||
"file": {
|
||||
"file_id": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
# call vllm
|
||||
os.environ["HOSTED_VLLM_API_BASE"] = "https://hosted-vllm-api.co"
|
||||
os.environ["HOSTED_VLLM_API_KEY"] = "" # [optional], if your VLLM server requires an API key
|
||||
response = completion(
|
||||
model="hosted_vllm/qwen", # pass the vllm model name
|
||||
messages=messages,
|
||||
)
|
||||
|
||||
# call gemini
|
||||
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"
|
||||
response = completion(
|
||||
model="gemini/gemini-1.5-flash", # pass the gemini model name
|
||||
messages=messages,
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
1. Setup config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: my-model
|
||||
litellm_params:
|
||||
model: hosted_vllm/qwen # add hosted_vllm/ prefix to route as OpenAI provider
|
||||
api_base: https://hosted-vllm-api.co # add api base for OpenAI compatible provider
|
||||
- model_name: my-gemini-model
|
||||
litellm_params:
|
||||
model: gemini/gemini-1.5-flash # add gemini/ prefix to route as Google AI Studio provider
|
||||
api_key: os.environ/GEMINI_API_KEY
|
||||
```
|
||||
|
||||
2. Start the proxy
|
||||
|
||||
```bash
|
||||
$ litellm --config /path/to/config.yaml
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl -X POST http://0.0.0.0:4000/chat/completions \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "my-model",
|
||||
"messages": [
|
||||
{"role": "user", "content":
|
||||
[
|
||||
{"type": "text", "text": "Summarize the following video"},
|
||||
{"type": "file", "file": {"file_id": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"}}
|
||||
]
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="video_url" label="(VLLM-specific) Video Message">
|
||||
|
||||
Use this to send a video url to VLLM in it's native message format (`video_url`).
|
||||
|
||||
There are two ways to send a video url to VLLM:
|
||||
|
||||
1. Pass the video url directly
|
||||
|
@ -249,6 +363,10 @@ curl -X POST http://0.0.0.0:4000/chat/completions \
|
|||
</Tabs>
|
||||
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
## (Deprecated) for `vllm pip package`
|
||||
### Using - `litellm.completion`
|
||||
|
||||
|
|
|
@ -334,7 +334,6 @@ router_settings:
|
|||
| AZURE_STORAGE_TENANT_ID | The Application Tenant ID to use for Authentication to Azure Blob Storage logging
|
||||
| AZURE_STORAGE_CLIENT_ID | The Application Client ID to use for Authentication to Azure Blob Storage logging
|
||||
| AZURE_STORAGE_CLIENT_SECRET | The Application Client Secret to use for Authentication to Azure Blob Storage logging
|
||||
|
||||
| BERRISPEND_ACCOUNT_ID | Account ID for BerriSpend service
|
||||
| BRAINTRUST_API_KEY | API key for Braintrust integration
|
||||
| CIRCLE_OIDC_TOKEN | OpenID Connect token for CircleCI
|
||||
|
|
|
@ -862,7 +862,7 @@ Add the following to your env
|
|||
|
||||
```shell
|
||||
OTEL_EXPORTER="otlp_http"
|
||||
OTEL_ENDPOINT="http:/0.0.0.0:4317"
|
||||
OTEL_ENDPOINT="http://0.0.0.0:4317"
|
||||
OTEL_HEADERS="x-honeycomb-team=<your-api-key>" # Optional
|
||||
```
|
||||
|
||||
|
@ -2501,4 +2501,4 @@ litellm_settings:
|
|||
:::info
|
||||
`thresholds` are not required by default, but you can tune the values to your needs.
|
||||
Default values is `4` for all categories
|
||||
::: -->
|
||||
::: -->
|
||||
|
|
108
docs/my-website/docs/proxy/model_discovery.md
Normal file
|
@ -0,0 +1,108 @@
|
|||
# Model Discovery
|
||||
|
||||
Use this to give users an accurate list of models available behind provider endpoint, when calling `/v1/models` for wildcard models.
|
||||
|
||||
## Supported Models
|
||||
|
||||
- Fireworks AI
|
||||
- OpenAI
|
||||
- Gemini
|
||||
- LiteLLM Proxy
|
||||
- Topaz
|
||||
- Anthropic
|
||||
- XAI
|
||||
- VLLM
|
||||
- Vertex AI
|
||||
|
||||
### Usage
|
||||
|
||||
**1. Setup config.yaml**
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: xai/*
|
||||
litellm_params:
|
||||
model: xai/*
|
||||
api_key: os.environ/XAI_API_KEY
|
||||
|
||||
litellm_settings:
|
||||
check_provider_endpoint: true # 👈 Enable checking provider endpoint for wildcard models
|
||||
```
|
||||
|
||||
**2. Start proxy**
|
||||
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
**3. Call `/v1/models`**
|
||||
|
||||
```bash
|
||||
curl -X GET "http://localhost:4000/v1/models" -H "Authorization: Bearer $LITELLM_KEY"
|
||||
```
|
||||
|
||||
Expected response
|
||||
|
||||
```json
|
||||
{
|
||||
"data": [
|
||||
{
|
||||
"id": "xai/grok-2-1212",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-2-vision-1212",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-3-beta",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-3-fast-beta",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-3-mini-beta",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-3-mini-fast-beta",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-beta",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-vision-beta",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-2-image-1212",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
}
|
||||
],
|
||||
"object": "list"
|
||||
}
|
||||
```
|
|
@ -16,6 +16,8 @@ Supported Providers:
|
|||
- Vertex AI (Anthropic) (`vertexai/`)
|
||||
- OpenRouter (`openrouter/`)
|
||||
- XAI (`xai/`)
|
||||
- Google AI Studio (`google/`)
|
||||
- Vertex AI (`vertex_ai/`)
|
||||
|
||||
LiteLLM will standardize the `reasoning_content` in the response and `thinking_blocks` in the assistant message.
|
||||
|
||||
|
@ -23,7 +25,7 @@ LiteLLM will standardize the `reasoning_content` in the response and `thinking_b
|
|||
"message": {
|
||||
...
|
||||
"reasoning_content": "The capital of France is Paris.",
|
||||
"thinking_blocks": [
|
||||
"thinking_blocks": [ # only returned for Anthropic models
|
||||
{
|
||||
"type": "thinking",
|
||||
"thinking": "The capital of France is Paris.",
|
||||
|
|
|
@ -14,22 +14,22 @@ LiteLLM provides a BETA endpoint in the spec of [OpenAI's `/responses` API](http
|
|||
| Fallbacks | ✅ | Works between supported models |
|
||||
| Loadbalancing | ✅ | Works between supported models |
|
||||
| Supported LiteLLM Versions | 1.63.8+ | |
|
||||
| Supported LLM providers | `openai` | |
|
||||
| Supported LLM providers | **All LiteLLM supported providers** | `openai`, `anthropic`, `bedrock`, `vertex_ai`, `gemini`, `azure`, `azure_ai` etc. |
|
||||
|
||||
## Usage
|
||||
|
||||
## Create a model response
|
||||
### LiteLLM Python SDK
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="litellm-sdk" label="LiteLLM SDK">
|
||||
<TabItem value="openai" label="OpenAI">
|
||||
|
||||
#### Non-streaming
|
||||
```python
|
||||
```python showLineNumbers title="OpenAI Non-streaming Response"
|
||||
import litellm
|
||||
|
||||
# Non-streaming response
|
||||
response = litellm.responses(
|
||||
model="o1-pro",
|
||||
model="openai/o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
max_output_tokens=100
|
||||
)
|
||||
|
@ -38,12 +38,12 @@ print(response)
|
|||
```
|
||||
|
||||
#### Streaming
|
||||
```python
|
||||
```python showLineNumbers title="OpenAI Streaming Response"
|
||||
import litellm
|
||||
|
||||
# Streaming response
|
||||
response = litellm.responses(
|
||||
model="o1-pro",
|
||||
model="openai/o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
@ -53,58 +53,169 @@ for event in response:
|
|||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="OpenAI SDK with LiteLLM Proxy">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: o1-pro
|
||||
litellm_params:
|
||||
model: openai/o1-pro
|
||||
api_key: os.environ/OPENAI_API_KEY
|
||||
```
|
||||
|
||||
Start your LiteLLM proxy:
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
Then use the OpenAI SDK pointed to your proxy:
|
||||
<TabItem value="anthropic" label="Anthropic">
|
||||
|
||||
#### Non-streaming
|
||||
```python
|
||||
from openai import OpenAI
|
||||
```python showLineNumbers title="Anthropic Non-streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
# Set API key
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-api-key"
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
response = litellm.responses(
|
||||
model="anthropic/claude-3-5-sonnet-20240620",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
max_output_tokens=100
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python
|
||||
from openai import OpenAI
|
||||
```python showLineNumbers title="Anthropic Streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
# Set API key
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-api-key"
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="o1-pro",
|
||||
response = litellm.responses(
|
||||
model="anthropic/claude-3-5-sonnet-20240620",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="vertex" label="Vertex AI">
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="Vertex AI Non-streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Set credentials - Vertex AI uses application default credentials
|
||||
# Run 'gcloud auth application-default login' to authenticate
|
||||
os.environ["VERTEXAI_PROJECT"] = "your-gcp-project-id"
|
||||
os.environ["VERTEXAI_LOCATION"] = "us-central1"
|
||||
|
||||
# Non-streaming response
|
||||
response = litellm.responses(
|
||||
model="vertex_ai/gemini-1.5-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
max_output_tokens=100
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="Vertex AI Streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Set credentials - Vertex AI uses application default credentials
|
||||
# Run 'gcloud auth application-default login' to authenticate
|
||||
os.environ["VERTEXAI_PROJECT"] = "your-gcp-project-id"
|
||||
os.environ["VERTEXAI_LOCATION"] = "us-central1"
|
||||
|
||||
# Streaming response
|
||||
response = litellm.responses(
|
||||
model="vertex_ai/gemini-1.5-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="bedrock" label="AWS Bedrock">
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="AWS Bedrock Non-streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Set AWS credentials
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = "your-access-key-id"
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = "your-secret-access-key"
|
||||
os.environ["AWS_REGION_NAME"] = "us-west-2" # or your AWS region
|
||||
|
||||
# Non-streaming response
|
||||
response = litellm.responses(
|
||||
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
max_output_tokens=100
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="AWS Bedrock Streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Set AWS credentials
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = "your-access-key-id"
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = "your-secret-access-key"
|
||||
os.environ["AWS_REGION_NAME"] = "us-west-2" # or your AWS region
|
||||
|
||||
# Streaming response
|
||||
response = litellm.responses(
|
||||
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="gemini" label="Google AI Studio">
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="Google AI Studio Non-streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Set API key for Google AI Studio
|
||||
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"
|
||||
|
||||
# Non-streaming response
|
||||
response = litellm.responses(
|
||||
model="gemini/gemini-1.5-flash",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
max_output_tokens=100
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="Google AI Studio Streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Set API key for Google AI Studio
|
||||
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"
|
||||
|
||||
# Streaming response
|
||||
response = litellm.responses(
|
||||
model="gemini/gemini-1.5-flash",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
@ -115,3 +226,297 @@ for event in response:
|
|||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
### LiteLLM Proxy with OpenAI SDK
|
||||
|
||||
First, set up and start your LiteLLM proxy server.
|
||||
|
||||
```bash title="Start LiteLLM Proxy Server"
|
||||
litellm --config /path/to/config.yaml
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="openai" label="OpenAI">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml showLineNumbers title="OpenAI Proxy Configuration"
|
||||
model_list:
|
||||
- model_name: openai/o1-pro
|
||||
litellm_params:
|
||||
model: openai/o1-pro
|
||||
api_key: os.environ/OPENAI_API_KEY
|
||||
```
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="OpenAI Proxy Non-streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="openai/o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="OpenAI Proxy Streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="openai/o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="anthropic" label="Anthropic">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml showLineNumbers title="Anthropic Proxy Configuration"
|
||||
model_list:
|
||||
- model_name: anthropic/claude-3-5-sonnet-20240620
|
||||
litellm_params:
|
||||
model: anthropic/claude-3-5-sonnet-20240620
|
||||
api_key: os.environ/ANTHROPIC_API_KEY
|
||||
```
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="Anthropic Proxy Non-streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="anthropic/claude-3-5-sonnet-20240620",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="Anthropic Proxy Streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="anthropic/claude-3-5-sonnet-20240620",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="vertex" label="Vertex AI">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml showLineNumbers title="Vertex AI Proxy Configuration"
|
||||
model_list:
|
||||
- model_name: vertex_ai/gemini-1.5-pro
|
||||
litellm_params:
|
||||
model: vertex_ai/gemini-1.5-pro
|
||||
vertex_project: your-gcp-project-id
|
||||
vertex_location: us-central1
|
||||
```
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="Vertex AI Proxy Non-streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="vertex_ai/gemini-1.5-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="Vertex AI Proxy Streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="vertex_ai/gemini-1.5-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="bedrock" label="AWS Bedrock">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml showLineNumbers title="AWS Bedrock Proxy Configuration"
|
||||
model_list:
|
||||
- model_name: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
|
||||
litellm_params:
|
||||
model: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
|
||||
aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
|
||||
aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
|
||||
aws_region_name: us-west-2
|
||||
```
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="AWS Bedrock Proxy Non-streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="AWS Bedrock Proxy Streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="gemini" label="Google AI Studio">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml showLineNumbers title="Google AI Studio Proxy Configuration"
|
||||
model_list:
|
||||
- model_name: gemini/gemini-1.5-flash
|
||||
litellm_params:
|
||||
model: gemini/gemini-1.5-flash
|
||||
api_key: os.environ/GEMINI_API_KEY
|
||||
```
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="Google AI Studio Proxy Non-streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="gemini/gemini-1.5-flash",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="Google AI Studio Proxy Streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="gemini/gemini-1.5-flash",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
## Supported Responses API Parameters
|
||||
|
||||
| Provider | Supported Parameters |
|
||||
|----------|---------------------|
|
||||
| `openai` | [All Responses API parameters are supported](https://github.com/BerriAI/litellm/blob/7c3df984da8e4dff9201e4c5353fdc7a2b441831/litellm/llms/openai/responses/transformation.py#L23) |
|
||||
| `azure` | [All Responses API parameters are supported](https://github.com/BerriAI/litellm/blob/7c3df984da8e4dff9201e4c5353fdc7a2b441831/litellm/llms/openai/responses/transformation.py#L23) |
|
||||
| `anthropic` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
|
||||
| `bedrock` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
|
||||
| `gemini` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
|
||||
| `vertex_ai` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
|
||||
| `azure_ai` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
|
||||
| All other llm api providers | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
|
||||
|
||||
|
|
146
docs/my-website/docs/tutorials/openai_codex.md
Normal file
|
@ -0,0 +1,146 @@
|
|||
import Image from '@theme/IdealImage';
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# Using LiteLLM with OpenAI Codex
|
||||
|
||||
This guide walks you through connecting OpenAI Codex to LiteLLM. Using LiteLLM with Codex allows teams to:
|
||||
- Access 100+ LLMs through the Codex interface
|
||||
- Use powerful models like Gemini through a familiar interface
|
||||
- Track spend and usage with LiteLLM's built-in analytics
|
||||
- Control model access with virtual keys
|
||||
|
||||
<Image img={require('../../img/litellm_codex.gif')} />
|
||||
|
||||
## Quickstart
|
||||
|
||||
:::info
|
||||
|
||||
Requires LiteLLM v1.66.3.dev5 and higher
|
||||
|
||||
:::
|
||||
|
||||
|
||||
Make sure to set up LiteLLM with the [LiteLLM Getting Started Guide](../proxy/docker_quick_start.md).
|
||||
|
||||
## 1. Install OpenAI Codex
|
||||
|
||||
Install the OpenAI Codex CLI tool globally using npm:
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="npm" label="npm">
|
||||
|
||||
```bash showLineNumbers
|
||||
npm i -g @openai/codex
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="yarn" label="yarn">
|
||||
|
||||
```bash showLineNumbers
|
||||
yarn global add @openai/codex
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
## 2. Start LiteLLM Proxy
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="docker" label="Docker">
|
||||
|
||||
```bash showLineNumbers
|
||||
docker run \
|
||||
-v $(pwd)/litellm_config.yaml:/app/config.yaml \
|
||||
-p 4000:4000 \
|
||||
ghcr.io/berriai/litellm:main-latest \
|
||||
--config /app/config.yaml
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="pip" label="LiteLLM CLI">
|
||||
|
||||
```bash showLineNumbers
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
LiteLLM should now be running on [http://localhost:4000](http://localhost:4000)
|
||||
|
||||
## 3. Configure LiteLLM for Model Routing
|
||||
|
||||
Ensure your LiteLLM Proxy is properly configured to route to your desired models. Create a `litellm_config.yaml` file with the following content:
|
||||
|
||||
```yaml showLineNumbers
|
||||
model_list:
|
||||
- model_name: o3-mini
|
||||
litellm_params:
|
||||
model: openai/o3-mini
|
||||
api_key: os.environ/OPENAI_API_KEY
|
||||
- model_name: claude-3-7-sonnet-latest
|
||||
litellm_params:
|
||||
model: anthropic/claude-3-7-sonnet-latest
|
||||
api_key: os.environ/ANTHROPIC_API_KEY
|
||||
- model_name: gemini-2.0-flash
|
||||
litellm_params:
|
||||
model: gemini/gemini-2.0-flash
|
||||
api_key: os.environ/GEMINI_API_KEY
|
||||
|
||||
litellm_settings:
|
||||
drop_params: true
|
||||
```
|
||||
|
||||
This configuration enables routing to specific OpenAI, Anthropic, and Gemini models with explicit names.
|
||||
|
||||
## 4. Configure Codex to Use LiteLLM Proxy
|
||||
|
||||
Set the required environment variables to point Codex to your LiteLLM Proxy:
|
||||
|
||||
```bash
|
||||
# Point to your LiteLLM Proxy server
|
||||
export OPENAI_BASE_URL=http://0.0.0.0:4000
|
||||
|
||||
# Use your LiteLLM API key (if you've set up authentication)
|
||||
export OPENAI_API_KEY="sk-1234"
|
||||
```
|
||||
|
||||
## 5. Run Codex with Gemini
|
||||
|
||||
With everything configured, you can now run Codex with Gemini:
|
||||
|
||||
```bash showLineNumbers
|
||||
codex --model gemini-2.0-flash --full-auto
|
||||
```
|
||||
|
||||
<Image img={require('../../img/litellm_codex.gif')} />
|
||||
|
||||
The `--full-auto` flag allows Codex to automatically generate code without additional prompting.
|
||||
|
||||
## 6. Advanced Options
|
||||
|
||||
### Using Different Models
|
||||
|
||||
You can use any model configured in your LiteLLM proxy:
|
||||
|
||||
```bash
|
||||
# Use Claude models
|
||||
codex --model claude-3-7-sonnet-latest
|
||||
|
||||
# Use Google AI Studio Gemini models
|
||||
codex --model gemini/gemini-2.0-flash
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
- If you encounter connection issues, ensure your LiteLLM Proxy is running and accessible at the specified URL
|
||||
- Verify your LiteLLM API key is valid if you're using authentication
|
||||
- Check that your model routing configuration is correct
|
||||
- For model-specific errors, ensure the model is properly configured in your LiteLLM setup
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- [LiteLLM Docker Quick Start Guide](../proxy/docker_quick_start.md)
|
||||
- [OpenAI Codex GitHub Repository](https://github.com/openai/codex)
|
||||
- [LiteLLM Virtual Keys and Authentication](../proxy/virtual_keys.md)
|
128
docs/my-website/docs/tutorials/prompt_caching.md
Normal file
|
@ -0,0 +1,128 @@
|
|||
import Image from '@theme/IdealImage';
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# Auto-Inject Prompt Caching Checkpoints
|
||||
|
||||
Reduce costs by up to 90% by using LiteLLM to auto-inject prompt caching checkpoints.
|
||||
|
||||
<Image img={require('../../img/auto_prompt_caching.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
|
||||
## How it works
|
||||
|
||||
LiteLLM can automatically inject prompt caching checkpoints into your requests to LLM providers. This allows:
|
||||
|
||||
- **Cost Reduction**: Long, static parts of your prompts can be cached to avoid repeated processing
|
||||
- **No need to modify your application code**: You can configure the auto-caching behavior in the LiteLLM UI or in the `litellm config.yaml` file.
|
||||
|
||||
## Configuration
|
||||
|
||||
You need to specify `cache_control_injection_points` in your model configuration. This tells LiteLLM:
|
||||
1. Where to add the caching directive (`location`)
|
||||
2. Which message to target (`role`)
|
||||
|
||||
LiteLLM will then automatically add a `cache_control` directive to the specified messages in your requests:
|
||||
|
||||
```json
|
||||
"cache_control": {
|
||||
"type": "ephemeral"
|
||||
}
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
In this example, we'll configure caching for system messages by adding the directive to all messages with `role: system`.
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="litellm config.yaml" label="litellm config.yaml">
|
||||
|
||||
```yaml showLineNumbers title="litellm config.yaml"
|
||||
model_list:
|
||||
- model_name: anthropic-auto-inject-cache-system-message
|
||||
litellm_params:
|
||||
model: anthropic/claude-3-5-sonnet-20240620
|
||||
api_key: os.environ/ANTHROPIC_API_KEY
|
||||
cache_control_injection_points:
|
||||
- location: message
|
||||
role: system
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="UI" label="LiteLLM UI">
|
||||
|
||||
On the LiteLLM UI, you can specify the `cache_control_injection_points` in the `Advanced Settings` tab when adding a model.
|
||||
<Image img={require('../../img/ui_auto_prompt_caching.png')}/>
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
## Detailed Example
|
||||
|
||||
### 1. Original Request to LiteLLM
|
||||
|
||||
In this example, we have a very long, static system message and a varying user message. It's efficient to cache the system message since it rarely changes.
|
||||
|
||||
```json
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "You are a helpful assistant. This is a set of very long instructions that you will follow. Here is a legal document that you will use to answer the user's question."
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What is the main topic of this legal document?"
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### 2. LiteLLM's Modified Request
|
||||
|
||||
LiteLLM auto-injects the caching directive into the system message based on our configuration:
|
||||
|
||||
```json
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "You are a helpful assistant. This is a set of very long instructions that you will follow. Here is a legal document that you will use to answer the user's question.",
|
||||
"cache_control": {"type": "ephemeral"}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What is the main topic of this legal document?"
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
When the model provider processes this request, it will recognize the caching directive and only process the system message once, caching it for subsequent requests.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
74
docs/my-website/docs/tutorials/scim_litellm.md
Normal file
|
@ -0,0 +1,74 @@
|
|||
|
||||
import Image from '@theme/IdealImage';
|
||||
|
||||
# SCIM with LiteLLM
|
||||
|
||||
Enables identity providers (Okta, Azure AD, OneLogin, etc.) to automate user and team (group) provisioning, updates, and deprovisioning on LiteLLM.
|
||||
|
||||
|
||||
This tutorial will walk you through the steps to connect your IDP to LiteLLM SCIM Endpoints.
|
||||
|
||||
### Supported SSO Providers for SCIM
|
||||
Below is a list of supported SSO providers for connecting to LiteLLM SCIM Endpoints.
|
||||
- Microsoft Entra ID (Azure AD)
|
||||
- Okta
|
||||
- Google Workspace
|
||||
- OneLogin
|
||||
- Keycloak
|
||||
- Auth0
|
||||
|
||||
|
||||
## 1. Get your SCIM Tenant URL and Bearer Token
|
||||
|
||||
On LiteLLM, navigate to the Settings > Admin Settings > SCIM. On this page you will create a SCIM Token, this allows your IDP to authenticate to litellm `/scim` endpoints.
|
||||
|
||||
<Image img={require('../../img/scim_2.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
## 2. Connect your IDP to LiteLLM SCIM Endpoints
|
||||
|
||||
On your IDP provider, navigate to your SSO application and select `Provisioning` > `New provisioning configuration`.
|
||||
|
||||
On this page, paste in your litellm scim tenant url and bearer token.
|
||||
|
||||
Once this is pasted in, click on `Test Connection` to ensure your IDP can authenticate to the LiteLLM SCIM endpoints.
|
||||
|
||||
<Image img={require('../../img/scim_4.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
|
||||
## 3. Test SCIM Connection
|
||||
|
||||
### 3.1 Assign the group to your LiteLLM Enterprise App
|
||||
|
||||
On your IDP Portal, navigate to `Enterprise Applications` > Select your litellm app
|
||||
|
||||
<Image img={require('../../img/msft_enterprise_app.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
<br />
|
||||
<br />
|
||||
|
||||
Once you've selected your litellm app, click on `Users and Groups` > `Add user/group`
|
||||
|
||||
<Image img={require('../../img/msft_enterprise_assign_group.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
<br />
|
||||
|
||||
Now select the group you created in step 1.1. And add it to the LiteLLM Enterprise App. At this point we have added `Production LLM Evals Group` to the LiteLLM Enterprise App. The next step is having LiteLLM automatically create the `Production LLM Evals Group` on the LiteLLM DB when a new user signs in.
|
||||
|
||||
<Image img={require('../../img/msft_enterprise_select_group.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
|
||||
### 3.2 Sign in to LiteLLM UI via SSO
|
||||
|
||||
Sign into the LiteLLM UI via SSO. You should be redirected to the Entra ID SSO page. This SSO sign in flow will trigger LiteLLM to fetch the latest Groups and Members from Azure Entra ID.
|
||||
|
||||
<Image img={require('../../img/msft_sso_sign_in.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
### 3.3 Check the new team on LiteLLM UI
|
||||
|
||||
On the LiteLLM UI, Navigate to `Teams`, You should see the new team `Production LLM Evals Group` auto-created on LiteLLM.
|
||||
|
||||
<Image img={require('../../img/msft_auto_team.png')} style={{ width: '900px', height: 'auto' }} />
|
||||
|
||||
|
||||
|
||||
|
BIN
docs/my-website/img/auto_prompt_caching.png
Normal file
After Width: | Height: | Size: 1.8 MiB |
BIN
docs/my-website/img/litellm_codex.gif
Normal file
After Width: | Height: | Size: 12 MiB |
BIN
docs/my-website/img/release_notes/new_tag_usage.png
Normal file
After Width: | Height: | Size: 207 KiB |
BIN
docs/my-website/img/release_notes/new_team_usage.png
Normal file
After Width: | Height: | Size: 268 KiB |
BIN
docs/my-website/img/release_notes/new_team_usage_highlight.jpg
Normal file
After Width: | Height: | Size: 999 KiB |
BIN
docs/my-website/img/release_notes/unified_responses_api_rn.png
Normal file
After Width: | Height: | Size: 244 KiB |
BIN
docs/my-website/img/scim_0.png
Normal file
After Width: | Height: | Size: 380 KiB |
BIN
docs/my-website/img/scim_1.png
Normal file
After Width: | Height: | Size: 231 KiB |
BIN
docs/my-website/img/scim_2.png
Normal file
After Width: | Height: | Size: 261 KiB |
BIN
docs/my-website/img/scim_3.png
Normal file
After Width: | Height: | Size: 413 KiB |
BIN
docs/my-website/img/scim_4.png
Normal file
After Width: | Height: | Size: 274 KiB |
BIN
docs/my-website/img/scim_integration.png
Normal file
After Width: | Height: | Size: 31 KiB |
BIN
docs/my-website/img/ui_auto_prompt_caching.png
Normal file
After Width: | Height: | Size: 103 KiB |
7
docs/my-website/package-lock.json
generated
|
@ -12455,9 +12455,10 @@
|
|||
}
|
||||
},
|
||||
"node_modules/http-proxy-middleware": {
|
||||
"version": "2.0.7",
|
||||
"resolved": "https://registry.npmjs.org/http-proxy-middleware/-/http-proxy-middleware-2.0.7.tgz",
|
||||
"integrity": "sha512-fgVY8AV7qU7z/MmXJ/rxwbrtQH4jBQ9m7kp3llF0liB7glmFeVZFBepQb32T3y8n8k2+AEYuMPCpinYW+/CuRA==",
|
||||
"version": "2.0.9",
|
||||
"resolved": "https://registry.npmjs.org/http-proxy-middleware/-/http-proxy-middleware-2.0.9.tgz",
|
||||
"integrity": "sha512-c1IyJYLYppU574+YI7R4QyX2ystMtVXZwIdzazUIPIJsHuWNd+mho2j+bKoHftndicGj9yh+xjd+l0yj7VeT1Q==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"@types/http-proxy": "^1.17.8",
|
||||
"http-proxy": "^1.18.1",
|
||||
|
|
|
@ -38,7 +38,7 @@ hide_table_of_contents: false
|
|||
2. OpenAI Moderations - `omni-moderation-latest` support. [Start Here](https://docs.litellm.ai/docs/moderation)
|
||||
3. Azure O1 - fake streaming support. This ensures if a `stream=true` is passed, the response is streamed. [Start Here](https://docs.litellm.ai/docs/providers/azure)
|
||||
4. Anthropic - non-whitespace char stop sequence handling - [PR](https://github.com/BerriAI/litellm/pull/7484)
|
||||
5. Azure OpenAI - support Entra id username + password based auth. [Start Here](https://docs.litellm.ai/docs/providers/azure#entrata-id---use-tenant_id-client_id-client_secret)
|
||||
5. Azure OpenAI - support Entra ID username + password based auth. [Start Here](https://docs.litellm.ai/docs/providers/azure#entra-id---use-tenant_id-client_id-client_secret)
|
||||
6. LM Studio - embedding route support. [Start Here](https://docs.litellm.ai/docs/providers/lm-studio)
|
||||
7. WatsonX - ZenAPIKeyAuth support. [Start Here](https://docs.litellm.ai/docs/providers/watsonx)
|
||||
|
||||
|
|
153
docs/my-website/release_notes/v1.67.0-stable/index.md
Normal file
|
@ -0,0 +1,153 @@
|
|||
---
|
||||
title: v1.67.0-stable - SCIM Integration
|
||||
slug: v1.67.0-stable
|
||||
date: 2025-04-19T10:00:00
|
||||
authors:
|
||||
- name: Krrish Dholakia
|
||||
title: CEO, LiteLLM
|
||||
url: https://www.linkedin.com/in/krish-d/
|
||||
image_url: https://media.licdn.com/dms/image/v2/D4D03AQGrlsJ3aqpHmQ/profile-displayphoto-shrink_400_400/B4DZSAzgP7HYAg-/0/1737327772964?e=1749686400&v=beta&t=Hkl3U8Ps0VtvNxX0BNNq24b4dtX5wQaPFp6oiKCIHD8
|
||||
- name: Ishaan Jaffer
|
||||
title: CTO, LiteLLM
|
||||
url: https://www.linkedin.com/in/reffajnaahsi/
|
||||
image_url: https://pbs.twimg.com/profile_images/1613813310264340481/lz54oEiB_400x400.jpg
|
||||
|
||||
tags: ["sso", "unified_file_id", "cost_tracking", "security"]
|
||||
hide_table_of_contents: false
|
||||
---
|
||||
import Image from '@theme/IdealImage';
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
## Key Highlights
|
||||
|
||||
- **SCIM Integration**: Enables identity providers (Okta, Azure AD, OneLogin, etc.) to automate user and team (group) provisioning, updates, and deprovisioning
|
||||
- **Team and Tag based usage tracking**: You can now see usage and spend by team and tag at 1M+ spend logs.
|
||||
- **Unified Responses API**: Support for calling Anthropic, Gemini, Groq, etc. via OpenAI's new Responses API.
|
||||
|
||||
Let's dive in.
|
||||
|
||||
## SCIM Integration
|
||||
|
||||
<Image img={require('../../img/scim_integration.png')}/>
|
||||
|
||||
This release adds SCIM support to LiteLLM. This allows your SSO provider (Okta, Azure AD, etc) to automatically create/delete users, teams, and memberships on LiteLLM. This means that when you remove a team on your SSO provider, your SSO provider will automatically delete the corresponding team on LiteLLM.
|
||||
|
||||
[Read more](../../docs/tutorials/scim_litellm)
|
||||
## Team and Tag based usage tracking
|
||||
|
||||
<Image img={require('../../img/release_notes/new_team_usage_highlight.jpg')}/>
|
||||
|
||||
|
||||
This release improves team and tag based usage tracking at 1m+ spend logs, making it easy to monitor your LLM API Spend in production. This covers:
|
||||
|
||||
- View **daily spend** by teams + tags
|
||||
- View **usage / spend by key**, within teams
|
||||
- View **spend by multiple tags**
|
||||
- Allow **internal users** to view spend of teams they're a member of
|
||||
|
||||
[Read more](#management-endpoints--ui)
|
||||
|
||||
## Unified Responses API
|
||||
|
||||
This release allows you to call Azure OpenAI, Anthropic, AWS Bedrock, and Google Vertex AI models via the POST /v1/responses endpoint on LiteLLM. This means you can now use popular tools like [OpenAI Codex](https://docs.litellm.ai/docs/tutorials/openai_codex) with your own models.
|
||||
|
||||
<Image img={require('../../img/release_notes/unified_responses_api_rn.png')}/>
|
||||
|
||||
|
||||
[Read more](https://docs.litellm.ai/docs/response_api)
|
||||
|
||||
|
||||
## New Models / Updated Models
|
||||
|
||||
- **OpenAI**
|
||||
1. gpt-4.1, gpt-4.1-mini, gpt-4.1-nano, o3, o3-mini, o4-mini pricing - [Get Started](../../docs/providers/openai#usage), [PR](https://github.com/BerriAI/litellm/pull/9990)
|
||||
2. o4 - correctly map o4 to openai o_series model
|
||||
- **Azure AI**
|
||||
1. Phi-4 output cost per token fix - [PR](https://github.com/BerriAI/litellm/pull/9880)
|
||||
2. Responses API support [Get Started](../../docs/providers/azure#azure-responses-api),[PR](https://github.com/BerriAI/litellm/pull/10116)
|
||||
- **Anthropic**
|
||||
1. redacted message thinking support - [Get Started](../../docs/providers/anthropic#usage---thinking--reasoning_content),[PR](https://github.com/BerriAI/litellm/pull/10129)
|
||||
- **Cohere**
|
||||
1. `/v2/chat` Passthrough endpoint support w/ cost tracking - [Get Started](../../docs/pass_through/cohere), [PR](https://github.com/BerriAI/litellm/pull/9997)
|
||||
- **Azure**
|
||||
1. Support azure tenant_id/client_id env vars - [Get Started](../../docs/providers/azure#entra-id---use-tenant_id-client_id-client_secret), [PR](https://github.com/BerriAI/litellm/pull/9993)
|
||||
2. Fix response_format check for 2025+ api versions - [PR](https://github.com/BerriAI/litellm/pull/9993)
|
||||
3. Add gpt-4.1, gpt-4.1-mini, gpt-4.1-nano, o3, o3-mini, o4-mini pricing
|
||||
- **VLLM**
|
||||
1. Files - Support 'file' message type for VLLM video url's - [Get Started](../../docs/providers/vllm#send-video-url-to-vllm), [PR](https://github.com/BerriAI/litellm/pull/10129)
|
||||
2. Passthrough - new `/vllm/` passthrough endpoint support [Get Started](../../docs/pass_through/vllm), [PR](https://github.com/BerriAI/litellm/pull/10002)
|
||||
- **Mistral**
|
||||
1. new `/mistral` passthrough endpoint support [Get Started](../../docs/pass_through/mistral), [PR](https://github.com/BerriAI/litellm/pull/10002)
|
||||
- **AWS**
|
||||
1. New mapped bedrock regions - [PR](https://github.com/BerriAI/litellm/pull/9430)
|
||||
- **VertexAI / Google AI Studio**
|
||||
1. Gemini - Response format - Retain schema field ordering for google gemini and vertex by specifying propertyOrdering - [Get Started](../../docs/providers/vertex#json-schema), [PR](https://github.com/BerriAI/litellm/pull/9828)
|
||||
2. Gemini-2.5-flash - return reasoning content [Google AI Studio](../../docs/providers/gemini#usage---thinking--reasoning_content), [Vertex AI](../../docs/providers/vertex#thinking--reasoning_content)
|
||||
3. Gemini-2.5-flash - pricing + model information [PR](https://github.com/BerriAI/litellm/pull/10125)
|
||||
4. Passthrough - new `/vertex_ai/discovery` route - enables calling AgentBuilder API routes [Get Started](../../docs/pass_through/vertex_ai#supported-api-endpoints), [PR](https://github.com/BerriAI/litellm/pull/10084)
|
||||
- **Fireworks AI**
|
||||
1. return tool calling responses in `tool_calls` field (fireworks incorrectly returns this as a json str in content) [PR](https://github.com/BerriAI/litellm/pull/10130)
|
||||
- **Triton**
|
||||
1. Remove fixed remove bad_words / stop words from `/generate` call - [Get Started](../../docs/providers/triton-inference-server#triton-generate---chat-completion), [PR](https://github.com/BerriAI/litellm/pull/10163)
|
||||
- **Other**
|
||||
1. Support for all litellm providers on Responses API (works with Codex) - [Get Started](../../docs/tutorials/openai_codex), [PR](https://github.com/BerriAI/litellm/pull/10132)
|
||||
2. Fix combining multiple tool calls in streaming response - [Get Started](../../docs/completion/stream#helper-function), [PR](https://github.com/BerriAI/litellm/pull/10040)
|
||||
|
||||
|
||||
## Spend Tracking Improvements
|
||||
|
||||
- **Cost Control** - inject cache control points in prompt for cost reduction [Get Started](../../docs/tutorials/prompt_caching), [PR](https://github.com/BerriAI/litellm/pull/10000)
|
||||
- **Spend Tags** - spend tags in headers - support x-litellm-tags even if tag based routing not enabled [Get Started](../../docs/proxy/request_headers#litellm-headers), [PR](https://github.com/BerriAI/litellm/pull/10000)
|
||||
- **Gemini-2.5-flash** - support cost calculation for reasoning tokens [PR](https://github.com/BerriAI/litellm/pull/10141)
|
||||
|
||||
## Management Endpoints / UI
|
||||
- **Users**
|
||||
1. Show created_at and updated_at on users page - [PR](https://github.com/BerriAI/litellm/pull/10033)
|
||||
- **Virtual Keys**
|
||||
1. Filter by key alias - https://github.com/BerriAI/litellm/pull/10085
|
||||
- **Usage Tab**
|
||||
|
||||
1. Team based usage
|
||||
|
||||
- New `LiteLLM_DailyTeamSpend` Table for aggregate team based usage logging - [PR](https://github.com/BerriAI/litellm/pull/10039)
|
||||
|
||||
- New Team based usage dashboard + new `/team/daily/activity` API - [PR](https://github.com/BerriAI/litellm/pull/10081)
|
||||
- Return team alias on /team/daily/activity API - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
- allow internal user view spend for teams they belong to - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
- allow viewing top keys by team - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
|
||||
<Image img={require('../../img/release_notes/new_team_usage.png')}/>
|
||||
|
||||
2. Tag Based Usage
|
||||
- New `LiteLLM_DailyTagSpend` Table for aggregate tag based usage logging - [PR](https://github.com/BerriAI/litellm/pull/10071)
|
||||
- Restrict to only Proxy Admins - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
- allow viewing top keys by tag
|
||||
- Return tags passed in request (i.e. dynamic tags) on `/tag/list` API - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
<Image img={require('../../img/release_notes/new_tag_usage.png')}/>
|
||||
3. Track prompt caching metrics in daily user, team, tag tables - [PR](https://github.com/BerriAI/litellm/pull/10029)
|
||||
4. Show usage by key (on all up, team, and tag usage dashboards) - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
5. swap old usage with new usage tab
|
||||
- **Models**
|
||||
1. Make columns resizable/hideable - [PR](https://github.com/BerriAI/litellm/pull/10119)
|
||||
- **API Playground**
|
||||
1. Allow internal user to call api playground - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
- **SCIM**
|
||||
1. Add LiteLLM SCIM Integration for Team and User management - [Get Started](../../docs/tutorials/scim_litellm), [PR](https://github.com/BerriAI/litellm/pull/10072)
|
||||
|
||||
|
||||
## Logging / Guardrail Integrations
|
||||
- **GCS**
|
||||
1. Fix gcs pub sub logging with env var GCS_PROJECT_ID - [Get Started](../../docs/observability/gcs_bucket_integration#usage), [PR](https://github.com/BerriAI/litellm/pull/10042)
|
||||
- **AIM**
|
||||
1. Add litellm call id passing to Aim guardrails on pre and post-hooks calls - [Get Started](../../docs/proxy/guardrails/aim_security), [PR](https://github.com/BerriAI/litellm/pull/10021)
|
||||
- **Azure blob storage**
|
||||
1. Ensure logging works in high throughput scenarios - [Get Started](../../docs/proxy/logging#azure-blob-storage), [PR](https://github.com/BerriAI/litellm/pull/9962)
|
||||
|
||||
## General Proxy Improvements
|
||||
|
||||
- **Support setting `litellm.modify_params` via env var** [PR](https://github.com/BerriAI/litellm/pull/9964)
|
||||
- **Model Discovery** - Check provider’s `/models` endpoints when calling proxy’s `/v1/models` endpoint - [Get Started](../../docs/proxy/model_discovery), [PR](https://github.com/BerriAI/litellm/pull/9958)
|
||||
- **`/utils/token_counter`** - fix retrieving custom tokenizer for db models - [Get Started](../../docs/proxy/configs#set-custom-tokenizer), [PR](https://github.com/BerriAI/litellm/pull/10047)
|
||||
- **Prisma migrate** - handle existing columns in db table - [PR](https://github.com/BerriAI/litellm/pull/10138)
|
||||
|
|
@ -69,6 +69,7 @@ const sidebars = {
|
|||
"proxy/clientside_auth",
|
||||
"proxy/request_headers",
|
||||
"proxy/response_headers",
|
||||
"proxy/model_discovery",
|
||||
],
|
||||
},
|
||||
{
|
||||
|
@ -101,6 +102,7 @@ const sidebars = {
|
|||
"proxy/admin_ui_sso",
|
||||
"proxy/self_serve",
|
||||
"proxy/public_teams",
|
||||
"tutorials/scim_litellm",
|
||||
"proxy/custom_sso",
|
||||
"proxy/ui_credentials",
|
||||
"proxy/ui_logs"
|
||||
|
@ -330,6 +332,8 @@ const sidebars = {
|
|||
"pass_through/vertex_ai",
|
||||
"pass_through/google_ai_studio",
|
||||
"pass_through/cohere",
|
||||
"pass_through/vllm",
|
||||
"pass_through/mistral",
|
||||
"pass_through/openai_passthrough",
|
||||
"pass_through/anthropic_completion",
|
||||
"pass_through/bedrock",
|
||||
|
@ -443,7 +447,9 @@ const sidebars = {
|
|||
label: "Tutorials",
|
||||
items: [
|
||||
"tutorials/openweb_ui",
|
||||
"tutorials/openai_codex",
|
||||
"tutorials/msft_sso",
|
||||
"tutorials/prompt_caching",
|
||||
"tutorials/tag_management",
|
||||
'tutorials/litellm_proxy_aporia',
|
||||
{
|
||||
|
|
BIN
litellm-proxy-extras/dist/litellm_proxy_extras-0.1.8-py3-none-any.whl
vendored
Normal file
BIN
litellm-proxy-extras/dist/litellm_proxy_extras-0.1.8.tar.gz
vendored
Normal file
|
@ -0,0 +1,4 @@
|
|||
-- AlterTable
|
||||
ALTER TABLE "LiteLLM_DailyUserSpend" ADD COLUMN "cache_creation_input_tokens" INTEGER NOT NULL DEFAULT 0,
|
||||
ADD COLUMN "cache_read_input_tokens" INTEGER NOT NULL DEFAULT 0;
|
||||
|
|
@ -0,0 +1,36 @@
|
|||
-- CreateTable
|
||||
CREATE TABLE "LiteLLM_DailyTeamSpend" (
|
||||
"id" TEXT NOT NULL,
|
||||
"team_id" TEXT NOT NULL,
|
||||
"date" TEXT NOT NULL,
|
||||
"api_key" TEXT NOT NULL,
|
||||
"model" TEXT NOT NULL,
|
||||
"model_group" TEXT,
|
||||
"custom_llm_provider" TEXT,
|
||||
"prompt_tokens" INTEGER NOT NULL DEFAULT 0,
|
||||
"completion_tokens" INTEGER NOT NULL DEFAULT 0,
|
||||
"spend" DOUBLE PRECISION NOT NULL DEFAULT 0.0,
|
||||
"api_requests" INTEGER NOT NULL DEFAULT 0,
|
||||
"successful_requests" INTEGER NOT NULL DEFAULT 0,
|
||||
"failed_requests" INTEGER NOT NULL DEFAULT 0,
|
||||
"created_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updated_at" TIMESTAMP(3) NOT NULL,
|
||||
|
||||
CONSTRAINT "LiteLLM_DailyTeamSpend_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LiteLLM_DailyTeamSpend_date_idx" ON "LiteLLM_DailyTeamSpend"("date");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LiteLLM_DailyTeamSpend_team_id_idx" ON "LiteLLM_DailyTeamSpend"("team_id");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LiteLLM_DailyTeamSpend_api_key_idx" ON "LiteLLM_DailyTeamSpend"("api_key");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LiteLLM_DailyTeamSpend_model_idx" ON "LiteLLM_DailyTeamSpend"("model");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "LiteLLM_DailyTeamSpend_team_id_date_api_key_model_custom_ll_key" ON "LiteLLM_DailyTeamSpend"("team_id", "date", "api_key", "model", "custom_llm_provider");
|
||||
|
|
@ -0,0 +1,45 @@
|
|||
-- AlterTable
|
||||
ALTER TABLE "LiteLLM_DailyTeamSpend" ADD COLUMN "cache_creation_input_tokens" INTEGER NOT NULL DEFAULT 0,
|
||||
ADD COLUMN "cache_read_input_tokens" INTEGER NOT NULL DEFAULT 0;
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "LiteLLM_DailyTagSpend" (
|
||||
"id" TEXT NOT NULL,
|
||||
"tag" TEXT NOT NULL,
|
||||
"date" TEXT NOT NULL,
|
||||
"api_key" TEXT NOT NULL,
|
||||
"model" TEXT NOT NULL,
|
||||
"model_group" TEXT,
|
||||
"custom_llm_provider" TEXT,
|
||||
"prompt_tokens" INTEGER NOT NULL DEFAULT 0,
|
||||
"completion_tokens" INTEGER NOT NULL DEFAULT 0,
|
||||
"cache_read_input_tokens" INTEGER NOT NULL DEFAULT 0,
|
||||
"cache_creation_input_tokens" INTEGER NOT NULL DEFAULT 0,
|
||||
"spend" DOUBLE PRECISION NOT NULL DEFAULT 0.0,
|
||||
"api_requests" INTEGER NOT NULL DEFAULT 0,
|
||||
"successful_requests" INTEGER NOT NULL DEFAULT 0,
|
||||
"failed_requests" INTEGER NOT NULL DEFAULT 0,
|
||||
"created_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updated_at" TIMESTAMP(3) NOT NULL,
|
||||
|
||||
CONSTRAINT "LiteLLM_DailyTagSpend_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "LiteLLM_DailyTagSpend_tag_key" ON "LiteLLM_DailyTagSpend"("tag");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LiteLLM_DailyTagSpend_date_idx" ON "LiteLLM_DailyTagSpend"("date");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LiteLLM_DailyTagSpend_tag_idx" ON "LiteLLM_DailyTagSpend"("tag");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LiteLLM_DailyTagSpend_api_key_idx" ON "LiteLLM_DailyTagSpend"("api_key");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LiteLLM_DailyTagSpend_model_idx" ON "LiteLLM_DailyTagSpend"("model");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "LiteLLM_DailyTagSpend_tag_date_api_key_model_custom_llm_pro_key" ON "LiteLLM_DailyTagSpend"("tag", "date", "api_key", "model", "custom_llm_provider");
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
-- DropIndex
|
||||
DROP INDEX "LiteLLM_DailyTagSpend_tag_key";
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
-- AlterTable
|
||||
ALTER TABLE "LiteLLM_VerificationToken" ADD COLUMN "allowed_routes" TEXT[] DEFAULT ARRAY[]::TEXT[];
|
||||
|
|
@ -169,6 +169,7 @@ model LiteLLM_VerificationToken {
|
|||
budget_duration String?
|
||||
budget_reset_at DateTime?
|
||||
allowed_cache_controls String[] @default([])
|
||||
allowed_routes String[] @default([])
|
||||
model_spend Json @default("{}")
|
||||
model_max_budget Json @default("{}")
|
||||
budget_id String?
|
||||
|
@ -326,6 +327,8 @@ model LiteLLM_DailyUserSpend {
|
|||
custom_llm_provider String?
|
||||
prompt_tokens Int @default(0)
|
||||
completion_tokens Int @default(0)
|
||||
cache_read_input_tokens Int @default(0)
|
||||
cache_creation_input_tokens Int @default(0)
|
||||
spend Float @default(0.0)
|
||||
api_requests Int @default(0)
|
||||
successful_requests Int @default(0)
|
||||
|
@ -340,6 +343,60 @@ model LiteLLM_DailyUserSpend {
|
|||
@@index([model])
|
||||
}
|
||||
|
||||
// Track daily team spend metrics per model and key
|
||||
model LiteLLM_DailyTeamSpend {
|
||||
id String @id @default(uuid())
|
||||
team_id String
|
||||
date String
|
||||
api_key String
|
||||
model String
|
||||
model_group String?
|
||||
custom_llm_provider String?
|
||||
prompt_tokens Int @default(0)
|
||||
completion_tokens Int @default(0)
|
||||
cache_read_input_tokens Int @default(0)
|
||||
cache_creation_input_tokens Int @default(0)
|
||||
spend Float @default(0.0)
|
||||
api_requests Int @default(0)
|
||||
successful_requests Int @default(0)
|
||||
failed_requests Int @default(0)
|
||||
created_at DateTime @default(now())
|
||||
updated_at DateTime @updatedAt
|
||||
|
||||
@@unique([team_id, date, api_key, model, custom_llm_provider])
|
||||
@@index([date])
|
||||
@@index([team_id])
|
||||
@@index([api_key])
|
||||
@@index([model])
|
||||
}
|
||||
|
||||
// Track daily team spend metrics per model and key
|
||||
model LiteLLM_DailyTagSpend {
|
||||
id String @id @default(uuid())
|
||||
tag String
|
||||
date String
|
||||
api_key String
|
||||
model String
|
||||
model_group String?
|
||||
custom_llm_provider String?
|
||||
prompt_tokens Int @default(0)
|
||||
completion_tokens Int @default(0)
|
||||
cache_read_input_tokens Int @default(0)
|
||||
cache_creation_input_tokens Int @default(0)
|
||||
spend Float @default(0.0)
|
||||
api_requests Int @default(0)
|
||||
successful_requests Int @default(0)
|
||||
failed_requests Int @default(0)
|
||||
created_at DateTime @default(now())
|
||||
updated_at DateTime @updatedAt
|
||||
|
||||
@@unique([tag, date, api_key, model, custom_llm_provider])
|
||||
@@index([date])
|
||||
@@index([tag])
|
||||
@@index([api_key])
|
||||
@@index([model])
|
||||
}
|
||||
|
||||
|
||||
// Track the status of cron jobs running. Only allow one pod to run the job at a time
|
||||
model LiteLLM_CronJob {
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import glob
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import subprocess
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
@ -82,6 +83,26 @@ class ProxyExtrasDBManager:
|
|||
logger.info(f"Found {len(migration_paths)} migrations at {migrations_dir}")
|
||||
return [Path(p).parent.name for p in migration_paths]
|
||||
|
||||
@staticmethod
|
||||
def _roll_back_migration(migration_name: str):
|
||||
"""Mark a specific migration as rolled back"""
|
||||
subprocess.run(
|
||||
["prisma", "migrate", "resolve", "--rolled-back", migration_name],
|
||||
timeout=60,
|
||||
check=True,
|
||||
capture_output=True,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _resolve_specific_migration(migration_name: str):
|
||||
"""Mark a specific migration as applied"""
|
||||
subprocess.run(
|
||||
["prisma", "migrate", "resolve", "--applied", migration_name],
|
||||
timeout=60,
|
||||
check=True,
|
||||
capture_output=True,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _resolve_all_migrations(migrations_dir: str):
|
||||
"""Mark all existing migrations as applied"""
|
||||
|
@ -141,7 +162,34 @@ class ProxyExtrasDBManager:
|
|||
return True
|
||||
except subprocess.CalledProcessError as e:
|
||||
logger.info(f"prisma db error: {e.stderr}, e: {e.stdout}")
|
||||
if (
|
||||
if "P3009" in e.stderr:
|
||||
# Extract the failed migration name from the error message
|
||||
migration_match = re.search(
|
||||
r"`(\d+_.*)` migration", e.stderr
|
||||
)
|
||||
if migration_match:
|
||||
failed_migration = migration_match.group(1)
|
||||
logger.info(
|
||||
f"Found failed migration: {failed_migration}, marking as rolled back"
|
||||
)
|
||||
# Mark the failed migration as rolled back
|
||||
subprocess.run(
|
||||
[
|
||||
"prisma",
|
||||
"migrate",
|
||||
"resolve",
|
||||
"--rolled-back",
|
||||
failed_migration,
|
||||
],
|
||||
timeout=60,
|
||||
check=True,
|
||||
capture_output=True,
|
||||
text=True,
|
||||
)
|
||||
logger.info(
|
||||
f"✅ Migration {failed_migration} marked as rolled back... retrying"
|
||||
)
|
||||
elif (
|
||||
"P3005" in e.stderr
|
||||
and "database schema is not empty" in e.stderr
|
||||
):
|
||||
|
@ -155,6 +203,29 @@ class ProxyExtrasDBManager:
|
|||
ProxyExtrasDBManager._resolve_all_migrations(migrations_dir)
|
||||
logger.info("✅ All migrations resolved.")
|
||||
return True
|
||||
elif (
|
||||
"P3018" in e.stderr
|
||||
): # PostgreSQL error code for duplicate column
|
||||
logger.info(
|
||||
"Migration already exists, resolving specific migration"
|
||||
)
|
||||
# Extract the migration name from the error message
|
||||
migration_match = re.search(
|
||||
r"Migration name: (\d+_.*)", e.stderr
|
||||
)
|
||||
if migration_match:
|
||||
migration_name = migration_match.group(1)
|
||||
logger.info(f"Rolling back migration {migration_name}")
|
||||
ProxyExtrasDBManager._roll_back_migration(
|
||||
migration_name
|
||||
)
|
||||
logger.info(
|
||||
f"Resolving migration {migration_name} that failed due to existing columns"
|
||||
)
|
||||
ProxyExtrasDBManager._resolve_specific_migration(
|
||||
migration_name
|
||||
)
|
||||
logger.info("✅ Migration resolved.")
|
||||
else:
|
||||
# Use prisma db push with increased timeout
|
||||
subprocess.run(
|
||||
|
|
4
litellm-proxy-extras/poetry.lock
generated
|
@ -1,7 +1,7 @@
|
|||
# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry 2.1.2 and should not be changed by hand.
|
||||
package = []
|
||||
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
lock-version = "2.1"
|
||||
python-versions = ">=3.8.1,<4.0, !=3.9.7"
|
||||
content-hash = "2cf39473e67ff0615f0a61c9d2ac9f02b38cc08cbb1bdb893d89bee002646623"
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm-proxy-extras"
|
||||
version = "0.1.7"
|
||||
version = "0.1.11"
|
||||
description = "Additional files for the LiteLLM Proxy. Reduces the size of the main litellm package."
|
||||
authors = ["BerriAI"]
|
||||
readme = "README.md"
|
||||
|
@ -22,7 +22,7 @@ requires = ["poetry-core"]
|
|||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.commitizen]
|
||||
version = "0.1.7"
|
||||
version = "0.1.11"
|
||||
version_files = [
|
||||
"pyproject.toml:version",
|
||||
"../requirements.txt:litellm-proxy-extras==",
|
||||
|
|
|
@ -128,19 +128,19 @@ prometheus_initialize_budget_metrics: Optional[bool] = False
|
|||
require_auth_for_metrics_endpoint: Optional[bool] = False
|
||||
argilla_batch_size: Optional[int] = None
|
||||
datadog_use_v1: Optional[bool] = False # if you want to use v1 datadog logged payload
|
||||
gcs_pub_sub_use_v1: Optional[
|
||||
bool
|
||||
] = False # if you want to use v1 gcs pubsub logged payload
|
||||
gcs_pub_sub_use_v1: Optional[bool] = (
|
||||
False # if you want to use v1 gcs pubsub logged payload
|
||||
)
|
||||
argilla_transformation_object: Optional[Dict[str, Any]] = None
|
||||
_async_input_callback: List[
|
||||
Union[str, Callable, CustomLogger]
|
||||
] = [] # internal variable - async custom callbacks are routed here.
|
||||
_async_success_callback: List[
|
||||
Union[str, Callable, CustomLogger]
|
||||
] = [] # internal variable - async custom callbacks are routed here.
|
||||
_async_failure_callback: List[
|
||||
Union[str, Callable, CustomLogger]
|
||||
] = [] # internal variable - async custom callbacks are routed here.
|
||||
_async_input_callback: List[Union[str, Callable, CustomLogger]] = (
|
||||
[]
|
||||
) # internal variable - async custom callbacks are routed here.
|
||||
_async_success_callback: List[Union[str, Callable, CustomLogger]] = (
|
||||
[]
|
||||
) # internal variable - async custom callbacks are routed here.
|
||||
_async_failure_callback: List[Union[str, Callable, CustomLogger]] = (
|
||||
[]
|
||||
) # internal variable - async custom callbacks are routed here.
|
||||
pre_call_rules: List[Callable] = []
|
||||
post_call_rules: List[Callable] = []
|
||||
turn_off_message_logging: Optional[bool] = False
|
||||
|
@ -148,18 +148,18 @@ log_raw_request_response: bool = False
|
|||
redact_messages_in_exceptions: Optional[bool] = False
|
||||
redact_user_api_key_info: Optional[bool] = False
|
||||
filter_invalid_headers: Optional[bool] = False
|
||||
add_user_information_to_llm_headers: Optional[
|
||||
bool
|
||||
] = None # adds user_id, team_id, token hash (params from StandardLoggingMetadata) to request headers
|
||||
add_user_information_to_llm_headers: Optional[bool] = (
|
||||
None # adds user_id, team_id, token hash (params from StandardLoggingMetadata) to request headers
|
||||
)
|
||||
store_audit_logs = False # Enterprise feature, allow users to see audit logs
|
||||
### end of callbacks #############
|
||||
|
||||
email: Optional[
|
||||
str
|
||||
] = None # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
token: Optional[
|
||||
str
|
||||
] = None # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
email: Optional[str] = (
|
||||
None # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
)
|
||||
token: Optional[str] = (
|
||||
None # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
)
|
||||
telemetry = True
|
||||
max_tokens: int = DEFAULT_MAX_TOKENS # OpenAI Defaults
|
||||
drop_params = bool(os.getenv("LITELLM_DROP_PARAMS", False))
|
||||
|
@ -235,20 +235,24 @@ enable_loadbalancing_on_batch_endpoints: Optional[bool] = None
|
|||
enable_caching_on_provider_specific_optional_params: bool = (
|
||||
False # feature-flag for caching on optional params - e.g. 'top_k'
|
||||
)
|
||||
caching: bool = False # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
caching_with_models: bool = False # # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
cache: Optional[
|
||||
Cache
|
||||
] = None # cache object <- use this - https://docs.litellm.ai/docs/caching
|
||||
caching: bool = (
|
||||
False # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
)
|
||||
caching_with_models: bool = (
|
||||
False # # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
)
|
||||
cache: Optional[Cache] = (
|
||||
None # cache object <- use this - https://docs.litellm.ai/docs/caching
|
||||
)
|
||||
default_in_memory_ttl: Optional[float] = None
|
||||
default_redis_ttl: Optional[float] = None
|
||||
default_redis_batch_cache_expiry: Optional[float] = None
|
||||
model_alias_map: Dict[str, str] = {}
|
||||
model_group_alias_map: Dict[str, str] = {}
|
||||
max_budget: float = 0.0 # set the max budget across all providers
|
||||
budget_duration: Optional[
|
||||
str
|
||||
] = None # proxy only - resets budget after fixed duration. You can set duration as seconds ("30s"), minutes ("30m"), hours ("30h"), days ("30d").
|
||||
budget_duration: Optional[str] = (
|
||||
None # proxy only - resets budget after fixed duration. You can set duration as seconds ("30s"), minutes ("30m"), hours ("30h"), days ("30d").
|
||||
)
|
||||
default_soft_budget: float = (
|
||||
DEFAULT_SOFT_BUDGET # by default all litellm proxy keys have a soft budget of 50.0
|
||||
)
|
||||
|
@ -257,11 +261,15 @@ forward_traceparent_to_llm_provider: bool = False
|
|||
|
||||
_current_cost = 0.0 # private variable, used if max budget is set
|
||||
error_logs: Dict = {}
|
||||
add_function_to_prompt: bool = False # if function calling not supported by api, append function call details to system prompt
|
||||
add_function_to_prompt: bool = (
|
||||
False # if function calling not supported by api, append function call details to system prompt
|
||||
)
|
||||
client_session: Optional[httpx.Client] = None
|
||||
aclient_session: Optional[httpx.AsyncClient] = None
|
||||
model_fallbacks: Optional[List] = None # Deprecated for 'litellm.fallbacks'
|
||||
model_cost_map_url: str = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
model_cost_map_url: str = (
|
||||
"https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
)
|
||||
suppress_debug_info = False
|
||||
dynamodb_table_name: Optional[str] = None
|
||||
s3_callback_params: Optional[Dict] = None
|
||||
|
@ -284,7 +292,9 @@ disable_end_user_cost_tracking_prometheus_only: Optional[bool] = None
|
|||
custom_prometheus_metadata_labels: List[str] = []
|
||||
#### REQUEST PRIORITIZATION ####
|
||||
priority_reservation: Optional[Dict[str, float]] = None
|
||||
force_ipv4: bool = False # when True, litellm will force ipv4 for all LLM requests. Some users have seen httpx ConnectionError when using ipv6.
|
||||
force_ipv4: bool = (
|
||||
False # when True, litellm will force ipv4 for all LLM requests. Some users have seen httpx ConnectionError when using ipv6.
|
||||
)
|
||||
module_level_aclient = AsyncHTTPHandler(
|
||||
timeout=request_timeout, client_alias="module level aclient"
|
||||
)
|
||||
|
@ -298,13 +308,13 @@ fallbacks: Optional[List] = None
|
|||
context_window_fallbacks: Optional[List] = None
|
||||
content_policy_fallbacks: Optional[List] = None
|
||||
allowed_fails: int = 3
|
||||
num_retries_per_request: Optional[
|
||||
int
|
||||
] = None # for the request overall (incl. fallbacks + model retries)
|
||||
num_retries_per_request: Optional[int] = (
|
||||
None # for the request overall (incl. fallbacks + model retries)
|
||||
)
|
||||
####### SECRET MANAGERS #####################
|
||||
secret_manager_client: Optional[
|
||||
Any
|
||||
] = None # list of instantiated key management clients - e.g. azure kv, infisical, etc.
|
||||
secret_manager_client: Optional[Any] = (
|
||||
None # list of instantiated key management clients - e.g. azure kv, infisical, etc.
|
||||
)
|
||||
_google_kms_resource_name: Optional[str] = None
|
||||
_key_management_system: Optional[KeyManagementSystem] = None
|
||||
_key_management_settings: KeyManagementSettings = KeyManagementSettings()
|
||||
|
@ -945,6 +955,7 @@ from .llms.infinity.embedding.transformation import InfinityEmbeddingConfig
|
|||
from .llms.azure_ai.chat.transformation import AzureAIStudioConfig
|
||||
from .llms.mistral.mistral_chat_transformation import MistralConfig
|
||||
from .llms.openai.responses.transformation import OpenAIResponsesAPIConfig
|
||||
from .llms.azure.responses.transformation import AzureOpenAIResponsesAPIConfig
|
||||
from .llms.openai.chat.o_series_transformation import (
|
||||
OpenAIOSeriesConfig as OpenAIO1Config, # maintain backwards compatibility
|
||||
OpenAIOSeriesConfig,
|
||||
|
@ -1061,10 +1072,10 @@ from .types.llms.custom_llm import CustomLLMItem
|
|||
from .types.utils import GenericStreamingChunk
|
||||
|
||||
custom_provider_map: List[CustomLLMItem] = []
|
||||
_custom_providers: List[
|
||||
str
|
||||
] = [] # internal helper util, used to track names of custom providers
|
||||
disable_hf_tokenizer_download: Optional[
|
||||
bool
|
||||
] = None # disable huggingface tokenizer download. Defaults to openai clk100
|
||||
_custom_providers: List[str] = (
|
||||
[]
|
||||
) # internal helper util, used to track names of custom providers
|
||||
disable_hf_tokenizer_download: Optional[bool] = (
|
||||
None # disable huggingface tokenizer download. Defaults to openai clk100
|
||||
)
|
||||
global_disable_no_log_param: bool = False
|
||||
|
|
|
@ -304,6 +304,11 @@ def create_assistants(
|
|||
"response_format": response_format,
|
||||
}
|
||||
|
||||
# only send params that are not None
|
||||
create_assistant_data = {
|
||||
k: v for k, v in create_assistant_data.items() if v is not None
|
||||
}
|
||||
|
||||
response: Optional[Union[Coroutine[Any, Any, Assistant], Assistant]] = None
|
||||
if custom_llm_provider == "openai":
|
||||
api_base = (
|
||||
|
|
|
@ -21,9 +21,18 @@ DEFAULT_MAX_TOKENS = 256 # used when providers need a default
|
|||
MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = 1024 # 1MB = 1024KB
|
||||
SINGLE_DEPLOYMENT_TRAFFIC_FAILURE_THRESHOLD = 1000 # Minimum number of requests to consider "reasonable traffic". Used for single-deployment cooldown logic.
|
||||
|
||||
DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET = 1024
|
||||
DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET = 2048
|
||||
DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET = 4096
|
||||
|
||||
########## Networking constants ##############################################################
|
||||
_DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour
|
||||
|
||||
########### v2 Architecture constants for managing writing updates to the database ###########
|
||||
REDIS_UPDATE_BUFFER_KEY = "litellm_spend_update_buffer"
|
||||
REDIS_DAILY_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_spend_update_buffer"
|
||||
REDIS_DAILY_TEAM_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_team_spend_update_buffer"
|
||||
REDIS_DAILY_TAG_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_tag_spend_update_buffer"
|
||||
MAX_REDIS_BUFFER_DEQUEUE_COUNT = 100
|
||||
MAX_SIZE_IN_MEMORY_QUEUE = 10000
|
||||
MAX_IN_MEMORY_QUEUE_FLUSH_COUNT = 1000
|
||||
|
|
|
@ -1,14 +1,15 @@
|
|||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import uuid
|
||||
from datetime import datetime, timedelta
|
||||
from typing import List, Optional
|
||||
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.constants import AZURE_STORAGE_MSFT_VERSION
|
||||
from litellm.constants import _DEFAULT_TTL_FOR_HTTPX_CLIENTS, AZURE_STORAGE_MSFT_VERSION
|
||||
from litellm.integrations.custom_batch_logger import CustomBatchLogger
|
||||
from litellm.llms.azure.common_utils import get_azure_ad_token_from_entrata_id
|
||||
from litellm.llms.azure.common_utils import get_azure_ad_token_from_entra_id
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
AsyncHTTPHandler,
|
||||
get_async_httpx_client,
|
||||
|
@ -48,14 +49,17 @@ class AzureBlobStorageLogger(CustomBatchLogger):
|
|||
"Missing required environment variable: AZURE_STORAGE_FILE_SYSTEM"
|
||||
)
|
||||
self.azure_storage_file_system: str = _azure_storage_file_system
|
||||
self._service_client = None
|
||||
# Time that the azure service client expires, in order to reset the connection pool and keep it fresh
|
||||
self._service_client_timeout: Optional[float] = None
|
||||
|
||||
# Internal variables used for Token based authentication
|
||||
self.azure_auth_token: Optional[
|
||||
str
|
||||
] = None # the Azure AD token to use for Azure Storage API requests
|
||||
self.token_expiry: Optional[
|
||||
datetime
|
||||
] = None # the expiry time of the currentAzure AD token
|
||||
self.azure_auth_token: Optional[str] = (
|
||||
None # the Azure AD token to use for Azure Storage API requests
|
||||
)
|
||||
self.token_expiry: Optional[datetime] = (
|
||||
None # the expiry time of the currentAzure AD token
|
||||
)
|
||||
|
||||
asyncio.create_task(self.periodic_flush())
|
||||
self.flush_lock = asyncio.Lock()
|
||||
|
@ -291,7 +295,7 @@ class AzureBlobStorageLogger(CustomBatchLogger):
|
|||
"Missing required environment variable: AZURE_STORAGE_CLIENT_SECRET"
|
||||
)
|
||||
|
||||
token_provider = get_azure_ad_token_from_entrata_id(
|
||||
token_provider = get_azure_ad_token_from_entra_id(
|
||||
tenant_id=tenant_id,
|
||||
client_id=client_id,
|
||||
client_secret=client_secret,
|
||||
|
@ -324,6 +328,25 @@ class AzureBlobStorageLogger(CustomBatchLogger):
|
|||
f"AzureBlobStorageLogger is only available for premium users. {CommonProxyErrors.not_premium_user}"
|
||||
)
|
||||
|
||||
async def get_service_client(self):
|
||||
from azure.storage.filedatalake.aio import DataLakeServiceClient
|
||||
|
||||
# expire old clients to recover from connection issues
|
||||
if (
|
||||
self._service_client_timeout
|
||||
and self._service_client
|
||||
and self._service_client_timeout > time.time()
|
||||
):
|
||||
await self._service_client.close()
|
||||
self._service_client = None
|
||||
if not self._service_client:
|
||||
self._service_client = DataLakeServiceClient(
|
||||
account_url=f"https://{self.azure_storage_account_name}.dfs.core.windows.net",
|
||||
credential=self.azure_storage_account_key,
|
||||
)
|
||||
self._service_client_timeout = time.time() + _DEFAULT_TTL_FOR_HTTPX_CLIENTS
|
||||
return self._service_client
|
||||
|
||||
async def upload_to_azure_data_lake_with_azure_account_key(
|
||||
self, payload: StandardLoggingPayload
|
||||
):
|
||||
|
@ -332,13 +355,10 @@ class AzureBlobStorageLogger(CustomBatchLogger):
|
|||
|
||||
This is used when Azure Storage Account Key is set - Azure Storage Account Key does not work directly with Azure Rest API
|
||||
"""
|
||||
from azure.storage.filedatalake.aio import DataLakeServiceClient
|
||||
|
||||
# Create an async service client
|
||||
service_client = DataLakeServiceClient(
|
||||
account_url=f"https://{self.azure_storage_account_name}.dfs.core.windows.net",
|
||||
credential=self.azure_storage_account_key,
|
||||
)
|
||||
|
||||
service_client = await self.get_service_client()
|
||||
# Get file system client
|
||||
file_system_client = service_client.get_file_system_client(
|
||||
file_system=self.azure_storage_file_system
|
||||
|
|
|
@ -75,7 +75,7 @@ class GcsPubSubLogger(CustomBatchLogger):
|
|||
vertex_project,
|
||||
) = await vertex_chat_completion._ensure_access_token_async(
|
||||
credentials=self.path_service_account_json,
|
||||
project_id=None,
|
||||
project_id=self.project_id,
|
||||
custom_llm_provider="vertex_ai",
|
||||
)
|
||||
|
||||
|
|
|
@ -265,8 +265,10 @@ def generic_cost_per_token(
|
|||
)
|
||||
|
||||
## CALCULATE OUTPUT COST
|
||||
text_tokens = usage.completion_tokens
|
||||
text_tokens = 0
|
||||
audio_tokens = 0
|
||||
reasoning_tokens = 0
|
||||
is_text_tokens_total = False
|
||||
if usage.completion_tokens_details is not None:
|
||||
audio_tokens = (
|
||||
cast(
|
||||
|
@ -280,9 +282,20 @@ def generic_cost_per_token(
|
|||
Optional[int],
|
||||
getattr(usage.completion_tokens_details, "text_tokens", None),
|
||||
)
|
||||
or usage.completion_tokens # default to completion tokens, if this field is not set
|
||||
or 0 # default to completion tokens, if this field is not set
|
||||
)
|
||||
reasoning_tokens = (
|
||||
cast(
|
||||
Optional[int],
|
||||
getattr(usage.completion_tokens_details, "reasoning_tokens", 0),
|
||||
)
|
||||
or 0
|
||||
)
|
||||
|
||||
if text_tokens == 0:
|
||||
text_tokens = usage.completion_tokens
|
||||
if text_tokens == usage.completion_tokens:
|
||||
is_text_tokens_total = True
|
||||
## TEXT COST
|
||||
completion_cost = float(text_tokens) * completion_base_cost
|
||||
|
||||
|
@ -290,12 +303,26 @@ def generic_cost_per_token(
|
|||
"output_cost_per_audio_token"
|
||||
)
|
||||
|
||||
_output_cost_per_reasoning_token: Optional[float] = model_info.get(
|
||||
"output_cost_per_reasoning_token"
|
||||
)
|
||||
|
||||
## AUDIO COST
|
||||
if (
|
||||
_output_cost_per_audio_token is not None
|
||||
and audio_tokens is not None
|
||||
and audio_tokens > 0
|
||||
):
|
||||
if not is_text_tokens_total and audio_tokens is not None and audio_tokens > 0:
|
||||
_output_cost_per_audio_token = (
|
||||
_output_cost_per_audio_token
|
||||
if _output_cost_per_audio_token is not None
|
||||
else completion_base_cost
|
||||
)
|
||||
completion_cost += float(audio_tokens) * _output_cost_per_audio_token
|
||||
|
||||
## REASONING COST
|
||||
if not is_text_tokens_total and reasoning_tokens and reasoning_tokens > 0:
|
||||
_output_cost_per_reasoning_token = (
|
||||
_output_cost_per_reasoning_token
|
||||
if _output_cost_per_reasoning_token is not None
|
||||
else completion_base_cost
|
||||
)
|
||||
completion_cost += float(reasoning_tokens) * _output_cost_per_reasoning_token
|
||||
|
||||
return prompt_cost, completion_cost
|
||||
|
|
|
@ -14,6 +14,7 @@ from litellm.types.llms.openai import ChatCompletionThinkingBlock
|
|||
from litellm.types.utils import (
|
||||
ChatCompletionDeltaToolCall,
|
||||
ChatCompletionMessageToolCall,
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
Choices,
|
||||
Delta,
|
||||
EmbeddingResponse,
|
||||
|
@ -486,7 +487,14 @@ def convert_to_model_response_object( # noqa: PLR0915
|
|||
)
|
||||
|
||||
# Handle thinking models that display `thinking_blocks` within `content`
|
||||
thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
|
||||
thinking_blocks: Optional[
|
||||
List[
|
||||
Union[
|
||||
ChatCompletionThinkingBlock,
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
]
|
||||
]
|
||||
] = None
|
||||
if "thinking_blocks" in choice["message"]:
|
||||
thinking_blocks = choice["message"]["thinking_blocks"]
|
||||
provider_specific_fields["thinking_blocks"] = thinking_blocks
|
||||
|
|
|
@ -471,3 +471,59 @@ def unpack_defs(schema, defs):
|
|||
unpack_defs(ref, defs)
|
||||
value["items"] = ref
|
||||
continue
|
||||
|
||||
|
||||
def _get_image_mime_type_from_url(url: str) -> Optional[str]:
|
||||
"""
|
||||
Get mime type for common image URLs
|
||||
See gemini mime types: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/image-understanding#image-requirements
|
||||
|
||||
Supported by Gemini:
|
||||
application/pdf
|
||||
audio/mpeg
|
||||
audio/mp3
|
||||
audio/wav
|
||||
image/png
|
||||
image/jpeg
|
||||
image/webp
|
||||
text/plain
|
||||
video/mov
|
||||
video/mpeg
|
||||
video/mp4
|
||||
video/mpg
|
||||
video/avi
|
||||
video/wmv
|
||||
video/mpegps
|
||||
video/flv
|
||||
"""
|
||||
url = url.lower()
|
||||
|
||||
# Map file extensions to mime types
|
||||
mime_types = {
|
||||
# Images
|
||||
(".jpg", ".jpeg"): "image/jpeg",
|
||||
(".png",): "image/png",
|
||||
(".webp",): "image/webp",
|
||||
# Videos
|
||||
(".mp4",): "video/mp4",
|
||||
(".mov",): "video/mov",
|
||||
(".mpeg", ".mpg"): "video/mpeg",
|
||||
(".avi",): "video/avi",
|
||||
(".wmv",): "video/wmv",
|
||||
(".mpegps",): "video/mpegps",
|
||||
(".flv",): "video/flv",
|
||||
# Audio
|
||||
(".mp3",): "audio/mp3",
|
||||
(".wav",): "audio/wav",
|
||||
(".mpeg",): "audio/mpeg",
|
||||
# Documents
|
||||
(".pdf",): "application/pdf",
|
||||
(".txt",): "text/plain",
|
||||
}
|
||||
|
||||
# Check each extension group against the URL
|
||||
for extensions, mime_type in mime_types.items():
|
||||
if any(url.endswith(ext) for ext in extensions):
|
||||
return mime_type
|
||||
|
||||
return None
|
||||
|
|
|
@ -2258,6 +2258,14 @@ def _parse_content_type(content_type: str) -> str:
|
|||
return m.get_content_type()
|
||||
|
||||
|
||||
def _parse_mime_type(base64_data: str) -> Optional[str]:
|
||||
mime_type_match = re.match(r"data:(.*?);base64", base64_data)
|
||||
if mime_type_match:
|
||||
return mime_type_match.group(1)
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
class BedrockImageProcessor:
|
||||
"""Handles both sync and async image processing for Bedrock conversations."""
|
||||
|
||||
|
|
|
@ -106,74 +106,63 @@ class ChunkProcessor:
|
|||
def get_combined_tool_content(
|
||||
self, tool_call_chunks: List[Dict[str, Any]]
|
||||
) -> List[ChatCompletionMessageToolCall]:
|
||||
argument_list: List[str] = []
|
||||
delta = tool_call_chunks[0]["choices"][0]["delta"]
|
||||
id = None
|
||||
name = None
|
||||
type = None
|
||||
tool_calls_list: List[ChatCompletionMessageToolCall] = []
|
||||
prev_index = None
|
||||
prev_name = None
|
||||
prev_id = None
|
||||
curr_id = None
|
||||
curr_index = 0
|
||||
tool_call_map: Dict[
|
||||
int, Dict[str, Any]
|
||||
] = {} # Map to store tool calls by index
|
||||
|
||||
for chunk in tool_call_chunks:
|
||||
choices = chunk["choices"]
|
||||
for choice in choices:
|
||||
delta = choice.get("delta", {})
|
||||
tool_calls = delta.get("tool_calls", "")
|
||||
# Check if a tool call is present
|
||||
if tool_calls and tool_calls[0].function is not None:
|
||||
if tool_calls[0].id:
|
||||
id = tool_calls[0].id
|
||||
curr_id = id
|
||||
if prev_id is None:
|
||||
prev_id = curr_id
|
||||
if tool_calls[0].index:
|
||||
curr_index = tool_calls[0].index
|
||||
if tool_calls[0].function.arguments:
|
||||
# Now, tool_calls is expected to be a dictionary
|
||||
arguments = tool_calls[0].function.arguments
|
||||
argument_list.append(arguments)
|
||||
if tool_calls[0].function.name:
|
||||
name = tool_calls[0].function.name
|
||||
if tool_calls[0].type:
|
||||
type = tool_calls[0].type
|
||||
if prev_index is None:
|
||||
prev_index = curr_index
|
||||
if prev_name is None:
|
||||
prev_name = name
|
||||
if curr_index != prev_index: # new tool call
|
||||
combined_arguments = "".join(argument_list)
|
||||
tool_calls = delta.get("tool_calls", [])
|
||||
|
||||
for tool_call in tool_calls:
|
||||
if not tool_call or not hasattr(tool_call, "function"):
|
||||
continue
|
||||
|
||||
index = getattr(tool_call, "index", 0)
|
||||
if index not in tool_call_map:
|
||||
tool_call_map[index] = {
|
||||
"id": None,
|
||||
"name": None,
|
||||
"type": None,
|
||||
"arguments": [],
|
||||
}
|
||||
|
||||
if hasattr(tool_call, "id") and tool_call.id:
|
||||
tool_call_map[index]["id"] = tool_call.id
|
||||
if hasattr(tool_call, "type") and tool_call.type:
|
||||
tool_call_map[index]["type"] = tool_call.type
|
||||
if hasattr(tool_call, "function"):
|
||||
if (
|
||||
hasattr(tool_call.function, "name")
|
||||
and tool_call.function.name
|
||||
):
|
||||
tool_call_map[index]["name"] = tool_call.function.name
|
||||
if (
|
||||
hasattr(tool_call.function, "arguments")
|
||||
and tool_call.function.arguments
|
||||
):
|
||||
tool_call_map[index]["arguments"].append(
|
||||
tool_call.function.arguments
|
||||
)
|
||||
|
||||
# Convert the map to a list of tool calls
|
||||
for index in sorted(tool_call_map.keys()):
|
||||
tool_call_data = tool_call_map[index]
|
||||
if tool_call_data["id"] and tool_call_data["name"]:
|
||||
combined_arguments = "".join(tool_call_data["arguments"]) or "{}"
|
||||
tool_calls_list.append(
|
||||
ChatCompletionMessageToolCall(
|
||||
id=prev_id,
|
||||
id=tool_call_data["id"],
|
||||
function=Function(
|
||||
arguments=combined_arguments,
|
||||
name=prev_name,
|
||||
name=tool_call_data["name"],
|
||||
),
|
||||
type=type,
|
||||
type=tool_call_data["type"] or "function",
|
||||
)
|
||||
)
|
||||
argument_list = [] # reset
|
||||
prev_index = curr_index
|
||||
prev_id = curr_id
|
||||
prev_name = name
|
||||
|
||||
combined_arguments = (
|
||||
"".join(argument_list) or "{}"
|
||||
) # base case, return empty dict
|
||||
|
||||
tool_calls_list.append(
|
||||
ChatCompletionMessageToolCall(
|
||||
id=id,
|
||||
type="function",
|
||||
function=Function(
|
||||
arguments=combined_arguments,
|
||||
name=name,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
return tool_calls_list
|
||||
|
||||
|
|
|
@ -29,6 +29,7 @@ from litellm.types.llms.anthropic import (
|
|||
UsageDelta,
|
||||
)
|
||||
from litellm.types.llms.openai import (
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
ChatCompletionThinkingBlock,
|
||||
ChatCompletionToolCallChunk,
|
||||
)
|
||||
|
@ -501,18 +502,19 @@ class ModelResponseIterator:
|
|||
) -> Tuple[
|
||||
str,
|
||||
Optional[ChatCompletionToolCallChunk],
|
||||
List[ChatCompletionThinkingBlock],
|
||||
List[Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]],
|
||||
Dict[str, Any],
|
||||
]:
|
||||
"""
|
||||
Helper function to handle the content block delta
|
||||
"""
|
||||
|
||||
text = ""
|
||||
tool_use: Optional[ChatCompletionToolCallChunk] = None
|
||||
provider_specific_fields = {}
|
||||
content_block = ContentBlockDelta(**chunk) # type: ignore
|
||||
thinking_blocks: List[ChatCompletionThinkingBlock] = []
|
||||
thinking_blocks: List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
] = []
|
||||
|
||||
self.content_blocks.append(content_block)
|
||||
if "text" in content_block["delta"]:
|
||||
|
@ -541,20 +543,25 @@ class ModelResponseIterator:
|
|||
)
|
||||
]
|
||||
provider_specific_fields["thinking_blocks"] = thinking_blocks
|
||||
|
||||
return text, tool_use, thinking_blocks, provider_specific_fields
|
||||
|
||||
def _handle_reasoning_content(
|
||||
self, thinking_blocks: List[ChatCompletionThinkingBlock]
|
||||
self,
|
||||
thinking_blocks: List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
],
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
Handle the reasoning content
|
||||
"""
|
||||
reasoning_content = None
|
||||
for block in thinking_blocks:
|
||||
thinking_content = cast(Optional[str], block.get("thinking"))
|
||||
if reasoning_content is None:
|
||||
reasoning_content = ""
|
||||
if "thinking" in block:
|
||||
reasoning_content += block["thinking"]
|
||||
if thinking_content is not None:
|
||||
reasoning_content += thinking_content
|
||||
return reasoning_content
|
||||
|
||||
def chunk_parser(self, chunk: dict) -> ModelResponseStream:
|
||||
|
@ -567,7 +574,13 @@ class ModelResponseIterator:
|
|||
usage: Optional[Usage] = None
|
||||
provider_specific_fields: Dict[str, Any] = {}
|
||||
reasoning_content: Optional[str] = None
|
||||
thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
|
||||
thinking_blocks: Optional[
|
||||
List[
|
||||
Union[
|
||||
ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock
|
||||
]
|
||||
]
|
||||
] = None
|
||||
|
||||
index = int(chunk.get("index", 0))
|
||||
if type_chunk == "content_block_delta":
|
||||
|
@ -605,6 +618,15 @@ class ModelResponseIterator:
|
|||
},
|
||||
"index": self.tool_index,
|
||||
}
|
||||
elif (
|
||||
content_block_start["content_block"]["type"] == "redacted_thinking"
|
||||
):
|
||||
thinking_blocks = [
|
||||
ChatCompletionRedactedThinkingBlock(
|
||||
type="redacted_thinking",
|
||||
data=content_block_start["content_block"]["data"],
|
||||
)
|
||||
]
|
||||
elif type_chunk == "content_block_stop":
|
||||
ContentBlockStop(**chunk) # type: ignore
|
||||
# check if tool call content block
|
||||
|
|
|
@ -7,6 +7,9 @@ import httpx
|
|||
import litellm
|
||||
from litellm.constants import (
|
||||
DEFAULT_ANTHROPIC_CHAT_MAX_TOKENS,
|
||||
DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET,
|
||||
DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET,
|
||||
DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET,
|
||||
RESPONSE_FORMAT_TOOL_NAME,
|
||||
)
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
|
@ -27,6 +30,7 @@ from litellm.types.llms.openai import (
|
|||
REASONING_EFFORT,
|
||||
AllMessageValues,
|
||||
ChatCompletionCachedContent,
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
ChatCompletionSystemMessage,
|
||||
ChatCompletionThinkingBlock,
|
||||
ChatCompletionToolCallChunk,
|
||||
|
@ -276,11 +280,20 @@ class AnthropicConfig(AnthropicModelInfo, BaseConfig):
|
|||
if reasoning_effort is None:
|
||||
return None
|
||||
elif reasoning_effort == "low":
|
||||
return AnthropicThinkingParam(type="enabled", budget_tokens=1024)
|
||||
return AnthropicThinkingParam(
|
||||
type="enabled",
|
||||
budget_tokens=DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET,
|
||||
)
|
||||
elif reasoning_effort == "medium":
|
||||
return AnthropicThinkingParam(type="enabled", budget_tokens=2048)
|
||||
return AnthropicThinkingParam(
|
||||
type="enabled",
|
||||
budget_tokens=DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET,
|
||||
)
|
||||
elif reasoning_effort == "high":
|
||||
return AnthropicThinkingParam(type="enabled", budget_tokens=4096)
|
||||
return AnthropicThinkingParam(
|
||||
type="enabled",
|
||||
budget_tokens=DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unmapped reasoning effort: {reasoning_effort}")
|
||||
|
||||
|
@ -563,13 +576,21 @@ class AnthropicConfig(AnthropicModelInfo, BaseConfig):
|
|||
) -> Tuple[
|
||||
str,
|
||||
Optional[List[Any]],
|
||||
Optional[List[ChatCompletionThinkingBlock]],
|
||||
Optional[
|
||||
List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
]
|
||||
],
|
||||
Optional[str],
|
||||
List[ChatCompletionToolCallChunk],
|
||||
]:
|
||||
text_content = ""
|
||||
citations: Optional[List[Any]] = None
|
||||
thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
|
||||
thinking_blocks: Optional[
|
||||
List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
]
|
||||
] = None
|
||||
reasoning_content: Optional[str] = None
|
||||
tool_calls: List[ChatCompletionToolCallChunk] = []
|
||||
for idx, content in enumerate(completion_response["content"]):
|
||||
|
@ -588,20 +609,30 @@ class AnthropicConfig(AnthropicModelInfo, BaseConfig):
|
|||
index=idx,
|
||||
)
|
||||
)
|
||||
## CITATIONS
|
||||
if content.get("citations", None) is not None:
|
||||
if citations is None:
|
||||
citations = []
|
||||
citations.append(content["citations"])
|
||||
if content.get("thinking", None) is not None:
|
||||
|
||||
elif content.get("thinking", None) is not None:
|
||||
if thinking_blocks is None:
|
||||
thinking_blocks = []
|
||||
thinking_blocks.append(cast(ChatCompletionThinkingBlock, content))
|
||||
elif content["type"] == "redacted_thinking":
|
||||
if thinking_blocks is None:
|
||||
thinking_blocks = []
|
||||
thinking_blocks.append(
|
||||
cast(ChatCompletionRedactedThinkingBlock, content)
|
||||
)
|
||||
|
||||
## CITATIONS
|
||||
if content.get("citations") is not None:
|
||||
if citations is None:
|
||||
citations = []
|
||||
citations.append(content["citations"])
|
||||
if thinking_blocks is not None:
|
||||
reasoning_content = ""
|
||||
for block in thinking_blocks:
|
||||
if "thinking" in block:
|
||||
reasoning_content += block["thinking"]
|
||||
thinking_content = cast(Optional[str], block.get("thinking"))
|
||||
if thinking_content is not None:
|
||||
reasoning_content += thinking_content
|
||||
|
||||
return text_content, citations, thinking_blocks, reasoning_content, tool_calls
|
||||
|
||||
def calculate_usage(
|
||||
|
@ -691,7 +722,13 @@ class AnthropicConfig(AnthropicModelInfo, BaseConfig):
|
|||
else:
|
||||
text_content = ""
|
||||
citations: Optional[List[Any]] = None
|
||||
thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
|
||||
thinking_blocks: Optional[
|
||||
List[
|
||||
Union[
|
||||
ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock
|
||||
]
|
||||
]
|
||||
] = None
|
||||
reasoning_content: Optional[str] = None
|
||||
tool_calls: List[ChatCompletionToolCallChunk] = []
|
||||
|
||||
|
|
|
@ -288,6 +288,7 @@ class AzureAssistantsAPI(BaseAzureLLM):
|
|||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
client=client,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
|
||||
thread_message: OpenAIMessage = openai_client.beta.threads.messages.create( # type: ignore
|
||||
|
|
|
@ -79,7 +79,7 @@ class AzureOpenAIO1Config(OpenAIOSeriesConfig):
|
|||
return True
|
||||
|
||||
def is_o_series_model(self, model: str) -> bool:
|
||||
return "o1" in model or "o3" in model or "o_series/" in model
|
||||
return "o1" in model or "o3" in model or "o4" in model or "o_series/" in model
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
|
|
|
@ -61,7 +61,7 @@ def process_azure_headers(headers: Union[httpx.Headers, dict]) -> dict:
|
|||
return {**llm_response_headers, **openai_headers}
|
||||
|
||||
|
||||
def get_azure_ad_token_from_entrata_id(
|
||||
def get_azure_ad_token_from_entra_id(
|
||||
tenant_id: str,
|
||||
client_id: str,
|
||||
client_secret: str,
|
||||
|
@ -81,7 +81,7 @@ def get_azure_ad_token_from_entrata_id(
|
|||
"""
|
||||
from azure.identity import ClientSecretCredential, get_bearer_token_provider
|
||||
|
||||
verbose_logger.debug("Getting Azure AD Token from Entrata ID")
|
||||
verbose_logger.debug("Getting Azure AD Token from Entra ID")
|
||||
|
||||
if tenant_id.startswith("os.environ/"):
|
||||
_tenant_id = get_secret_str(tenant_id)
|
||||
|
@ -324,9 +324,9 @@ class BaseAzureLLM(BaseOpenAILLM):
|
|||
timeout = litellm_params.get("timeout")
|
||||
if not api_key and tenant_id and client_id and client_secret:
|
||||
verbose_logger.debug(
|
||||
"Using Azure AD Token Provider from Entrata ID for Azure Auth"
|
||||
"Using Azure AD Token Provider from Entra ID for Azure Auth"
|
||||
)
|
||||
azure_ad_token_provider = get_azure_ad_token_from_entrata_id(
|
||||
azure_ad_token_provider = get_azure_ad_token_from_entra_id(
|
||||
tenant_id=tenant_id,
|
||||
client_id=client_id,
|
||||
client_secret=client_secret,
|
||||
|
|
94
litellm/llms/azure/responses/transformation.py
Normal file
|
@ -0,0 +1,94 @@
|
|||
from typing import TYPE_CHECKING, Any, Optional, cast
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.llms.openai.responses.transformation import OpenAIResponsesAPIConfig
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import *
|
||||
from litellm.utils import _add_path_to_api_base
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
||||
|
||||
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
||||
else:
|
||||
LiteLLMLoggingObj = Any
|
||||
|
||||
|
||||
class AzureOpenAIResponsesAPIConfig(OpenAIResponsesAPIConfig):
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
api_key: Optional[str] = None,
|
||||
) -> dict:
|
||||
api_key = (
|
||||
api_key
|
||||
or litellm.api_key
|
||||
or litellm.azure_key
|
||||
or get_secret_str("AZURE_OPENAI_API_KEY")
|
||||
or get_secret_str("AZURE_API_KEY")
|
||||
)
|
||||
|
||||
headers.update(
|
||||
{
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
}
|
||||
)
|
||||
return headers
|
||||
|
||||
def get_complete_url(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
model: str,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
stream: Optional[bool] = None,
|
||||
) -> str:
|
||||
"""
|
||||
Constructs a complete URL for the API request.
|
||||
|
||||
Args:
|
||||
- api_base: Base URL, e.g.,
|
||||
"https://litellm8397336933.openai.azure.com"
|
||||
OR
|
||||
"https://litellm8397336933.openai.azure.com/openai/responses?api-version=2024-05-01-preview"
|
||||
- model: Model name.
|
||||
- optional_params: Additional query parameters, including "api_version".
|
||||
- stream: If streaming is required (optional).
|
||||
|
||||
Returns:
|
||||
- A complete URL string, e.g.,
|
||||
"https://litellm8397336933.openai.azure.com/openai/responses?api-version=2024-05-01-preview"
|
||||
"""
|
||||
api_base = api_base or litellm.api_base or get_secret_str("AZURE_API_BASE")
|
||||
if api_base is None:
|
||||
raise ValueError(
|
||||
f"api_base is required for Azure AI Studio. Please set the api_base parameter. Passed `api_base={api_base}`"
|
||||
)
|
||||
original_url = httpx.URL(api_base)
|
||||
|
||||
# Extract api_version or use default
|
||||
api_version = cast(Optional[str], litellm_params.get("api_version"))
|
||||
|
||||
# Create a new dictionary with existing params
|
||||
query_params = dict(original_url.params)
|
||||
|
||||
# Add api_version if needed
|
||||
if "api-version" not in query_params and api_version:
|
||||
query_params["api-version"] = api_version
|
||||
|
||||
# Add the path to the base URL
|
||||
if "/openai/responses" not in api_base:
|
||||
new_url = _add_path_to_api_base(
|
||||
api_base=api_base, ending_path="/openai/responses"
|
||||
)
|
||||
else:
|
||||
new_url = api_base
|
||||
|
||||
# Use the new query_params dictionary
|
||||
final_url = httpx.URL(new_url).copy_with(params=query_params)
|
||||
|
||||
return str(final_url)
|
|
@ -1,3 +1,4 @@
|
|||
import enum
|
||||
from typing import Any, List, Optional, Tuple, cast
|
||||
from urllib.parse import urlparse
|
||||
|
||||
|
@ -19,6 +20,10 @@ from litellm.types.utils import ModelResponse, ProviderField
|
|||
from litellm.utils import _add_path_to_api_base, supports_tool_choice
|
||||
|
||||
|
||||
class AzureFoundryErrorStrings(str, enum.Enum):
|
||||
SET_EXTRA_PARAMETERS_TO_PASS_THROUGH = "Set extra-parameters to 'pass-through'"
|
||||
|
||||
|
||||
class AzureAIStudioConfig(OpenAIConfig):
|
||||
def get_supported_openai_params(self, model: str) -> List:
|
||||
model_supports_tool_choice = True # azure ai supports this by default
|
||||
|
@ -240,12 +245,18 @@ class AzureAIStudioConfig(OpenAIConfig):
|
|||
) -> bool:
|
||||
should_drop_params = litellm_params.get("drop_params") or litellm.drop_params
|
||||
error_text = e.response.text
|
||||
|
||||
if should_drop_params and "Extra inputs are not permitted" in error_text:
|
||||
return True
|
||||
elif (
|
||||
"unknown field: parameter index is not a valid field" in error_text
|
||||
): # remove index from tool calls
|
||||
return True
|
||||
elif (
|
||||
AzureFoundryErrorStrings.SET_EXTRA_PARAMETERS_TO_PASS_THROUGH.value
|
||||
in error_text
|
||||
): # remove extra-parameters from tool calls
|
||||
return True
|
||||
return super().should_retry_llm_api_inside_llm_translation_on_http_error(
|
||||
e=e, litellm_params=litellm_params
|
||||
)
|
||||
|
@ -265,5 +276,46 @@ class AzureAIStudioConfig(OpenAIConfig):
|
|||
litellm.remove_index_from_tool_calls(
|
||||
messages=_messages,
|
||||
)
|
||||
elif (
|
||||
AzureFoundryErrorStrings.SET_EXTRA_PARAMETERS_TO_PASS_THROUGH.value
|
||||
in e.response.text
|
||||
):
|
||||
request_data = self._drop_extra_params_from_request_data(
|
||||
request_data, e.response.text
|
||||
)
|
||||
data = drop_params_from_unprocessable_entity_error(e=e, data=request_data)
|
||||
return data
|
||||
|
||||
def _drop_extra_params_from_request_data(
|
||||
self, request_data: dict, error_text: str
|
||||
) -> dict:
|
||||
params_to_drop = self._extract_params_to_drop_from_error_text(error_text)
|
||||
if params_to_drop:
|
||||
for param in params_to_drop:
|
||||
if param in request_data:
|
||||
request_data.pop(param, None)
|
||||
return request_data
|
||||
|
||||
def _extract_params_to_drop_from_error_text(
|
||||
self, error_text: str
|
||||
) -> Optional[List[str]]:
|
||||
"""
|
||||
Error text looks like this"
|
||||
"Extra parameters ['stream_options', 'extra-parameters'] are not allowed when extra-parameters is not set or set to be 'error'.
|
||||
"""
|
||||
import re
|
||||
|
||||
# Extract parameters within square brackets
|
||||
match = re.search(r"\[(.*?)\]", error_text)
|
||||
if not match:
|
||||
return []
|
||||
|
||||
# Parse the extracted string into a list of parameter names
|
||||
params_str = match.group(1)
|
||||
params = []
|
||||
for param in params_str.split(","):
|
||||
# Clean up the parameter name (remove quotes, spaces)
|
||||
clean_param = param.strip().strip("'").strip('"')
|
||||
if clean_param:
|
||||
params.append(clean_param)
|
||||
return params
|
||||
|
|
|
@ -1,9 +1,16 @@
|
|||
import json
|
||||
from abc import abstractmethod
|
||||
from typing import Optional, Union
|
||||
from typing import List, Optional, Union, cast
|
||||
|
||||
import litellm
|
||||
from litellm.types.utils import GenericStreamingChunk, ModelResponseStream
|
||||
from litellm.types.utils import (
|
||||
Choices,
|
||||
Delta,
|
||||
GenericStreamingChunk,
|
||||
ModelResponse,
|
||||
ModelResponseStream,
|
||||
StreamingChoices,
|
||||
)
|
||||
|
||||
|
||||
class BaseModelResponseIterator:
|
||||
|
@ -121,6 +128,59 @@ class BaseModelResponseIterator:
|
|||
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
|
||||
|
||||
|
||||
class MockResponseIterator: # for returning ai21 streaming responses
|
||||
def __init__(
|
||||
self, model_response: ModelResponse, json_mode: Optional[bool] = False
|
||||
):
|
||||
self.model_response = model_response
|
||||
self.json_mode = json_mode
|
||||
self.is_done = False
|
||||
|
||||
# Sync iterator
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def _chunk_parser(self, chunk_data: ModelResponse) -> ModelResponseStream:
|
||||
try:
|
||||
streaming_choices: List[StreamingChoices] = []
|
||||
for choice in chunk_data.choices:
|
||||
streaming_choices.append(
|
||||
StreamingChoices(
|
||||
index=choice.index,
|
||||
delta=Delta(
|
||||
**cast(Choices, choice).message.model_dump(),
|
||||
),
|
||||
finish_reason=choice.finish_reason,
|
||||
)
|
||||
)
|
||||
processed_chunk = ModelResponseStream(
|
||||
id=chunk_data.id,
|
||||
object="chat.completion",
|
||||
created=chunk_data.created,
|
||||
model=chunk_data.model,
|
||||
choices=streaming_choices,
|
||||
)
|
||||
return processed_chunk
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to decode chunk: {chunk_data}. Error: {e}")
|
||||
|
||||
def __next__(self):
|
||||
if self.is_done:
|
||||
raise StopIteration
|
||||
self.is_done = True
|
||||
return self._chunk_parser(self.model_response)
|
||||
|
||||
# Async iterator
|
||||
def __aiter__(self):
|
||||
return self
|
||||
|
||||
async def __anext__(self):
|
||||
if self.is_done:
|
||||
raise StopAsyncIteration
|
||||
self.is_done = True
|
||||
return self._chunk_parser(self.model_response)
|
||||
|
||||
|
||||
class FakeStreamResponseIterator:
|
||||
def __init__(self, model_response, json_mode: Optional[bool] = False):
|
||||
self.model_response = model_response
|
||||
|
|
|
@ -73,7 +73,10 @@ class BaseResponsesAPIConfig(ABC):
|
|||
def get_complete_url(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
model: str,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
stream: Optional[bool] = None,
|
||||
) -> str:
|
||||
"""
|
||||
|
|
|
@ -22,6 +22,7 @@ from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMExcepti
|
|||
from litellm.types.llms.bedrock import *
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
ChatCompletionResponseMessage,
|
||||
ChatCompletionSystemMessage,
|
||||
ChatCompletionThinkingBlock,
|
||||
|
@ -375,25 +376,27 @@ class AmazonConverseConfig(BaseConfig):
|
|||
system_content_blocks: List[SystemContentBlock] = []
|
||||
for idx, message in enumerate(messages):
|
||||
if message["role"] == "system":
|
||||
_system_content_block: Optional[SystemContentBlock] = None
|
||||
_cache_point_block: Optional[SystemContentBlock] = None
|
||||
if isinstance(message["content"], str) and len(message["content"]) > 0:
|
||||
_system_content_block = SystemContentBlock(text=message["content"])
|
||||
_cache_point_block = self._get_cache_point_block(
|
||||
system_prompt_indices.append(idx)
|
||||
if isinstance(message["content"], str) and message["content"]:
|
||||
system_content_blocks.append(
|
||||
SystemContentBlock(text=message["content"])
|
||||
)
|
||||
cache_block = self._get_cache_point_block(
|
||||
message, block_type="system"
|
||||
)
|
||||
if cache_block:
|
||||
system_content_blocks.append(cache_block)
|
||||
elif isinstance(message["content"], list):
|
||||
for m in message["content"]:
|
||||
if m.get("type", "") == "text" and len(m["text"]) > 0:
|
||||
_system_content_block = SystemContentBlock(text=m["text"])
|
||||
_cache_point_block = self._get_cache_point_block(
|
||||
if m.get("type") == "text" and m.get("text"):
|
||||
system_content_blocks.append(
|
||||
SystemContentBlock(text=m["text"])
|
||||
)
|
||||
cache_block = self._get_cache_point_block(
|
||||
m, block_type="system"
|
||||
)
|
||||
if _system_content_block is not None:
|
||||
system_content_blocks.append(_system_content_block)
|
||||
if _cache_point_block is not None:
|
||||
system_content_blocks.append(_cache_point_block)
|
||||
system_prompt_indices.append(idx)
|
||||
if cache_block:
|
||||
system_content_blocks.append(cache_block)
|
||||
if len(system_prompt_indices) > 0:
|
||||
for idx in reversed(system_prompt_indices):
|
||||
messages.pop(idx)
|
||||
|
@ -627,9 +630,11 @@ class AmazonConverseConfig(BaseConfig):
|
|||
|
||||
def _transform_thinking_blocks(
|
||||
self, thinking_blocks: List[BedrockConverseReasoningContentBlock]
|
||||
) -> List[ChatCompletionThinkingBlock]:
|
||||
) -> List[Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]]:
|
||||
"""Return a consistent format for thinking blocks between Anthropic and Bedrock."""
|
||||
thinking_blocks_list: List[ChatCompletionThinkingBlock] = []
|
||||
thinking_blocks_list: List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
] = []
|
||||
for block in thinking_blocks:
|
||||
if "reasoningText" in block:
|
||||
_thinking_block = ChatCompletionThinkingBlock(type="thinking")
|
||||
|
@ -640,6 +645,11 @@ class AmazonConverseConfig(BaseConfig):
|
|||
if _signature is not None:
|
||||
_thinking_block["signature"] = _signature
|
||||
thinking_blocks_list.append(_thinking_block)
|
||||
elif "redactedContent" in block:
|
||||
_redacted_block = ChatCompletionRedactedThinkingBlock(
|
||||
type="redacted_thinking", data=block["redactedContent"]
|
||||
)
|
||||
thinking_blocks_list.append(_redacted_block)
|
||||
return thinking_blocks_list
|
||||
|
||||
def _transform_usage(self, usage: ConverseTokenUsageBlock) -> Usage:
|
||||
|
|
|
@ -50,6 +50,7 @@ from litellm.llms.custom_httpx.http_handler import (
|
|||
)
|
||||
from litellm.types.llms.bedrock import *
|
||||
from litellm.types.llms.openai import (
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
ChatCompletionThinkingBlock,
|
||||
ChatCompletionToolCallChunk,
|
||||
ChatCompletionToolCallFunctionChunk,
|
||||
|
@ -1255,19 +1256,33 @@ class AWSEventStreamDecoder:
|
|||
|
||||
def translate_thinking_blocks(
|
||||
self, thinking_block: BedrockConverseReasoningContentBlockDelta
|
||||
) -> Optional[List[ChatCompletionThinkingBlock]]:
|
||||
) -> Optional[
|
||||
List[Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]]
|
||||
]:
|
||||
"""
|
||||
Translate the thinking blocks to a string
|
||||
"""
|
||||
|
||||
thinking_blocks_list: List[ChatCompletionThinkingBlock] = []
|
||||
_thinking_block = ChatCompletionThinkingBlock(type="thinking")
|
||||
thinking_blocks_list: List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
] = []
|
||||
_thinking_block: Optional[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
] = None
|
||||
|
||||
if "text" in thinking_block:
|
||||
_thinking_block = ChatCompletionThinkingBlock(type="thinking")
|
||||
_thinking_block["thinking"] = thinking_block["text"]
|
||||
elif "signature" in thinking_block:
|
||||
_thinking_block = ChatCompletionThinkingBlock(type="thinking")
|
||||
_thinking_block["signature"] = thinking_block["signature"]
|
||||
_thinking_block["thinking"] = "" # consistent with anthropic response
|
||||
thinking_blocks_list.append(_thinking_block)
|
||||
elif "redactedContent" in thinking_block:
|
||||
_thinking_block = ChatCompletionRedactedThinkingBlock(
|
||||
type="redacted_thinking", data=thinking_block["redactedContent"]
|
||||
)
|
||||
if _thinking_block is not None:
|
||||
thinking_blocks_list.append(_thinking_block)
|
||||
return thinking_blocks_list
|
||||
|
||||
def converse_chunk_parser(self, chunk_data: dict) -> ModelResponseStream:
|
||||
|
@ -1279,31 +1294,44 @@ class AWSEventStreamDecoder:
|
|||
usage: Optional[Usage] = None
|
||||
provider_specific_fields: dict = {}
|
||||
reasoning_content: Optional[str] = None
|
||||
thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
|
||||
thinking_blocks: Optional[
|
||||
List[
|
||||
Union[
|
||||
ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock
|
||||
]
|
||||
]
|
||||
] = None
|
||||
|
||||
index = int(chunk_data.get("contentBlockIndex", 0))
|
||||
if "start" in chunk_data:
|
||||
start_obj = ContentBlockStartEvent(**chunk_data["start"])
|
||||
self.content_blocks = [] # reset
|
||||
if (
|
||||
start_obj is not None
|
||||
and "toolUse" in start_obj
|
||||
and start_obj["toolUse"] is not None
|
||||
):
|
||||
## check tool name was formatted by litellm
|
||||
_response_tool_name = start_obj["toolUse"]["name"]
|
||||
response_tool_name = get_bedrock_tool_name(
|
||||
response_tool_name=_response_tool_name
|
||||
)
|
||||
tool_use = {
|
||||
"id": start_obj["toolUse"]["toolUseId"],
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": response_tool_name,
|
||||
"arguments": "",
|
||||
},
|
||||
"index": index,
|
||||
}
|
||||
if start_obj is not None:
|
||||
if "toolUse" in start_obj and start_obj["toolUse"] is not None:
|
||||
## check tool name was formatted by litellm
|
||||
_response_tool_name = start_obj["toolUse"]["name"]
|
||||
response_tool_name = get_bedrock_tool_name(
|
||||
response_tool_name=_response_tool_name
|
||||
)
|
||||
tool_use = {
|
||||
"id": start_obj["toolUse"]["toolUseId"],
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": response_tool_name,
|
||||
"arguments": "",
|
||||
},
|
||||
"index": index,
|
||||
}
|
||||
elif (
|
||||
"reasoningContent" in start_obj
|
||||
and start_obj["reasoningContent"] is not None
|
||||
): # redacted thinking can be in start object
|
||||
thinking_blocks = self.translate_thinking_blocks(
|
||||
start_obj["reasoningContent"]
|
||||
)
|
||||
provider_specific_fields = {
|
||||
"reasoningContent": start_obj["reasoningContent"],
|
||||
}
|
||||
elif "delta" in chunk_data:
|
||||
delta_obj = ContentBlockDeltaEvent(**chunk_data["delta"])
|
||||
self.content_blocks.append(delta_obj)
|
||||
|
|
|
@ -44,7 +44,18 @@ class AmazonBedrockGlobalConfig:
|
|||
)
|
||||
|
||||
def get_ap_regions(self) -> List[str]:
|
||||
return ["ap-northeast-1", "ap-northeast-2", "ap-northeast-3", "ap-south-1"]
|
||||
"""
|
||||
Source: https://www.aws-services.info/bedrock.html
|
||||
"""
|
||||
return [
|
||||
"ap-northeast-1", # Asia Pacific (Tokyo)
|
||||
"ap-northeast-2", # Asia Pacific (Seoul)
|
||||
"ap-northeast-3", # Asia Pacific (Osaka)
|
||||
"ap-south-1", # Asia Pacific (Mumbai)
|
||||
"ap-south-2", # Asia Pacific (Hyderabad)
|
||||
"ap-southeast-1", # Asia Pacific (Singapore)
|
||||
"ap-southeast-2", # Asia Pacific (Sydney)
|
||||
]
|
||||
|
||||
def get_sa_regions(self) -> List[str]:
|
||||
return ["sa-east-1"]
|
||||
|
@ -54,10 +65,14 @@ class AmazonBedrockGlobalConfig:
|
|||
Source: https://www.aws-services.info/bedrock.html
|
||||
"""
|
||||
return [
|
||||
"eu-west-1",
|
||||
"eu-west-2",
|
||||
"eu-west-3",
|
||||
"eu-central-1",
|
||||
"eu-west-1", # Europe (Ireland)
|
||||
"eu-west-2", # Europe (London)
|
||||
"eu-west-3", # Europe (Paris)
|
||||
"eu-central-1", # Europe (Frankfurt)
|
||||
"eu-central-2", # Europe (Zurich)
|
||||
"eu-south-1", # Europe (Milan)
|
||||
"eu-south-2", # Europe (Spain)
|
||||
"eu-north-1", # Europe (Stockholm)
|
||||
]
|
||||
|
||||
def get_ca_regions(self) -> List[str]:
|
||||
|
@ -68,11 +83,12 @@ class AmazonBedrockGlobalConfig:
|
|||
Source: https://www.aws-services.info/bedrock.html
|
||||
"""
|
||||
return [
|
||||
"us-east-2",
|
||||
"us-east-1",
|
||||
"us-west-1",
|
||||
"us-west-2",
|
||||
"us-gov-west-1",
|
||||
"us-east-1", # US East (N. Virginia)
|
||||
"us-east-2", # US East (Ohio)
|
||||
"us-west-1", # US West (N. California)
|
||||
"us-west-2", # US West (Oregon)
|
||||
"us-gov-east-1", # AWS GovCloud (US-East)
|
||||
"us-gov-west-1", # AWS GovCloud (US-West)
|
||||
]
|
||||
|
||||
|
||||
|
|
|
@ -8,6 +8,7 @@ import httpx
|
|||
from httpx import USE_CLIENT_DEFAULT, AsyncHTTPTransport, HTTPTransport
|
||||
|
||||
import litellm
|
||||
from litellm.constants import _DEFAULT_TTL_FOR_HTTPX_CLIENTS
|
||||
from litellm.litellm_core_utils.logging_utils import track_llm_api_timing
|
||||
from litellm.types.llms.custom_http import *
|
||||
|
||||
|
@ -31,7 +32,6 @@ headers = {
|
|||
|
||||
# https://www.python-httpx.org/advanced/timeouts
|
||||
_DEFAULT_TIMEOUT = httpx.Timeout(timeout=5.0, connect=5.0)
|
||||
_DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour
|
||||
|
||||
|
||||
def mask_sensitive_info(error_message):
|
||||
|
|
|
@ -11,6 +11,7 @@ from litellm._logging import verbose_logger
|
|||
from litellm.llms.base_llm.audio_transcription.transformation import (
|
||||
BaseAudioTranscriptionConfig,
|
||||
)
|
||||
from litellm.llms.base_llm.base_model_iterator import MockResponseIterator
|
||||
from litellm.llms.base_llm.chat.transformation import BaseConfig
|
||||
from litellm.llms.base_llm.embedding.transformation import BaseEmbeddingConfig
|
||||
from litellm.llms.base_llm.files.transformation import BaseFilesConfig
|
||||
|
@ -228,11 +229,17 @@ class BaseLLMHTTPHandler:
|
|||
api_key: Optional[str] = None,
|
||||
headers: Optional[dict] = {},
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
provider_config: Optional[BaseConfig] = None,
|
||||
):
|
||||
json_mode: bool = optional_params.pop("json_mode", False)
|
||||
extra_body: Optional[dict] = optional_params.pop("extra_body", None)
|
||||
fake_stream = fake_stream or optional_params.pop("fake_stream", False)
|
||||
|
||||
provider_config = ProviderConfigManager.get_provider_chat_config(
|
||||
model=model, provider=litellm.LlmProviders(custom_llm_provider)
|
||||
provider_config = (
|
||||
provider_config
|
||||
or ProviderConfigManager.get_provider_chat_config(
|
||||
model=model, provider=litellm.LlmProviders(custom_llm_provider)
|
||||
)
|
||||
)
|
||||
if provider_config is None:
|
||||
raise ValueError(
|
||||
|
@ -267,6 +274,9 @@ class BaseLLMHTTPHandler:
|
|||
headers=headers,
|
||||
)
|
||||
|
||||
if extra_body is not None:
|
||||
data = {**data, **extra_body}
|
||||
|
||||
headers = provider_config.sign_request(
|
||||
headers=headers,
|
||||
optional_params=optional_params,
|
||||
|
@ -313,6 +323,7 @@ class BaseLLMHTTPHandler:
|
|||
),
|
||||
litellm_params=litellm_params,
|
||||
json_mode=json_mode,
|
||||
optional_params=optional_params,
|
||||
)
|
||||
|
||||
else:
|
||||
|
@ -374,6 +385,7 @@ class BaseLLMHTTPHandler:
|
|||
),
|
||||
litellm_params=litellm_params,
|
||||
json_mode=json_mode,
|
||||
optional_params=optional_params,
|
||||
)
|
||||
return CustomStreamWrapper(
|
||||
completion_stream=completion_stream,
|
||||
|
@ -422,6 +434,7 @@ class BaseLLMHTTPHandler:
|
|||
model: str,
|
||||
messages: list,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
fake_stream: bool = False,
|
||||
|
@ -453,11 +466,22 @@ class BaseLLMHTTPHandler:
|
|||
)
|
||||
|
||||
if fake_stream is True:
|
||||
completion_stream = provider_config.get_model_response_iterator(
|
||||
streaming_response=response.json(),
|
||||
sync_stream=True,
|
||||
model_response: ModelResponse = provider_config.transform_response(
|
||||
model=model,
|
||||
raw_response=response,
|
||||
model_response=litellm.ModelResponse(),
|
||||
logging_obj=logging_obj,
|
||||
request_data=data,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
encoding=None,
|
||||
json_mode=json_mode,
|
||||
)
|
||||
|
||||
completion_stream: Any = MockResponseIterator(
|
||||
model_response=model_response, json_mode=json_mode
|
||||
)
|
||||
else:
|
||||
completion_stream = provider_config.get_model_response_iterator(
|
||||
streaming_response=response.iter_lines(),
|
||||
|
@ -487,6 +511,7 @@ class BaseLLMHTTPHandler:
|
|||
logging_obj: LiteLLMLoggingObj,
|
||||
data: dict,
|
||||
litellm_params: dict,
|
||||
optional_params: dict,
|
||||
fake_stream: bool = False,
|
||||
client: Optional[AsyncHTTPHandler] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
|
@ -505,6 +530,7 @@ class BaseLLMHTTPHandler:
|
|||
)
|
||||
|
||||
completion_stream, _response_headers = await self.make_async_call_stream_helper(
|
||||
model=model,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
provider_config=provider_config,
|
||||
api_base=api_base,
|
||||
|
@ -516,6 +542,8 @@ class BaseLLMHTTPHandler:
|
|||
fake_stream=fake_stream,
|
||||
client=client,
|
||||
litellm_params=litellm_params,
|
||||
optional_params=optional_params,
|
||||
json_mode=json_mode,
|
||||
)
|
||||
streamwrapper = CustomStreamWrapper(
|
||||
completion_stream=completion_stream,
|
||||
|
@ -527,6 +555,7 @@ class BaseLLMHTTPHandler:
|
|||
|
||||
async def make_async_call_stream_helper(
|
||||
self,
|
||||
model: str,
|
||||
custom_llm_provider: str,
|
||||
provider_config: BaseConfig,
|
||||
api_base: str,
|
||||
|
@ -536,8 +565,10 @@ class BaseLLMHTTPHandler:
|
|||
logging_obj: LiteLLMLoggingObj,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
litellm_params: dict,
|
||||
optional_params: dict,
|
||||
fake_stream: bool = False,
|
||||
client: Optional[AsyncHTTPHandler] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> Tuple[Any, httpx.Headers]:
|
||||
"""
|
||||
Helper function for making an async call with stream.
|
||||
|
@ -568,8 +599,21 @@ class BaseLLMHTTPHandler:
|
|||
)
|
||||
|
||||
if fake_stream is True:
|
||||
completion_stream = provider_config.get_model_response_iterator(
|
||||
streaming_response=response.json(), sync_stream=False
|
||||
model_response: ModelResponse = provider_config.transform_response(
|
||||
model=model,
|
||||
raw_response=response,
|
||||
model_response=litellm.ModelResponse(),
|
||||
logging_obj=logging_obj,
|
||||
request_data=data,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
encoding=None,
|
||||
json_mode=json_mode,
|
||||
)
|
||||
|
||||
completion_stream: Any = MockResponseIterator(
|
||||
model_response=model_response, json_mode=json_mode
|
||||
)
|
||||
else:
|
||||
completion_stream = provider_config.get_model_response_iterator(
|
||||
|
@ -594,8 +638,12 @@ class BaseLLMHTTPHandler:
|
|||
"""
|
||||
Some providers like Bedrock invoke do not support the stream parameter in the request body, we only pass `stream` in the request body the provider supports it.
|
||||
"""
|
||||
|
||||
if fake_stream is True:
|
||||
return data
|
||||
# remove 'stream' from data
|
||||
new_data = data.copy()
|
||||
new_data.pop("stream", None)
|
||||
return new_data
|
||||
if provider_config.supports_stream_param_in_request_body is True:
|
||||
data["stream"] = True
|
||||
return data
|
||||
|
@ -1011,9 +1059,16 @@ class BaseLLMHTTPHandler:
|
|||
if extra_headers:
|
||||
headers.update(extra_headers)
|
||||
|
||||
# Check if streaming is requested
|
||||
stream = response_api_optional_request_params.get("stream", False)
|
||||
|
||||
api_base = responses_api_provider_config.get_complete_url(
|
||||
api_base=litellm_params.api_base,
|
||||
api_key=litellm_params.api_key,
|
||||
model=model,
|
||||
optional_params=response_api_optional_request_params,
|
||||
litellm_params=dict(litellm_params),
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
data = responses_api_provider_config.transform_responses_api_request(
|
||||
|
@ -1035,9 +1090,6 @@ class BaseLLMHTTPHandler:
|
|||
},
|
||||
)
|
||||
|
||||
# Check if streaming is requested
|
||||
stream = response_api_optional_request_params.get("stream", False)
|
||||
|
||||
try:
|
||||
if stream:
|
||||
# For streaming, use stream=True in the request
|
||||
|
@ -1126,9 +1178,16 @@ class BaseLLMHTTPHandler:
|
|||
if extra_headers:
|
||||
headers.update(extra_headers)
|
||||
|
||||
# Check if streaming is requested
|
||||
stream = response_api_optional_request_params.get("stream", False)
|
||||
|
||||
api_base = responses_api_provider_config.get_complete_url(
|
||||
api_base=litellm_params.api_base,
|
||||
api_key=litellm_params.api_key,
|
||||
model=model,
|
||||
optional_params=response_api_optional_request_params,
|
||||
litellm_params=dict(litellm_params),
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
data = responses_api_provider_config.transform_responses_api_request(
|
||||
|
@ -1149,8 +1208,6 @@ class BaseLLMHTTPHandler:
|
|||
"headers": headers,
|
||||
},
|
||||
)
|
||||
# Check if streaming is requested
|
||||
stream = response_api_optional_request_params.get("stream", False)
|
||||
|
||||
try:
|
||||
if stream:
|
||||
|
|
|
@ -37,6 +37,7 @@ from litellm.types.llms.databricks import (
|
|||
)
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
ChatCompletionThinkingBlock,
|
||||
ChatCompletionToolChoiceFunctionParam,
|
||||
ChatCompletionToolChoiceObjectParam,
|
||||
|
@ -314,13 +315,24 @@ class DatabricksConfig(DatabricksBase, OpenAILikeChatConfig, AnthropicConfig):
|
|||
@staticmethod
|
||||
def extract_reasoning_content(
|
||||
content: Optional[AllDatabricksContentValues],
|
||||
) -> Tuple[Optional[str], Optional[List[ChatCompletionThinkingBlock]]]:
|
||||
) -> Tuple[
|
||||
Optional[str],
|
||||
Optional[
|
||||
List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
]
|
||||
],
|
||||
]:
|
||||
"""
|
||||
Extract and return the reasoning content and thinking blocks
|
||||
"""
|
||||
if content is None:
|
||||
return None, None
|
||||
thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
|
||||
thinking_blocks: Optional[
|
||||
List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
]
|
||||
] = None
|
||||
reasoning_content: Optional[str] = None
|
||||
if isinstance(content, list):
|
||||
for item in content:
|
||||
|
|
|
@ -1,15 +1,33 @@
|
|||
from typing import List, Literal, Optional, Tuple, Union, cast
|
||||
import json
|
||||
import uuid
|
||||
from typing import Any, List, Literal, Optional, Tuple, Union, cast
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.constants import RESPONSE_FORMAT_TOOL_NAME
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.litellm_core_utils.llm_response_utils.get_headers import (
|
||||
get_response_headers,
|
||||
)
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionImageObject,
|
||||
ChatCompletionToolParam,
|
||||
OpenAIChatCompletionToolParam,
|
||||
)
|
||||
from litellm.types.utils import ProviderSpecificModelInfo
|
||||
from litellm.types.utils import (
|
||||
ChatCompletionMessageToolCall,
|
||||
Choices,
|
||||
Function,
|
||||
Message,
|
||||
ModelResponse,
|
||||
ProviderSpecificModelInfo,
|
||||
)
|
||||
|
||||
from ...openai.chat.gpt_transformation import OpenAIGPTConfig
|
||||
from ..common_utils import FireworksAIException
|
||||
|
||||
|
||||
class FireworksAIConfig(OpenAIGPTConfig):
|
||||
|
@ -219,6 +237,94 @@ class FireworksAIConfig(OpenAIGPTConfig):
|
|||
headers=headers,
|
||||
)
|
||||
|
||||
def _handle_message_content_with_tool_calls(
|
||||
self,
|
||||
message: Message,
|
||||
tool_calls: Optional[List[ChatCompletionToolParam]],
|
||||
) -> Message:
|
||||
"""
|
||||
Fireworks AI sends tool calls in the content field instead of tool_calls
|
||||
|
||||
Relevant Issue: https://github.com/BerriAI/litellm/issues/7209#issuecomment-2813208780
|
||||
"""
|
||||
if (
|
||||
tool_calls is not None
|
||||
and message.content is not None
|
||||
and message.tool_calls is None
|
||||
):
|
||||
try:
|
||||
function = Function(**json.loads(message.content))
|
||||
if function.name != RESPONSE_FORMAT_TOOL_NAME and function.name in [
|
||||
tool["function"]["name"] for tool in tool_calls
|
||||
]:
|
||||
tool_call = ChatCompletionMessageToolCall(
|
||||
function=function, id=str(uuid.uuid4()), type="function"
|
||||
)
|
||||
message.tool_calls = [tool_call]
|
||||
|
||||
message.content = None
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return message
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
original_response=raw_response.text,
|
||||
additional_args={"complete_input_dict": request_data},
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
try:
|
||||
completion_response = raw_response.json()
|
||||
except Exception as e:
|
||||
response_headers = getattr(raw_response, "headers", None)
|
||||
raise FireworksAIException(
|
||||
message="Unable to get json response - {}, Original Response: {}".format(
|
||||
str(e), raw_response.text
|
||||
),
|
||||
status_code=raw_response.status_code,
|
||||
headers=response_headers,
|
||||
)
|
||||
|
||||
raw_response_headers = dict(raw_response.headers)
|
||||
|
||||
additional_headers = get_response_headers(raw_response_headers)
|
||||
|
||||
response = ModelResponse(**completion_response)
|
||||
|
||||
if response.model is not None:
|
||||
response.model = "fireworks_ai/" + response.model
|
||||
|
||||
## FIREWORKS AI sends tool calls in the content field instead of tool_calls
|
||||
for choice in response.choices:
|
||||
cast(
|
||||
Choices, choice
|
||||
).message = self._handle_message_content_with_tool_calls(
|
||||
message=cast(Choices, choice).message,
|
||||
tool_calls=optional_params.get("tools", None),
|
||||
)
|
||||
|
||||
response._hidden_params = {"additional_headers": additional_headers}
|
||||
|
||||
return response
|
||||
|
||||
def _get_openai_compatible_provider_info(
|
||||
self, api_base: Optional[str], api_key: Optional[str]
|
||||
) -> Tuple[Optional[str], Optional[str]]:
|
||||
|
|
|
@ -7,6 +7,7 @@ from litellm.litellm_core_utils.prompt_templates.factory import (
|
|||
)
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.types.llms.vertex_ai import ContentType, PartType
|
||||
from litellm.utils import supports_reasoning
|
||||
|
||||
from ...vertex_ai.gemini.transformation import _gemini_convert_messages_with_history
|
||||
from ...vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexGeminiConfig
|
||||
|
@ -67,7 +68,7 @@ class GoogleAIStudioGeminiConfig(VertexGeminiConfig):
|
|||
return super().get_config()
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||||
return [
|
||||
supported_params = [
|
||||
"temperature",
|
||||
"top_p",
|
||||
"max_tokens",
|
||||
|
@ -83,6 +84,10 @@ class GoogleAIStudioGeminiConfig(VertexGeminiConfig):
|
|||
"frequency_penalty",
|
||||
"modalities",
|
||||
]
|
||||
if supports_reasoning(model):
|
||||
supported_params.append("reasoning_effort")
|
||||
supported_params.append("thinking")
|
||||
return supported_params
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
|
|
|
@ -14,10 +14,10 @@ from litellm.types.llms.openai import (
|
|||
ChatCompletionToolParamFunctionChunk,
|
||||
)
|
||||
|
||||
from ...openai.chat.gpt_transformation import OpenAIGPTConfig
|
||||
from ...openai_like.chat.transformation import OpenAILikeChatConfig
|
||||
|
||||
|
||||
class GroqChatConfig(OpenAIGPTConfig):
|
||||
class GroqChatConfig(OpenAILikeChatConfig):
|
||||
frequency_penalty: Optional[int] = None
|
||||
function_call: Optional[Union[str, dict]] = None
|
||||
functions: Optional[list] = None
|
||||
|
@ -57,6 +57,14 @@ class GroqChatConfig(OpenAIGPTConfig):
|
|||
def get_config(cls):
|
||||
return super().get_config()
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> list:
|
||||
base_params = super().get_supported_openai_params(model)
|
||||
try:
|
||||
base_params.remove("max_retries")
|
||||
except ValueError:
|
||||
pass
|
||||
return base_params
|
||||
|
||||
def _transform_messages(self, messages: List[AllMessageValues], model: str) -> List:
|
||||
for idx, message in enumerate(messages):
|
||||
"""
|
||||
|
@ -124,8 +132,11 @@ class GroqChatConfig(OpenAIGPTConfig):
|
|||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool = False,
|
||||
replace_max_completion_tokens_with_max_tokens: bool = False, # groq supports max_completion_tokens
|
||||
) -> dict:
|
||||
_response_format = non_default_params.get("response_format")
|
||||
if self._should_fake_stream(non_default_params):
|
||||
optional_params["fake_stream"] = True
|
||||
if _response_format is not None and isinstance(_response_format, dict):
|
||||
json_schema: Optional[dict] = None
|
||||
if "response_schema" in _response_format:
|
||||
|
@ -152,6 +163,8 @@ class GroqChatConfig(OpenAIGPTConfig):
|
|||
non_default_params.pop(
|
||||
"response_format", None
|
||||
) # only remove if it's a json_schema - handled via using groq's tool calling params.
|
||||
return super().map_openai_params(
|
||||
optional_params = super().map_openai_params(
|
||||
non_default_params, optional_params, model, drop_params
|
||||
)
|
||||
|
||||
return optional_params
|
||||
|
|
|
@ -2,9 +2,19 @@
|
|||
Translate from OpenAI's `/v1/chat/completions` to VLLM's `/v1/chat/completions`
|
||||
"""
|
||||
|
||||
from typing import Optional, Tuple
|
||||
from typing import List, Optional, Tuple, cast
|
||||
|
||||
from litellm.litellm_core_utils.prompt_templates.common_utils import (
|
||||
_get_image_mime_type_from_url,
|
||||
)
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import _parse_mime_type
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionFileObject,
|
||||
ChatCompletionVideoObject,
|
||||
ChatCompletionVideoUrlObject,
|
||||
)
|
||||
|
||||
from ....utils import _remove_additional_properties, _remove_strict_from_schema
|
||||
from ...openai.chat.gpt_transformation import OpenAIGPTConfig
|
||||
|
@ -38,3 +48,71 @@ class HostedVLLMChatConfig(OpenAIGPTConfig):
|
|||
api_key or get_secret_str("HOSTED_VLLM_API_KEY") or "fake-api-key"
|
||||
) # vllm does not require an api key
|
||||
return api_base, dynamic_api_key
|
||||
|
||||
def _is_video_file(self, content_item: ChatCompletionFileObject) -> bool:
|
||||
"""
|
||||
Check if the file is a video
|
||||
|
||||
- format: video/<extension>
|
||||
- file_data: base64 encoded video data
|
||||
- file_id: infer mp4 from extension
|
||||
"""
|
||||
file = content_item.get("file", {})
|
||||
format = file.get("format")
|
||||
file_data = file.get("file_data")
|
||||
file_id = file.get("file_id")
|
||||
if content_item.get("type") != "file":
|
||||
return False
|
||||
if format and format.startswith("video/"):
|
||||
return True
|
||||
elif file_data:
|
||||
mime_type = _parse_mime_type(file_data)
|
||||
if mime_type and mime_type.startswith("video/"):
|
||||
return True
|
||||
elif file_id:
|
||||
mime_type = _get_image_mime_type_from_url(file_id)
|
||||
if mime_type and mime_type.startswith("video/"):
|
||||
return True
|
||||
return False
|
||||
|
||||
def _convert_file_to_video_url(
|
||||
self, content_item: ChatCompletionFileObject
|
||||
) -> ChatCompletionVideoObject:
|
||||
file = content_item.get("file", {})
|
||||
file_id = file.get("file_id")
|
||||
file_data = file.get("file_data")
|
||||
|
||||
if file_id:
|
||||
return ChatCompletionVideoObject(
|
||||
type="video_url", video_url=ChatCompletionVideoUrlObject(url=file_id)
|
||||
)
|
||||
elif file_data:
|
||||
return ChatCompletionVideoObject(
|
||||
type="video_url", video_url=ChatCompletionVideoUrlObject(url=file_data)
|
||||
)
|
||||
raise ValueError("file_id or file_data is required")
|
||||
|
||||
def _transform_messages(
|
||||
self, messages: List[AllMessageValues], model: str
|
||||
) -> List[AllMessageValues]:
|
||||
"""
|
||||
Support translating video files from file_id or file_data to video_url
|
||||
"""
|
||||
for message in messages:
|
||||
if message["role"] == "user":
|
||||
message_content = message.get("content")
|
||||
if message_content and isinstance(message_content, list):
|
||||
replaced_content_items: List[
|
||||
Tuple[int, ChatCompletionFileObject]
|
||||
] = []
|
||||
for idx, content_item in enumerate(message_content):
|
||||
if content_item.get("type") == "file":
|
||||
content_item = cast(ChatCompletionFileObject, content_item)
|
||||
if self._is_video_file(content_item):
|
||||
replaced_content_items.append((idx, content_item))
|
||||
for idx, content_item in replaced_content_items:
|
||||
message_content[idx] = self._convert_file_to_video_url(
|
||||
content_item
|
||||
)
|
||||
transformed_messages = super()._transform_messages(messages, model)
|
||||
return transformed_messages
|
||||
|
|
|
@ -13,6 +13,7 @@ class LiteLLMProxyChatConfig(OpenAIGPTConfig):
|
|||
def get_supported_openai_params(self, model: str) -> List:
|
||||
list = super().get_supported_openai_params(model)
|
||||
list.append("thinking")
|
||||
list.append("reasoning_effort")
|
||||
return list
|
||||
|
||||
def _map_openai_params(
|
||||
|
|
|
@ -131,7 +131,10 @@ class OpenAIOSeriesConfig(OpenAIGPTConfig):
|
|||
|
||||
def is_model_o_series_model(self, model: str) -> bool:
|
||||
if model in litellm.open_ai_chat_completion_models and (
|
||||
"o1" in model or "o3" in model
|
||||
"o1" in model
|
||||
or "o3" in model
|
||||
or "o4"
|
||||
in model # [TODO] make this a more generic check (e.g. using `openai-o-series` as provider like gemini)
|
||||
):
|
||||
return True
|
||||
return False
|
||||
|
|
|
@ -110,7 +110,10 @@ class OpenAIResponsesAPIConfig(BaseResponsesAPIConfig):
|
|||
def get_complete_url(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
model: str,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
stream: Optional[bool] = None,
|
||||
) -> str:
|
||||
"""
|
||||
|
|
|
@ -7,7 +7,7 @@ from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Union
|
|||
import httpx
|
||||
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import ChatCompletionAssistantMessage
|
||||
from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
from ...openai.chat.gpt_transformation import OpenAIGPTConfig
|
||||
|
@ -25,7 +25,6 @@ class OpenAILikeChatConfig(OpenAIGPTConfig):
|
|||
self,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
model: Optional[str] = None,
|
||||
) -> Tuple[Optional[str], Optional[str]]:
|
||||
api_base = api_base or get_secret_str("OPENAI_LIKE_API_BASE") # type: ignore
|
||||
dynamic_api_key = (
|
||||
|
@ -74,8 +73,8 @@ class OpenAILikeChatConfig(OpenAIGPTConfig):
|
|||
messages: List,
|
||||
print_verbose,
|
||||
encoding,
|
||||
json_mode: bool,
|
||||
custom_llm_provider: str,
|
||||
json_mode: Optional[bool],
|
||||
custom_llm_provider: Optional[str],
|
||||
base_model: Optional[str],
|
||||
) -> ModelResponse:
|
||||
response_json = response.json()
|
||||
|
@ -97,14 +96,46 @@ class OpenAILikeChatConfig(OpenAIGPTConfig):
|
|||
|
||||
returned_response = ModelResponse(**response_json)
|
||||
|
||||
returned_response.model = (
|
||||
custom_llm_provider + "/" + (returned_response.model or "")
|
||||
)
|
||||
if custom_llm_provider is not None:
|
||||
returned_response.model = (
|
||||
custom_llm_provider + "/" + (returned_response.model or "")
|
||||
)
|
||||
|
||||
if base_model is not None:
|
||||
returned_response._hidden_params["model"] = base_model
|
||||
return returned_response
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
return OpenAILikeChatConfig._transform_response(
|
||||
model=model,
|
||||
response=raw_response,
|
||||
model_response=model_response,
|
||||
stream=optional_params.get("stream", False),
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
data=request_data,
|
||||
messages=messages,
|
||||
print_verbose=None,
|
||||
encoding=None,
|
||||
json_mode=json_mode,
|
||||
custom_llm_provider=None,
|
||||
base_model=None,
|
||||
)
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
|
|
|
@ -201,8 +201,6 @@ class TritonGenerateConfig(TritonConfig):
|
|||
"max_tokens": int(
|
||||
optional_params.get("max_tokens", DEFAULT_MAX_TOKENS_FOR_TRITON)
|
||||
),
|
||||
"bad_words": [""],
|
||||
"stop_words": [""],
|
||||
},
|
||||
"stream": bool(stream),
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from typing import Any, Dict, List, Literal, Optional, Set, Tuple, Union, get_type_hints
|
||||
import re
|
||||
from typing import Any, Dict, List, Literal, Optional, Set, Tuple, Union, get_type_hints
|
||||
|
||||
import httpx
|
||||
|
||||
|
@ -165,9 +165,18 @@ def _check_text_in_content(parts: List[PartType]) -> bool:
|
|||
return has_text_param
|
||||
|
||||
|
||||
def _build_vertex_schema(parameters: dict):
|
||||
def _build_vertex_schema(parameters: dict, add_property_ordering: bool = False):
|
||||
"""
|
||||
This is a modified version of https://github.com/google-gemini/generative-ai-python/blob/8f77cc6ac99937cd3a81299ecf79608b91b06bbb/google/generativeai/types/content_types.py#L419
|
||||
|
||||
Updates the input parameters, removing extraneous fields, adjusting types, unwinding $defs, and adding propertyOrdering if specified, returning the updated parameters.
|
||||
|
||||
Parameters:
|
||||
parameters: dict - the json schema to build from
|
||||
add_property_ordering: bool - whether to add propertyOrdering to the schema. This is only applicable to schemas for structured outputs. See
|
||||
set_schema_property_ordering for more details.
|
||||
Returns:
|
||||
parameters: dict - the input parameters, modified in place
|
||||
"""
|
||||
# Get valid fields from Schema TypedDict
|
||||
valid_schema_fields = set(get_type_hints(Schema).keys())
|
||||
|
@ -186,8 +195,40 @@ def _build_vertex_schema(parameters: dict):
|
|||
add_object_type(parameters)
|
||||
# Postprocessing
|
||||
# Filter out fields that don't exist in Schema
|
||||
filtered_parameters = filter_schema_fields(parameters, valid_schema_fields)
|
||||
return filtered_parameters
|
||||
parameters = filter_schema_fields(parameters, valid_schema_fields)
|
||||
|
||||
if add_property_ordering:
|
||||
set_schema_property_ordering(parameters)
|
||||
return parameters
|
||||
|
||||
|
||||
def set_schema_property_ordering(
|
||||
schema: Dict[str, Any], depth: int = 0
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
vertex ai and generativeai apis order output of fields alphabetically, unless you specify the order.
|
||||
python dicts retain order, so we just use that. Note that this field only applies to structured outputs, and not tools.
|
||||
Function tools are not afflicted by the same alphabetical ordering issue, (the order of keys returned seems to be arbitrary, up to the model)
|
||||
https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.cachedContents#Schema.FIELDS.property_ordering
|
||||
|
||||
Args:
|
||||
schema: The schema dictionary to process
|
||||
depth: Current recursion depth to prevent infinite loops
|
||||
"""
|
||||
if depth > DEFAULT_MAX_RECURSE_DEPTH:
|
||||
raise ValueError(
|
||||
f"Max depth of {DEFAULT_MAX_RECURSE_DEPTH} exceeded while processing schema. Please check the schema for excessive nesting."
|
||||
)
|
||||
|
||||
if "properties" in schema and isinstance(schema["properties"], dict):
|
||||
# retain propertyOrdering as an escape hatch if user already specifies it
|
||||
if "propertyOrdering" not in schema:
|
||||
schema["propertyOrdering"] = [k for k, v in schema["properties"].items()]
|
||||
for k, v in schema["properties"].items():
|
||||
set_schema_property_ordering(v, depth + 1)
|
||||
if "items" in schema:
|
||||
set_schema_property_ordering(schema["items"], depth + 1)
|
||||
return schema
|
||||
|
||||
|
||||
def filter_schema_fields(
|
||||
|
@ -360,6 +401,7 @@ def construct_target_url(
|
|||
Constructed Url:
|
||||
POST https://LOCATION-aiplatform.googleapis.com/{version}/projects/PROJECT_ID/locations/LOCATION/cachedContents
|
||||
"""
|
||||
|
||||
new_base_url = httpx.URL(base_url)
|
||||
if "locations" in requested_route: # contains the target project id + location
|
||||
if vertex_project and vertex_location:
|
||||
|
|
|
@ -12,6 +12,9 @@ from pydantic import BaseModel
|
|||
|
||||
import litellm
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.litellm_core_utils.prompt_templates.common_utils import (
|
||||
_get_image_mime_type_from_url,
|
||||
)
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import (
|
||||
convert_to_anthropic_image_obj,
|
||||
convert_to_gemini_tool_call_invoke,
|
||||
|
@ -99,62 +102,6 @@ def _process_gemini_image(image_url: str, format: Optional[str] = None) -> PartT
|
|||
raise e
|
||||
|
||||
|
||||
def _get_image_mime_type_from_url(url: str) -> Optional[str]:
|
||||
"""
|
||||
Get mime type for common image URLs
|
||||
See gemini mime types: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/image-understanding#image-requirements
|
||||
|
||||
Supported by Gemini:
|
||||
application/pdf
|
||||
audio/mpeg
|
||||
audio/mp3
|
||||
audio/wav
|
||||
image/png
|
||||
image/jpeg
|
||||
image/webp
|
||||
text/plain
|
||||
video/mov
|
||||
video/mpeg
|
||||
video/mp4
|
||||
video/mpg
|
||||
video/avi
|
||||
video/wmv
|
||||
video/mpegps
|
||||
video/flv
|
||||
"""
|
||||
url = url.lower()
|
||||
|
||||
# Map file extensions to mime types
|
||||
mime_types = {
|
||||
# Images
|
||||
(".jpg", ".jpeg"): "image/jpeg",
|
||||
(".png",): "image/png",
|
||||
(".webp",): "image/webp",
|
||||
# Videos
|
||||
(".mp4",): "video/mp4",
|
||||
(".mov",): "video/mov",
|
||||
(".mpeg", ".mpg"): "video/mpeg",
|
||||
(".avi",): "video/avi",
|
||||
(".wmv",): "video/wmv",
|
||||
(".mpegps",): "video/mpegps",
|
||||
(".flv",): "video/flv",
|
||||
# Audio
|
||||
(".mp3",): "audio/mp3",
|
||||
(".wav",): "audio/wav",
|
||||
(".mpeg",): "audio/mpeg",
|
||||
# Documents
|
||||
(".pdf",): "application/pdf",
|
||||
(".txt",): "text/plain",
|
||||
}
|
||||
|
||||
# Check each extension group against the URL
|
||||
for extensions, mime_type in mime_types.items():
|
||||
if any(url.endswith(ext) for ext in extensions):
|
||||
return mime_type
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def _gemini_convert_messages_with_history( # noqa: PLR0915
|
||||
messages: List[AllMessageValues],
|
||||
) -> List[ContentType]:
|
||||
|
@ -269,6 +216,11 @@ def _gemini_convert_messages_with_history( # noqa: PLR0915
|
|||
msg_dict = messages[msg_i] # type: ignore
|
||||
assistant_msg = ChatCompletionAssistantMessage(**msg_dict) # type: ignore
|
||||
_message_content = assistant_msg.get("content", None)
|
||||
reasoning_content = assistant_msg.get("reasoning_content", None)
|
||||
if reasoning_content is not None:
|
||||
assistant_content.append(
|
||||
PartType(thought=True, text=reasoning_content)
|
||||
)
|
||||
if _message_content is not None and isinstance(_message_content, list):
|
||||
_parts = []
|
||||
for element in _message_content:
|
||||
|
@ -276,6 +228,7 @@ def _gemini_convert_messages_with_history( # noqa: PLR0915
|
|||
if element["type"] == "text":
|
||||
_part = PartType(text=element["text"])
|
||||
_parts.append(_part)
|
||||
|
||||
assistant_content.extend(_parts)
|
||||
elif (
|
||||
_message_content is not None
|
||||
|
|
|
@ -24,6 +24,11 @@ import litellm
|
|||
import litellm.litellm_core_utils
|
||||
import litellm.litellm_core_utils.litellm_logging
|
||||
from litellm import verbose_logger
|
||||
from litellm.constants import (
|
||||
DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET,
|
||||
DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET,
|
||||
DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET,
|
||||
)
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
|
@ -31,6 +36,7 @@ from litellm.llms.custom_httpx.http_handler import (
|
|||
HTTPHandler,
|
||||
get_async_httpx_client,
|
||||
)
|
||||
from litellm.types.llms.anthropic import AnthropicThinkingParam
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionResponseMessage,
|
||||
|
@ -45,6 +51,7 @@ from litellm.types.llms.vertex_ai import (
|
|||
ContentType,
|
||||
FunctionCallingConfig,
|
||||
FunctionDeclaration,
|
||||
GeminiThinkingConfig,
|
||||
GenerateContentResponseBody,
|
||||
HttpxPartType,
|
||||
LogprobsResult,
|
||||
|
@ -59,7 +66,7 @@ from litellm.types.utils import (
|
|||
TopLogprob,
|
||||
Usage,
|
||||
)
|
||||
from litellm.utils import CustomStreamWrapper, ModelResponse
|
||||
from litellm.utils import CustomStreamWrapper, ModelResponse, supports_reasoning
|
||||
|
||||
from ....utils import _remove_additional_properties, _remove_strict_from_schema
|
||||
from ..common_utils import VertexAIError, _build_vertex_schema
|
||||
|
@ -190,7 +197,7 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
return super().get_config()
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||||
return [
|
||||
supported_params = [
|
||||
"temperature",
|
||||
"top_p",
|
||||
"max_tokens",
|
||||
|
@ -207,9 +214,13 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
"extra_headers",
|
||||
"seed",
|
||||
"logprobs",
|
||||
"top_logprobs", # Added this to list of supported openAI params
|
||||
"top_logprobs",
|
||||
"modalities",
|
||||
]
|
||||
if supports_reasoning(model):
|
||||
supported_params.append("reasoning_effort")
|
||||
supported_params.append("thinking")
|
||||
return supported_params
|
||||
|
||||
def map_tool_choice_values(
|
||||
self, model: str, tool_choice: Union[str, dict]
|
||||
|
@ -313,9 +324,14 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
if isinstance(old_schema, list):
|
||||
for item in old_schema:
|
||||
if isinstance(item, dict):
|
||||
item = _build_vertex_schema(parameters=item)
|
||||
item = _build_vertex_schema(
|
||||
parameters=item, add_property_ordering=True
|
||||
)
|
||||
|
||||
elif isinstance(old_schema, dict):
|
||||
old_schema = _build_vertex_schema(parameters=old_schema)
|
||||
old_schema = _build_vertex_schema(
|
||||
parameters=old_schema, add_property_ordering=True
|
||||
)
|
||||
return old_schema
|
||||
|
||||
def apply_response_schema_transformation(self, value: dict, optional_params: dict):
|
||||
|
@ -342,6 +358,43 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
value=optional_params["response_schema"]
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _map_reasoning_effort_to_thinking_budget(
|
||||
reasoning_effort: str,
|
||||
) -> GeminiThinkingConfig:
|
||||
if reasoning_effort == "low":
|
||||
return {
|
||||
"thinkingBudget": DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET,
|
||||
"includeThoughts": True,
|
||||
}
|
||||
elif reasoning_effort == "medium":
|
||||
return {
|
||||
"thinkingBudget": DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET,
|
||||
"includeThoughts": True,
|
||||
}
|
||||
elif reasoning_effort == "high":
|
||||
return {
|
||||
"thinkingBudget": DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET,
|
||||
"includeThoughts": True,
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Invalid reasoning effort: {reasoning_effort}")
|
||||
|
||||
@staticmethod
|
||||
def _map_thinking_param(
|
||||
thinking_param: AnthropicThinkingParam,
|
||||
) -> GeminiThinkingConfig:
|
||||
thinking_enabled = thinking_param.get("type") == "enabled"
|
||||
thinking_budget = thinking_param.get("budget_tokens")
|
||||
|
||||
params: GeminiThinkingConfig = {}
|
||||
if thinking_enabled:
|
||||
params["includeThoughts"] = True
|
||||
if thinking_budget:
|
||||
params["thinkingBudget"] = thinking_budget
|
||||
|
||||
return params
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: Dict,
|
||||
|
@ -398,6 +451,16 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
optional_params["tool_choice"] = _tool_choice_value
|
||||
elif param == "seed":
|
||||
optional_params["seed"] = value
|
||||
elif param == "reasoning_effort" and isinstance(value, str):
|
||||
optional_params[
|
||||
"thinkingConfig"
|
||||
] = VertexGeminiConfig._map_reasoning_effort_to_thinking_budget(value)
|
||||
elif param == "thinking":
|
||||
optional_params[
|
||||
"thinkingConfig"
|
||||
] = VertexGeminiConfig._map_thinking_param(
|
||||
cast(AnthropicThinkingParam, value)
|
||||
)
|
||||
elif param == "modalities" and isinstance(value, list):
|
||||
response_modalities = []
|
||||
for modality in value:
|
||||
|
@ -513,19 +576,28 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
|
||||
def get_assistant_content_message(
|
||||
self, parts: List[HttpxPartType]
|
||||
) -> Optional[str]:
|
||||
_content_str = ""
|
||||
) -> Tuple[Optional[str], Optional[str]]:
|
||||
content_str: Optional[str] = None
|
||||
reasoning_content_str: Optional[str] = None
|
||||
for part in parts:
|
||||
_content_str = ""
|
||||
if "text" in part:
|
||||
_content_str += part["text"]
|
||||
elif "inlineData" in part: # base64 encoded image
|
||||
_content_str += "data:{};base64,{}".format(
|
||||
part["inlineData"]["mimeType"], part["inlineData"]["data"]
|
||||
)
|
||||
if len(_content_str) > 0:
|
||||
if part.get("thought") is True:
|
||||
if reasoning_content_str is None:
|
||||
reasoning_content_str = ""
|
||||
reasoning_content_str += _content_str
|
||||
else:
|
||||
if content_str is None:
|
||||
content_str = ""
|
||||
content_str += _content_str
|
||||
|
||||
if _content_str:
|
||||
return _content_str
|
||||
return None
|
||||
return content_str, reasoning_content_str
|
||||
|
||||
def _transform_parts(
|
||||
self,
|
||||
|
@ -676,6 +748,7 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
audio_tokens: Optional[int] = None
|
||||
text_tokens: Optional[int] = None
|
||||
prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None
|
||||
reasoning_tokens: Optional[int] = None
|
||||
if "cachedContentTokenCount" in completion_response["usageMetadata"]:
|
||||
cached_tokens = completion_response["usageMetadata"][
|
||||
"cachedContentTokenCount"
|
||||
|
@ -686,7 +759,10 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
audio_tokens = detail["tokenCount"]
|
||||
elif detail["modality"] == "TEXT":
|
||||
text_tokens = detail["tokenCount"]
|
||||
|
||||
if "thoughtsTokenCount" in completion_response["usageMetadata"]:
|
||||
reasoning_tokens = completion_response["usageMetadata"][
|
||||
"thoughtsTokenCount"
|
||||
]
|
||||
prompt_tokens_details = PromptTokensDetailsWrapper(
|
||||
cached_tokens=cached_tokens,
|
||||
audio_tokens=audio_tokens,
|
||||
|
@ -702,6 +778,7 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
),
|
||||
total_tokens=completion_response["usageMetadata"].get("totalTokenCount", 0),
|
||||
prompt_tokens_details=prompt_tokens_details,
|
||||
reasoning_tokens=reasoning_tokens,
|
||||
)
|
||||
|
||||
return usage
|
||||
|
@ -730,11 +807,16 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
citation_metadata.append(candidate["citationMetadata"])
|
||||
|
||||
if "parts" in candidate["content"]:
|
||||
chat_completion_message[
|
||||
"content"
|
||||
] = VertexGeminiConfig().get_assistant_content_message(
|
||||
(
|
||||
content,
|
||||
reasoning_content,
|
||||
) = VertexGeminiConfig().get_assistant_content_message(
|
||||
parts=candidate["content"]["parts"]
|
||||
)
|
||||
if content is not None:
|
||||
chat_completion_message["content"] = content
|
||||
if reasoning_content is not None:
|
||||
chat_completion_message["reasoning_content"] = reasoning_content
|
||||
|
||||
functions, tools = self._transform_parts(
|
||||
parts=candidate["content"]["parts"],
|
||||
|
|
|
@ -38,7 +38,7 @@ def generate_iam_token(api_key=None, **params) -> str:
|
|||
headers = {}
|
||||
headers["Content-Type"] = "application/x-www-form-urlencoded"
|
||||
if api_key is None:
|
||||
api_key = get_secret_str("WX_API_KEY") or get_secret_str("WATSONX_API_KEY")
|
||||
api_key = get_secret_str("WX_API_KEY") or get_secret_str("WATSONX_API_KEY") or get_secret_str("WATSONX_APIKEY")
|
||||
if api_key is None:
|
||||
raise ValueError("API key is required")
|
||||
headers["Accept"] = "application/json"
|
||||
|
|
|
@ -1435,6 +1435,7 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
custom_llm_provider=custom_llm_provider,
|
||||
encoding=encoding,
|
||||
stream=stream,
|
||||
provider_config=provider_config,
|
||||
)
|
||||
except Exception as e:
|
||||
## LOGGING - log the original exception returned
|
||||
|
@ -1596,6 +1597,37 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
additional_args={"headers": headers},
|
||||
)
|
||||
response = _response
|
||||
elif custom_llm_provider == "fireworks_ai":
|
||||
## COMPLETION CALL
|
||||
try:
|
||||
response = base_llm_http_handler.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
headers=headers,
|
||||
model_response=model_response,
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
acompletion=acompletion,
|
||||
logging_obj=logging,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
timeout=timeout, # type: ignore
|
||||
client=client,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
encoding=encoding,
|
||||
stream=stream,
|
||||
provider_config=provider_config,
|
||||
)
|
||||
except Exception as e:
|
||||
## LOGGING - log the original exception returned
|
||||
logging.post_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
original_response=str(e),
|
||||
additional_args={"headers": headers},
|
||||
)
|
||||
raise e
|
||||
|
||||
elif custom_llm_provider == "groq":
|
||||
api_base = (
|
||||
api_base # for deepinfra/perplexity/anyscale/groq/friendliai we check in get_llm_provider and pass in the api base from there
|
||||
|
@ -1622,24 +1654,22 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
): # completion(top_k=3) > openai_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
response = groq_chat_completions.completion(
|
||||
response = base_llm_http_handler.completion(
|
||||
model=model,
|
||||
stream=stream,
|
||||
messages=messages,
|
||||
headers=headers,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
acompletion=acompletion,
|
||||
logging_obj=logging,
|
||||
api_base=api_base,
|
||||
model_response=model_response,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
timeout=timeout, # type: ignore
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
client=client, # pass AsyncOpenAI, OpenAI client
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
timeout=timeout,
|
||||
headers=headers,
|
||||
encoding=encoding,
|
||||
api_key=api_key,
|
||||
logging_obj=logging, # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements
|
||||
client=client,
|
||||
)
|
||||
elif custom_llm_provider == "aiohttp_openai":
|
||||
# NEW aiohttp provider for 10-100x higher RPS
|
||||
|
@ -2658,9 +2688,9 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
"aws_region_name" not in optional_params
|
||||
or optional_params["aws_region_name"] is None
|
||||
):
|
||||
optional_params["aws_region_name"] = (
|
||||
aws_bedrock_client.meta.region_name
|
||||
)
|
||||
optional_params[
|
||||
"aws_region_name"
|
||||
] = aws_bedrock_client.meta.region_name
|
||||
|
||||
bedrock_route = BedrockModelInfo.get_bedrock_route(model)
|
||||
if bedrock_route == "converse":
|
||||
|
@ -4382,9 +4412,9 @@ def adapter_completion(
|
|||
new_kwargs = translation_obj.translate_completion_input_params(kwargs=kwargs)
|
||||
|
||||
response: Union[ModelResponse, CustomStreamWrapper] = completion(**new_kwargs) # type: ignore
|
||||
translated_response: Optional[Union[BaseModel, AdapterCompletionStreamWrapper]] = (
|
||||
None
|
||||
)
|
||||
translated_response: Optional[
|
||||
Union[BaseModel, AdapterCompletionStreamWrapper]
|
||||
] = None
|
||||
if isinstance(response, ModelResponse):
|
||||
translated_response = translation_obj.translate_completion_output_params(
|
||||
response=response
|
||||
|
@ -5804,9 +5834,9 @@ def stream_chunk_builder( # noqa: PLR0915
|
|||
]
|
||||
|
||||
if len(content_chunks) > 0:
|
||||
response["choices"][0]["message"]["content"] = (
|
||||
processor.get_combined_content(content_chunks)
|
||||
)
|
||||
response["choices"][0]["message"][
|
||||
"content"
|
||||
] = processor.get_combined_content(content_chunks)
|
||||
|
||||
reasoning_chunks = [
|
||||
chunk
|
||||
|
@ -5817,9 +5847,9 @@ def stream_chunk_builder( # noqa: PLR0915
|
|||
]
|
||||
|
||||
if len(reasoning_chunks) > 0:
|
||||
response["choices"][0]["message"]["reasoning_content"] = (
|
||||
processor.get_combined_reasoning_content(reasoning_chunks)
|
||||
)
|
||||
response["choices"][0]["message"][
|
||||
"reasoning_content"
|
||||
] = processor.get_combined_reasoning_content(reasoning_chunks)
|
||||
|
||||
audio_chunks = [
|
||||
chunk
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
"max_output_tokens": "max output tokens, if the provider specifies it. if not default to max_tokens",
|
||||
"input_cost_per_token": 0.0000,
|
||||
"output_cost_per_token": 0.000,
|
||||
"output_cost_per_reasoning_token": 0.000,
|
||||
"litellm_provider": "one of https://docs.litellm.ai/docs/providers",
|
||||
"mode": "one of: chat, embedding, completion, image_generation, audio_transcription, audio_speech, image_generation, moderation, rerank",
|
||||
"supports_function_calling": true,
|
||||
|
@ -600,6 +601,40 @@
|
|||
"supports_vision": true,
|
||||
"supports_prompt_caching": true
|
||||
},
|
||||
"o3": {
|
||||
"max_tokens": 100000,
|
||||
"max_input_tokens": 200000,
|
||||
"max_output_tokens": 100000,
|
||||
"input_cost_per_token": 1e-5,
|
||||
"output_cost_per_token": 4e-5,
|
||||
"cache_read_input_token_cost": 2.5e-6,
|
||||
"litellm_provider": "openai",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": false,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_reasoning": true,
|
||||
"supports_tool_choice": true
|
||||
},
|
||||
"o3-2025-04-16": {
|
||||
"max_tokens": 100000,
|
||||
"max_input_tokens": 200000,
|
||||
"max_output_tokens": 100000,
|
||||
"input_cost_per_token": 1e-5,
|
||||
"output_cost_per_token": 4e-5,
|
||||
"cache_read_input_token_cost": 2.5e-6,
|
||||
"litellm_provider": "openai",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": false,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_reasoning": true,
|
||||
"supports_tool_choice": true
|
||||
},
|
||||
"o3-mini": {
|
||||
"max_tokens": 100000,
|
||||
"max_input_tokens": 200000,
|
||||
|
@ -634,6 +669,40 @@
|
|||
"supports_reasoning": true,
|
||||
"supports_tool_choice": true
|
||||
},
|
||||
"o4-mini": {
|
||||
"max_tokens": 100000,
|
||||
"max_input_tokens": 200000,
|
||||
"max_output_tokens": 100000,
|
||||
"input_cost_per_token": 1.1e-6,
|
||||
"output_cost_per_token": 4.4e-6,
|
||||
"cache_read_input_token_cost": 2.75e-7,
|
||||
"litellm_provider": "openai",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": false,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_reasoning": true,
|
||||
"supports_tool_choice": true
|
||||
},
|
||||
"o4-mini-2025-04-16": {
|
||||
"max_tokens": 100000,
|
||||
"max_input_tokens": 200000,
|
||||
"max_output_tokens": 100000,
|
||||
"input_cost_per_token": 1.1e-6,
|
||||
"output_cost_per_token": 4.4e-6,
|
||||
"cache_read_input_token_cost": 2.75e-7,
|
||||
"litellm_provider": "openai",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": false,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_reasoning": true,
|
||||
"supports_tool_choice": true
|
||||
},
|
||||
"o1-mini-2024-09-12": {
|
||||
"max_tokens": 65536,
|
||||
"max_input_tokens": 128000,
|
||||
|
@ -1403,6 +1472,295 @@
|
|||
"litellm_provider": "openai",
|
||||
"supported_endpoints": ["/v1/audio/speech"]
|
||||
},
|
||||
"azure/computer-use-preview": {
|
||||
"max_tokens": 1024,
|
||||
"max_input_tokens": 8192,
|
||||
"max_output_tokens": 1024,
|
||||
"input_cost_per_token": 0.000003,
|
||||
"output_cost_per_token": 0.000012,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supported_endpoints": ["/v1/responses"],
|
||||
"supported_modalities": ["text", "image"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": false,
|
||||
"supports_system_messages": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_native_streaming": false,
|
||||
"supports_reasoning": true
|
||||
},
|
||||
"azure/gpt-4o-audio-preview-2024-12-17": {
|
||||
"max_tokens": 16384,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 16384,
|
||||
"input_cost_per_token": 0.0000025,
|
||||
"input_cost_per_audio_token": 0.00004,
|
||||
"output_cost_per_token": 0.00001,
|
||||
"output_cost_per_audio_token": 0.00008,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supported_endpoints": ["/v1/chat/completions"],
|
||||
"supported_modalities": ["text", "audio"],
|
||||
"supported_output_modalities": ["text", "audio"],
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": true,
|
||||
"supports_response_schema": false,
|
||||
"supports_vision": false,
|
||||
"supports_prompt_caching": false,
|
||||
"supports_system_messages": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_native_streaming": true,
|
||||
"supports_reasoning": false
|
||||
},
|
||||
"azure/gpt-4o-mini-audio-preview-2024-12-17": {
|
||||
"max_tokens": 16384,
|
||||
"max_input_tokens": 128000,
|
||||
"max_output_tokens": 16384,
|
||||
"input_cost_per_token": 0.0000025,
|
||||
"input_cost_per_audio_token": 0.00004,
|
||||
"output_cost_per_token": 0.00001,
|
||||
"output_cost_per_audio_token": 0.00008,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supported_endpoints": ["/v1/chat/completions"],
|
||||
"supported_modalities": ["text", "audio"],
|
||||
"supported_output_modalities": ["text", "audio"],
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": true,
|
||||
"supports_response_schema": false,
|
||||
"supports_vision": false,
|
||||
"supports_prompt_caching": false,
|
||||
"supports_system_messages": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_native_streaming": true,
|
||||
"supports_reasoning": false
|
||||
},
|
||||
"azure/gpt-4.1": {
|
||||
"max_tokens": 32768,
|
||||
"max_input_tokens": 1047576,
|
||||
"max_output_tokens": 32768,
|
||||
"input_cost_per_token": 2e-6,
|
||||
"output_cost_per_token": 8e-6,
|
||||
"input_cost_per_token_batches": 1e-6,
|
||||
"output_cost_per_token_batches": 4e-6,
|
||||
"cache_read_input_token_cost": 0.5e-6,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supported_endpoints": ["/v1/chat/completions", "/v1/batch", "/v1/responses"],
|
||||
"supported_modalities": ["text", "image"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_system_messages": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_native_streaming": true,
|
||||
"supports_web_search": true,
|
||||
"search_context_cost_per_query": {
|
||||
"search_context_size_low": 30e-3,
|
||||
"search_context_size_medium": 35e-3,
|
||||
"search_context_size_high": 50e-3
|
||||
}
|
||||
},
|
||||
"azure/gpt-4.1-2025-04-14": {
|
||||
"max_tokens": 32768,
|
||||
"max_input_tokens": 1047576,
|
||||
"max_output_tokens": 32768,
|
||||
"input_cost_per_token": 2e-6,
|
||||
"output_cost_per_token": 8e-6,
|
||||
"input_cost_per_token_batches": 1e-6,
|
||||
"output_cost_per_token_batches": 4e-6,
|
||||
"cache_read_input_token_cost": 0.5e-6,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supported_endpoints": ["/v1/chat/completions", "/v1/batch", "/v1/responses"],
|
||||
"supported_modalities": ["text", "image"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_system_messages": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_native_streaming": true,
|
||||
"supports_web_search": true,
|
||||
"search_context_cost_per_query": {
|
||||
"search_context_size_low": 30e-3,
|
||||
"search_context_size_medium": 35e-3,
|
||||
"search_context_size_high": 50e-3
|
||||
}
|
||||
},
|
||||
"azure/gpt-4.1-mini": {
|
||||
"max_tokens": 32768,
|
||||
"max_input_tokens": 1047576,
|
||||
"max_output_tokens": 32768,
|
||||
"input_cost_per_token": 0.4e-6,
|
||||
"output_cost_per_token": 1.6e-6,
|
||||
"input_cost_per_token_batches": 0.2e-6,
|
||||
"output_cost_per_token_batches": 0.8e-6,
|
||||
"cache_read_input_token_cost": 0.1e-6,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supported_endpoints": ["/v1/chat/completions", "/v1/batch", "/v1/responses"],
|
||||
"supported_modalities": ["text", "image"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_system_messages": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_native_streaming": true,
|
||||
"supports_web_search": true,
|
||||
"search_context_cost_per_query": {
|
||||
"search_context_size_low": 25e-3,
|
||||
"search_context_size_medium": 27.5e-3,
|
||||
"search_context_size_high": 30e-3
|
||||
}
|
||||
},
|
||||
"azure/gpt-4.1-mini-2025-04-14": {
|
||||
"max_tokens": 32768,
|
||||
"max_input_tokens": 1047576,
|
||||
"max_output_tokens": 32768,
|
||||
"input_cost_per_token": 0.4e-6,
|
||||
"output_cost_per_token": 1.6e-6,
|
||||
"input_cost_per_token_batches": 0.2e-6,
|
||||
"output_cost_per_token_batches": 0.8e-6,
|
||||
"cache_read_input_token_cost": 0.1e-6,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supported_endpoints": ["/v1/chat/completions", "/v1/batch", "/v1/responses"],
|
||||
"supported_modalities": ["text", "image"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_system_messages": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_native_streaming": true,
|
||||
"supports_web_search": true,
|
||||
"search_context_cost_per_query": {
|
||||
"search_context_size_low": 25e-3,
|
||||
"search_context_size_medium": 27.5e-3,
|
||||
"search_context_size_high": 30e-3
|
||||
}
|
||||
},
|
||||
"azure/gpt-4.1-nano": {
|
||||
"max_tokens": 32768,
|
||||
"max_input_tokens": 1047576,
|
||||
"max_output_tokens": 32768,
|
||||
"input_cost_per_token": 0.1e-6,
|
||||
"output_cost_per_token": 0.4e-6,
|
||||
"input_cost_per_token_batches": 0.05e-6,
|
||||
"output_cost_per_token_batches": 0.2e-6,
|
||||
"cache_read_input_token_cost": 0.025e-6,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supported_endpoints": ["/v1/chat/completions", "/v1/batch", "/v1/responses"],
|
||||
"supported_modalities": ["text", "image"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_system_messages": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_native_streaming": true
|
||||
},
|
||||
"azure/gpt-4.1-nano-2025-04-14": {
|
||||
"max_tokens": 32768,
|
||||
"max_input_tokens": 1047576,
|
||||
"max_output_tokens": 32768,
|
||||
"input_cost_per_token": 0.1e-6,
|
||||
"output_cost_per_token": 0.4e-6,
|
||||
"input_cost_per_token_batches": 0.05e-6,
|
||||
"output_cost_per_token_batches": 0.2e-6,
|
||||
"cache_read_input_token_cost": 0.025e-6,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supported_endpoints": ["/v1/chat/completions", "/v1/batch", "/v1/responses"],
|
||||
"supported_modalities": ["text", "image"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_system_messages": true,
|
||||
"supports_tool_choice": true,
|
||||
"supports_native_streaming": true
|
||||
},
|
||||
"azure/o3": {
|
||||
"max_tokens": 100000,
|
||||
"max_input_tokens": 200000,
|
||||
"max_output_tokens": 100000,
|
||||
"input_cost_per_token": 1e-5,
|
||||
"output_cost_per_token": 4e-5,
|
||||
"cache_read_input_token_cost": 2.5e-6,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supported_endpoints": ["/v1/chat/completions", "/v1/batch", "/v1/responses"],
|
||||
"supported_modalities": ["text", "image"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": false,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_reasoning": true,
|
||||
"supports_tool_choice": true
|
||||
},
|
||||
"azure/o3-2025-04-16": {
|
||||
"max_tokens": 100000,
|
||||
"max_input_tokens": 200000,
|
||||
"max_output_tokens": 100000,
|
||||
"input_cost_per_token": 1e-5,
|
||||
"output_cost_per_token": 4e-5,
|
||||
"cache_read_input_token_cost": 2.5e-6,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supported_endpoints": ["/v1/chat/completions", "/v1/batch", "/v1/responses"],
|
||||
"supported_modalities": ["text", "image"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": false,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_reasoning": true,
|
||||
"supports_tool_choice": true
|
||||
},
|
||||
"azure/o4-mini": {
|
||||
"max_tokens": 100000,
|
||||
"max_input_tokens": 200000,
|
||||
"max_output_tokens": 100000,
|
||||
"input_cost_per_token": 1.1e-6,
|
||||
"output_cost_per_token": 4.4e-6,
|
||||
"cache_read_input_token_cost": 2.75e-7,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supported_endpoints": ["/v1/chat/completions", "/v1/batch", "/v1/responses"],
|
||||
"supported_modalities": ["text", "image"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": false,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_reasoning": true,
|
||||
"supports_tool_choice": true
|
||||
},
|
||||
"azure/gpt-4o-mini-realtime-preview-2024-12-17": {
|
||||
"max_tokens": 4096,
|
||||
"max_input_tokens": 128000,
|
||||
|
@ -1579,6 +1937,23 @@
|
|||
"supports_system_messages": true,
|
||||
"supports_tool_choice": true
|
||||
},
|
||||
"azure/o4-mini-2025-04-16": {
|
||||
"max_tokens": 100000,
|
||||
"max_input_tokens": 200000,
|
||||
"max_output_tokens": 100000,
|
||||
"input_cost_per_token": 1.1e-6,
|
||||
"output_cost_per_token": 4.4e-6,
|
||||
"cache_read_input_token_cost": 2.75e-7,
|
||||
"litellm_provider": "azure",
|
||||
"mode": "chat",
|
||||
"supports_function_calling": true,
|
||||
"supports_parallel_function_calling": false,
|
||||
"supports_vision": true,
|
||||
"supports_prompt_caching": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_reasoning": true,
|
||||
"supports_tool_choice": true
|
||||
},
|
||||
"azure/o3-mini-2025-01-31": {
|
||||
"max_tokens": 100000,
|
||||
"max_input_tokens": 200000,
|
||||
|
@ -5025,6 +5400,64 @@
|
|||
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#gemini-2.0-flash",
|
||||
"supports_tool_choice": true
|
||||
},
|
||||
"gemini/gemini-2.5-flash-preview-04-17": {
|
||||
"max_tokens": 65536,
|
||||
"max_input_tokens": 1048576,
|
||||
"max_output_tokens": 65536,
|
||||
"max_images_per_prompt": 3000,
|
||||
"max_videos_per_prompt": 10,
|
||||
"max_video_length": 1,
|
||||
"max_audio_length_hours": 8.4,
|
||||
"max_audio_per_prompt": 1,
|
||||
"max_pdf_size_mb": 30,
|
||||
"input_cost_per_audio_token": 1e-6,
|
||||
"input_cost_per_token": 0.15e-6,
|
||||
"output_cost_per_token": 0.6e-6,
|
||||
"output_cost_per_reasoning_token": 3.5e-6,
|
||||
"litellm_provider": "gemini",
|
||||
"mode": "chat",
|
||||
"rpm": 10,
|
||||
"tpm": 250000,
|
||||
"supports_system_messages": true,
|
||||
"supports_function_calling": true,
|
||||
"supports_vision": true,
|
||||
"supports_reasoning": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_audio_output": false,
|
||||
"supports_tool_choice": true,
|
||||
"supported_endpoints": ["/v1/chat/completions", "/v1/completions"],
|
||||
"supported_modalities": ["text", "image", "audio", "video"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"source": "https://ai.google.dev/gemini-api/docs/models#gemini-2.5-flash-preview"
|
||||
},
|
||||
"gemini-2.5-flash-preview-04-17": {
|
||||
"max_tokens": 65536,
|
||||
"max_input_tokens": 1048576,
|
||||
"max_output_tokens": 65536,
|
||||
"max_images_per_prompt": 3000,
|
||||
"max_videos_per_prompt": 10,
|
||||
"max_video_length": 1,
|
||||
"max_audio_length_hours": 8.4,
|
||||
"max_audio_per_prompt": 1,
|
||||
"max_pdf_size_mb": 30,
|
||||
"input_cost_per_audio_token": 1e-6,
|
||||
"input_cost_per_token": 0.15e-6,
|
||||
"output_cost_per_token": 0.6e-6,
|
||||
"output_cost_per_reasoning_token": 3.5e-6,
|
||||
"litellm_provider": "vertex_ai-language-models",
|
||||
"mode": "chat",
|
||||
"supports_reasoning": true,
|
||||
"supports_system_messages": true,
|
||||
"supports_function_calling": true,
|
||||
"supports_vision": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_audio_output": false,
|
||||
"supports_tool_choice": true,
|
||||
"supported_endpoints": ["/v1/chat/completions", "/v1/completions", "/v1/batch"],
|
||||
"supported_modalities": ["text", "image", "audio", "video"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"source": "https://ai.google.dev/gemini-api/docs/models#gemini-2.5-flash-preview"
|
||||
},
|
||||
"gemini-2.0-flash": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 1048576,
|
||||
|
@ -5099,6 +5532,35 @@
|
|||
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#gemini-2.0-flash",
|
||||
"supports_tool_choice": true
|
||||
},
|
||||
"gemini-2.5-pro-preview-03-25": {
|
||||
"max_tokens": 65536,
|
||||
"max_input_tokens": 1048576,
|
||||
"max_output_tokens": 65536,
|
||||
"max_images_per_prompt": 3000,
|
||||
"max_videos_per_prompt": 10,
|
||||
"max_video_length": 1,
|
||||
"max_audio_length_hours": 8.4,
|
||||
"max_audio_per_prompt": 1,
|
||||
"max_pdf_size_mb": 30,
|
||||
"input_cost_per_audio_token": 0.00000125,
|
||||
"input_cost_per_token": 0.00000125,
|
||||
"input_cost_per_token_above_200k_tokens": 0.0000025,
|
||||
"output_cost_per_token": 0.00001,
|
||||
"output_cost_per_token_above_200k_tokens": 0.000015,
|
||||
"litellm_provider": "vertex_ai-language-models",
|
||||
"mode": "chat",
|
||||
"supports_reasoning": true,
|
||||
"supports_system_messages": true,
|
||||
"supports_function_calling": true,
|
||||
"supports_vision": true,
|
||||
"supports_response_schema": true,
|
||||
"supports_audio_output": false,
|
||||
"supports_tool_choice": true,
|
||||
"supported_endpoints": ["/v1/chat/completions", "/v1/completions", "/v1/batch"],
|
||||
"supported_modalities": ["text", "image", "audio", "video"],
|
||||
"supported_output_modalities": ["text"],
|
||||
"source": "https://ai.google.dev/gemini-api/docs/models#gemini-2.5-flash-preview"
|
||||
},
|
||||
"gemini/gemini-2.0-pro-exp-02-05": {
|
||||
"max_tokens": 8192,
|
||||
"max_input_tokens": 2097152,
|
||||
|
|
1
litellm/openai-responses-starter-app
Submodule
|
@ -0,0 +1 @@
|
|||
Subproject commit bf0485467c343957ba5c217db777f407b2e65453
|
|
@ -0,0 +1 @@
|
|||
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{96443:function(n,e,t){Promise.resolve().then(t.t.bind(t,39974,23)),Promise.resolve().then(t.t.bind(t,2778,23))},2778:function(){},39974:function(n){n.exports={style:{fontFamily:"'__Inter_cf7686', '__Inter_Fallback_cf7686'",fontStyle:"normal"},className:"__className_cf7686"}}},function(n){n.O(0,[919,986,971,117,744],function(){return n(n.s=96443)}),_N_E=n.O()}]);
|
|
@ -1 +0,0 @@
|
|||
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{6580:function(n,e,t){Promise.resolve().then(t.t.bind(t,39974,23)),Promise.resolve().then(t.t.bind(t,2778,23))},2778:function(){},39974:function(n){n.exports={style:{fontFamily:"'__Inter_cf7686', '__Inter_Fallback_cf7686'",fontStyle:"normal"},className:"__className_cf7686"}}},function(n){n.O(0,[919,986,971,117,744],function(){return n(n.s=6580)}),_N_E=n.O()}]);
|
|
@ -1 +1 @@
|
|||
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[418],{11790:function(e,n,u){Promise.resolve().then(u.bind(u,52829))},52829:function(e,n,u){"use strict";u.r(n),u.d(n,{default:function(){return f}});var t=u(57437),s=u(2265),r=u(99376),c=u(92699);function f(){let e=(0,r.useSearchParams)().get("key"),[n,u]=(0,s.useState)(null);return(0,s.useEffect)(()=>{e&&u(e)},[e]),(0,t.jsx)(c.Z,{accessToken:n,publicPage:!0,premiumUser:!1})}}},function(e){e.O(0,[42,261,250,699,971,117,744],function(){return e(e.s=11790)}),_N_E=e.O()}]);
|
||||
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[418],{21024:function(e,n,u){Promise.resolve().then(u.bind(u,52829))},52829:function(e,n,u){"use strict";u.r(n),u.d(n,{default:function(){return f}});var t=u(57437),s=u(2265),r=u(99376),c=u(92699);function f(){let e=(0,r.useSearchParams)().get("key"),[n,u]=(0,s.useState)(null);return(0,s.useEffect)(()=>{e&&u(e)},[e]),(0,t.jsx)(c.Z,{accessToken:n,publicPage:!0,premiumUser:!1})}}},function(e){e.O(0,[42,261,250,699,971,117,744],function(){return e(e.s=21024)}),_N_E=e.O()}]);
|