mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
fix(proxy/utils.py): security fix
use typed dict for spendlogs payload. assert no sensitive information logged.
This commit is contained in:
parent
78474b1ce7
commit
f7f8bcb21b
4 changed files with 314 additions and 98 deletions
|
@ -1,7 +1,7 @@
|
|||
from pydantic import BaseModel, Extra, Field, model_validator, Json, ConfigDict
|
||||
from dataclasses import fields
|
||||
import enum
|
||||
from typing import Optional, List, Union, Dict, Literal, Any
|
||||
from typing import Optional, List, Union, Dict, Literal, Any, TypedDict
|
||||
from datetime import datetime
|
||||
import uuid, json, sys, os
|
||||
from litellm.types.router import UpdateRouterConfig
|
||||
|
@ -1268,7 +1268,7 @@ class LiteLLM_SpendLogs(LiteLLMBase):
|
|||
startTime: Union[str, datetime, None]
|
||||
endTime: Union[str, datetime, None]
|
||||
user: Optional[str] = ""
|
||||
metadata: Optional[dict] = {}
|
||||
metadata: Optional[Json] = {}
|
||||
cache_hit: Optional[str] = "False"
|
||||
cache_key: Optional[str] = None
|
||||
request_tags: Optional[Json] = None
|
||||
|
@ -1446,3 +1446,39 @@ class AllCallbacks(LiteLLMBase):
|
|||
litellm_callback_params=["DD_API_KEY", "DD_SITE"],
|
||||
ui_callback_name="Datadog",
|
||||
)
|
||||
|
||||
|
||||
class SpendLogsMetadata(TypedDict):
|
||||
"""
|
||||
Specific metadata k,v pairs logged to spendlogs for easier cost tracking
|
||||
"""
|
||||
|
||||
user_api_key: Optional[str]
|
||||
user_api_key_alias: Optional[str]
|
||||
user_api_key_team_id: Optional[str]
|
||||
user_api_key_user_id: Optional[str]
|
||||
user_api_key_team_alias: Optional[str]
|
||||
|
||||
|
||||
class SpendLogsPayload(TypedDict):
|
||||
request_id: str
|
||||
call_type: str
|
||||
api_key: str
|
||||
spend: float
|
||||
total_tokens: int
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
startTime: datetime
|
||||
endTime: datetime
|
||||
completionStartTime: Optional[datetime]
|
||||
model: str
|
||||
model_id: Optional[str]
|
||||
model_group: Optional[str]
|
||||
api_base: str
|
||||
user: str
|
||||
metadata: str # json str
|
||||
cache_hit: str
|
||||
cache_key: str
|
||||
request_tags: str # json str
|
||||
team_id: Optional[str]
|
||||
end_user: Optional[str]
|
||||
|
|
|
@ -168,11 +168,11 @@ model LiteLLM_Config {
|
|||
param_value Json?
|
||||
}
|
||||
|
||||
// View spend, model, api_key per request
|
||||
// View spend, model, hashed api_key per request
|
||||
model LiteLLM_SpendLogs {
|
||||
request_id String @id
|
||||
call_type String
|
||||
api_key String @default ("")
|
||||
api_key String @default ("") // Hashed API Token. Not the actual Virtual Key. Equivalent to 'token' column in LiteLLM_VerificationToken
|
||||
spend Float @default(0.0)
|
||||
total_tokens Int @default(0)
|
||||
prompt_tokens Int @default(0)
|
||||
|
|
|
@ -1,24 +1,29 @@
|
|||
from typing import Optional, List, Any, Literal, Union
|
||||
import os, subprocess, hashlib, importlib, asyncio, copy, json, aiohttp, httpx, time
|
||||
import litellm, backoff, traceback
|
||||
import os
|
||||
import subprocess
|
||||
import hashlib
|
||||
import importlib
|
||||
import asyncio
|
||||
import copy
|
||||
import json
|
||||
import httpx
|
||||
import time
|
||||
import litellm
|
||||
import backoff
|
||||
import traceback
|
||||
from pydantic import BaseModel
|
||||
from litellm.proxy._types import (
|
||||
UserAPIKeyAuth,
|
||||
DynamoDBArgs,
|
||||
LiteLLM_VerificationToken,
|
||||
LiteLLM_VerificationTokenView,
|
||||
LiteLLM_SpendLogs,
|
||||
LiteLLM_UserTable,
|
||||
LiteLLM_EndUserTable,
|
||||
LiteLLM_TeamTable,
|
||||
Member,
|
||||
CallInfo,
|
||||
WebhookEvent,
|
||||
AlertType,
|
||||
ResetTeamBudgetRequest,
|
||||
LitellmUserRoles,
|
||||
SpendLogsMetadata,
|
||||
SpendLogsPayload,
|
||||
)
|
||||
from litellm.caching import DualCache, RedisCache
|
||||
from litellm.router import Deployment, ModelInfo, LiteLLM_Params
|
||||
from litellm.llms.custom_httpx.httpx_handler import HTTPHandler
|
||||
from litellm.proxy.hooks.parallel_request_limiter import (
|
||||
_PROXY_MaxParallelRequestsHandler,
|
||||
|
@ -29,24 +34,18 @@ from litellm import (
|
|||
ModelResponse,
|
||||
EmbeddingResponse,
|
||||
ImageResponse,
|
||||
TranscriptionResponse,
|
||||
TextCompletionResponse,
|
||||
CustomStreamWrapper,
|
||||
TextCompletionStreamWrapper,
|
||||
)
|
||||
from litellm.utils import ModelResponseIterator
|
||||
from litellm.proxy.hooks.max_budget_limiter import _PROXY_MaxBudgetLimiter
|
||||
from litellm.proxy.hooks.cache_control_check import _PROXY_CacheControlCheck
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
from litellm.proxy.db.base_client import CustomDB
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from fastapi import HTTPException, status
|
||||
import smtplib, re
|
||||
import smtplib
|
||||
import re
|
||||
from email.mime.text import MIMEText
|
||||
from email.mime.multipart import MIMEMultipart
|
||||
from datetime import datetime, timedelta
|
||||
from litellm.integrations.slack_alerting import SlackAlerting
|
||||
from typing_extensions import overload
|
||||
|
||||
|
||||
def print_verbose(print_statement):
|
||||
|
@ -1895,16 +1894,15 @@ def hash_token(token: str):
|
|||
|
||||
def get_logging_payload(
|
||||
kwargs, response_obj, start_time, end_time, end_user_id: Optional[str]
|
||||
):
|
||||
) -> SpendLogsPayload:
|
||||
from litellm.proxy._types import LiteLLM_SpendLogs
|
||||
from pydantic import Json
|
||||
import uuid
|
||||
|
||||
verbose_proxy_logger.debug(
|
||||
f"SpendTable: get_logging_payload - kwargs: {kwargs}\n\n"
|
||||
)
|
||||
|
||||
if kwargs == None:
|
||||
if kwargs is None:
|
||||
kwargs = {}
|
||||
# standardize this function to be used across, s3, dynamoDB, langfuse logging
|
||||
litellm_params = kwargs.get("litellm_params", {})
|
||||
|
@ -1927,94 +1925,82 @@ def get_logging_payload(
|
|||
_model_group = metadata.get("model_group", "")
|
||||
|
||||
# clean up litellm metadata
|
||||
clean_metadata = SpendLogsMetadata(
|
||||
user_api_key=None,
|
||||
user_api_key_alias=None,
|
||||
user_api_key_team_id=None,
|
||||
user_api_key_user_id=None,
|
||||
user_api_key_team_alias=None,
|
||||
)
|
||||
if isinstance(metadata, dict):
|
||||
clean_metadata = {}
|
||||
verbose_proxy_logger.debug(
|
||||
f"getting payload for SpendLogs, available keys in metadata: "
|
||||
"getting payload for SpendLogs, available keys in metadata: "
|
||||
+ str(list(metadata.keys()))
|
||||
)
|
||||
for key in metadata:
|
||||
if key in [
|
||||
"headers",
|
||||
"endpoint",
|
||||
"model_group",
|
||||
"deployment",
|
||||
"model_info",
|
||||
"caching_groups",
|
||||
"previous_models",
|
||||
]:
|
||||
continue
|
||||
else:
|
||||
clean_metadata[key] = metadata[key]
|
||||
|
||||
# Filter the metadata dictionary to include only the specified keys
|
||||
clean_metadata = SpendLogsMetadata(
|
||||
**{ # type: ignore
|
||||
key: metadata[key]
|
||||
for key in SpendLogsMetadata.__annotations__.keys()
|
||||
if key in metadata
|
||||
}
|
||||
)
|
||||
|
||||
if litellm.cache is not None:
|
||||
cache_key = litellm.cache.get_cache_key(**kwargs)
|
||||
else:
|
||||
cache_key = "Cache OFF"
|
||||
if cache_hit == True:
|
||||
if cache_hit is True:
|
||||
import time
|
||||
|
||||
id = f"{id}_cache_hit{time.time()}" # SpendLogs does not allow duplicate request_id
|
||||
|
||||
payload = {
|
||||
"request_id": id,
|
||||
"call_type": call_type,
|
||||
"api_key": api_key,
|
||||
"cache_hit": cache_hit,
|
||||
"startTime": start_time,
|
||||
"endTime": end_time,
|
||||
"completionStartTime": completion_start_time,
|
||||
"model": kwargs.get("model", ""),
|
||||
"user": kwargs.get("litellm_params", {})
|
||||
try:
|
||||
payload: SpendLogsPayload = SpendLogsPayload(
|
||||
request_id=str(id),
|
||||
call_type=call_type or "",
|
||||
api_key=str(api_key),
|
||||
cache_hit=str(cache_hit),
|
||||
startTime=start_time,
|
||||
endTime=end_time,
|
||||
completionStartTime=completion_start_time,
|
||||
model=kwargs.get("model", ""),
|
||||
user=kwargs.get("litellm_params", {})
|
||||
.get("metadata", {})
|
||||
.get("user_api_key_user_id", ""),
|
||||
"team_id": kwargs.get("litellm_params", {})
|
||||
team_id=kwargs.get("litellm_params", {})
|
||||
.get("metadata", {})
|
||||
.get("user_api_key_team_id", ""),
|
||||
"metadata": clean_metadata,
|
||||
"cache_key": cache_key,
|
||||
"spend": kwargs.get("response_cost", 0),
|
||||
"total_tokens": usage.get("total_tokens", 0),
|
||||
"prompt_tokens": usage.get("prompt_tokens", 0),
|
||||
"completion_tokens": usage.get("completion_tokens", 0),
|
||||
"request_tags": metadata.get("tags", []),
|
||||
"end_user": end_user_id or "",
|
||||
"api_base": litellm_params.get("api_base", ""),
|
||||
"model_group": _model_group,
|
||||
"model_id": _model_id,
|
||||
}
|
||||
metadata=json.dumps(clean_metadata),
|
||||
cache_key=cache_key,
|
||||
spend=kwargs.get("response_cost", 0),
|
||||
total_tokens=usage.get("total_tokens", 0),
|
||||
prompt_tokens=usage.get("prompt_tokens", 0),
|
||||
completion_tokens=usage.get("completion_tokens", 0),
|
||||
request_tags=(
|
||||
json.dumps(metadata.get("tags", []))
|
||||
if isinstance(metadata.get("tags", []), dict)
|
||||
else "[]"
|
||||
),
|
||||
end_user=end_user_id or "",
|
||||
api_base=litellm_params.get("api_base", ""),
|
||||
model_group=_model_group,
|
||||
model_id=_model_id,
|
||||
)
|
||||
|
||||
verbose_proxy_logger.debug("SpendTable: created payload - payload: %s\n\n", payload)
|
||||
json_fields = [
|
||||
field
|
||||
for field, field_type in LiteLLM_SpendLogs.__annotations__.items()
|
||||
if field_type == Json or field_type == Optional[Json]
|
||||
]
|
||||
str_fields = [
|
||||
field
|
||||
for field, field_type in LiteLLM_SpendLogs.__annotations__.items()
|
||||
if field_type == str or field_type == Optional[str]
|
||||
]
|
||||
datetime_fields = [
|
||||
field
|
||||
for field, field_type in LiteLLM_SpendLogs.__annotations__.items()
|
||||
if field_type == datetime
|
||||
]
|
||||
|
||||
for param in json_fields:
|
||||
if param in payload and type(payload[param]) != Json:
|
||||
if type(payload[param]) == litellm.ModelResponse:
|
||||
payload[param] = payload[param].model_dump_json()
|
||||
if type(payload[param]) == litellm.EmbeddingResponse:
|
||||
payload[param] = payload[param].model_dump_json()
|
||||
else:
|
||||
payload[param] = json.dumps(payload[param])
|
||||
|
||||
for param in str_fields:
|
||||
if param in payload and type(payload[param]) != str:
|
||||
payload[param] = str(payload[param])
|
||||
verbose_proxy_logger.debug(
|
||||
"SpendTable: created payload - payload: %s\n\n", payload
|
||||
)
|
||||
|
||||
return payload
|
||||
except Exception as e:
|
||||
verbose_proxy_logger.error(
|
||||
"Error creating spendlogs object - {}\n{}".format(
|
||||
str(e), traceback.format_exc()
|
||||
)
|
||||
)
|
||||
raise e
|
||||
|
||||
|
||||
def _duration_in_seconds(duration: str):
|
||||
|
|
194
litellm/tests/test_spend_logs.py
Normal file
194
litellm/tests/test_spend_logs.py
Normal file
|
@ -0,0 +1,194 @@
|
|||
import sys, os
|
||||
import traceback, uuid
|
||||
from dotenv import load_dotenv
|
||||
from fastapi import Request
|
||||
from fastapi.routing import APIRoute
|
||||
|
||||
load_dotenv()
|
||||
import os, io, time
|
||||
|
||||
# this file is to test litellm/proxy
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import pytest, logging, asyncio
|
||||
import litellm, asyncio
|
||||
import json
|
||||
import datetime
|
||||
from litellm.proxy.utils import (
|
||||
get_logging_payload,
|
||||
SpendLogsPayload,
|
||||
SpendLogsMetadata,
|
||||
) # noqa: E402
|
||||
|
||||
|
||||
def test_spend_logs_payload():
|
||||
"""
|
||||
Ensure only expected values are logged in spend logs payload.
|
||||
"""
|
||||
|
||||
input_args: dict = {
|
||||
"kwargs": {
|
||||
"model": "chatgpt-v-2",
|
||||
"messages": [
|
||||
{"role": "system", "content": "you are a helpful assistant.\n"},
|
||||
{"role": "user", "content": "bom dia"},
|
||||
],
|
||||
"optional_params": {
|
||||
"stream": False,
|
||||
"max_tokens": 10,
|
||||
"user": "116544810872468347480",
|
||||
"extra_body": {},
|
||||
},
|
||||
"litellm_params": {
|
||||
"acompletion": True,
|
||||
"api_key": "23c217a5b59f41b6b7a198017f4792f2",
|
||||
"force_timeout": 600,
|
||||
"logger_fn": None,
|
||||
"verbose": False,
|
||||
"custom_llm_provider": "azure",
|
||||
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com//openai/",
|
||||
"litellm_call_id": "b9929bf6-7b80-4c8c-b486-034e6ac0c8b7",
|
||||
"model_alias_map": {},
|
||||
"completion_call_id": None,
|
||||
"metadata": {
|
||||
"user_api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
|
||||
"user_api_key_alias": None,
|
||||
"user_api_end_user_max_budget": None,
|
||||
"litellm_api_version": "0.0.0",
|
||||
"global_max_parallel_requests": None,
|
||||
"user_api_key_user_id": "116544810872468347480",
|
||||
"user_api_key_org_id": None,
|
||||
"user_api_key_team_id": None,
|
||||
"user_api_key_team_alias": None,
|
||||
"user_api_key_metadata": {},
|
||||
"headers": {
|
||||
"content-type": "application/json",
|
||||
"user-agent": "PostmanRuntime/7.32.3",
|
||||
"accept": "*/*",
|
||||
"postman-token": "92300061-eeaa-423b-a420-0b44896ecdc4",
|
||||
"host": "localhost:4000",
|
||||
"accept-encoding": "gzip, deflate, br",
|
||||
"connection": "keep-alive",
|
||||
"content-length": "163",
|
||||
},
|
||||
"endpoint": "http://localhost:4000/chat/completions",
|
||||
"model_group": "gpt-3.5-turbo",
|
||||
"deployment": "azure/chatgpt-v-2",
|
||||
"model_info": {
|
||||
"id": "4bad40a1eb6bebd1682800f16f44b9f06c52a6703444c99c7f9f32e9de3693b4",
|
||||
"db_model": False,
|
||||
},
|
||||
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
|
||||
"caching_groups": None,
|
||||
"raw_request": "\n\nPOST Request Sent from LiteLLM:\ncurl -X POST \\\nhttps://openai-gpt-4-test-v-1.openai.azure.com//openai/ \\\n-H 'Authorization: *****' \\\n-d '{'model': 'chatgpt-v-2', 'messages': [{'role': 'system', 'content': 'you are a helpful assistant.\\n'}, {'role': 'user', 'content': 'bom dia'}], 'stream': False, 'max_tokens': 10, 'user': '116544810872468347480', 'extra_body': {}}'\n",
|
||||
},
|
||||
"model_info": {
|
||||
"id": "4bad40a1eb6bebd1682800f16f44b9f06c52a6703444c99c7f9f32e9de3693b4",
|
||||
"db_model": False,
|
||||
},
|
||||
"proxy_server_request": {
|
||||
"url": "http://localhost:4000/chat/completions",
|
||||
"method": "POST",
|
||||
"headers": {
|
||||
"content-type": "application/json",
|
||||
"authorization": "Bearer sk-1234",
|
||||
"user-agent": "PostmanRuntime/7.32.3",
|
||||
"accept": "*/*",
|
||||
"postman-token": "92300061-eeaa-423b-a420-0b44896ecdc4",
|
||||
"host": "localhost:4000",
|
||||
"accept-encoding": "gzip, deflate, br",
|
||||
"connection": "keep-alive",
|
||||
"content-length": "163",
|
||||
},
|
||||
"body": {
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "you are a helpful assistant.\n",
|
||||
},
|
||||
{"role": "user", "content": "bom dia"},
|
||||
],
|
||||
"model": "gpt-3.5-turbo",
|
||||
"max_tokens": 10,
|
||||
},
|
||||
},
|
||||
"preset_cache_key": None,
|
||||
"no-log": False,
|
||||
"stream_response": {},
|
||||
"input_cost_per_token": None,
|
||||
"input_cost_per_second": None,
|
||||
"output_cost_per_token": None,
|
||||
"output_cost_per_second": None,
|
||||
},
|
||||
"start_time": datetime.datetime(2024, 6, 7, 12, 43, 30, 307665),
|
||||
"stream": False,
|
||||
"user": "116544810872468347480",
|
||||
"call_type": "acompletion",
|
||||
"litellm_call_id": "b9929bf6-7b80-4c8c-b486-034e6ac0c8b7",
|
||||
"completion_start_time": datetime.datetime(2024, 6, 7, 12, 43, 30, 954146),
|
||||
"max_tokens": 10,
|
||||
"extra_body": {},
|
||||
"custom_llm_provider": "azure",
|
||||
"input": [
|
||||
{"role": "system", "content": "you are a helpful assistant.\n"},
|
||||
{"role": "user", "content": "bom dia"},
|
||||
],
|
||||
"api_key": "1234",
|
||||
"original_response": "",
|
||||
"additional_args": {
|
||||
"headers": {"Authorization": "Bearer 1234"},
|
||||
"api_base": "openai-gpt-4-test-v-1.openai.azure.com",
|
||||
"acompletion": True,
|
||||
"complete_input_dict": {
|
||||
"model": "chatgpt-v-2",
|
||||
"messages": [
|
||||
{"role": "system", "content": "you are a helpful assistant.\n"},
|
||||
{"role": "user", "content": "bom dia"},
|
||||
],
|
||||
"stream": False,
|
||||
"max_tokens": 10,
|
||||
"user": "116544810872468347480",
|
||||
"extra_body": {},
|
||||
},
|
||||
},
|
||||
"log_event_type": "post_api_call",
|
||||
"end_time": datetime.datetime(2024, 6, 7, 12, 43, 30, 954146),
|
||||
"cache_hit": None,
|
||||
"response_cost": 2.4999999999999998e-05,
|
||||
},
|
||||
"response_obj": litellm.ModelResponse(
|
||||
id="chatcmpl-9XZmkzS1uPhRCoVdGQvBqqIbSgECt",
|
||||
choices=[
|
||||
litellm.Choices(
|
||||
finish_reason="length",
|
||||
index=0,
|
||||
message=litellm.Message(
|
||||
content="Bom dia! Como posso ajudar você", role="assistant"
|
||||
),
|
||||
)
|
||||
],
|
||||
created=1717789410,
|
||||
model="gpt-35-turbo",
|
||||
object="chat.completion",
|
||||
system_fingerprint=None,
|
||||
usage=litellm.Usage(
|
||||
completion_tokens=10, prompt_tokens=20, total_tokens=30
|
||||
),
|
||||
),
|
||||
"start_time": datetime.datetime(2024, 6, 7, 12, 43, 30, 308604),
|
||||
"end_time": datetime.datetime(2024, 6, 7, 12, 43, 30, 954146),
|
||||
"end_user_id": None,
|
||||
}
|
||||
|
||||
payload: SpendLogsPayload = get_logging_payload(**input_args)
|
||||
|
||||
# Define the expected metadata keys
|
||||
expected_metadata_keys = SpendLogsMetadata.__annotations__.keys()
|
||||
|
||||
# Validate only specified metadata keys are logged
|
||||
assert "metadata" in payload
|
||||
assert isinstance(payload["metadata"], str)
|
||||
payload["metadata"] = json.loads(payload["metadata"])
|
||||
assert set(payload["metadata"].keys()) == set(expected_metadata_keys)
|
Loading…
Add table
Add a link
Reference in a new issue