docs(scheduler.md): add request prioritization to docs

This commit is contained in:
Krrish Dholakia 2024-05-31 19:35:47 -07:00
parent 79287a7584
commit f8d4be710e
6 changed files with 205 additions and 53 deletions

View file

@ -0,0 +1,141 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# [BETA] Request Prioritization
:::info
Beta feature. Use for testing only.
[Help us improve this](https://github.com/BerriAI/litellm/issues)
:::
Prioritize LLM API requests in high-traffic.
- Add request to priority queue
- Poll queue, to check if request can be made. Returns 'True':
* if there's healthy deployments
* OR if request is at top of queue
- Priority - The lower the number, the higher the priority:
* e.g. `priority=0` > `priority=2000`
## Quick Start
```python
from litellm import Scheduler, FlowItem, Router
scheduler = Scheduler()
router = Router(
model_list=[
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo",
"mock_response": "Hello world this is Macintosh!", # fakes the LLM API call
"rpm": 1,
},
},
],
timeout=2, # timeout request if takes > 2s
routing_strategy="usage-based-routing-v2",
)
scheduler.update_variables(llm_router=router)
### 🚨 IMPORTANT ###
item = FlowItem(
priority=0, # 👈 SET PRIORITY FOR REQUEST
request_id=str(uuid.uuid4()), # 👈 SET REQUEST ID
model_name="gpt-3.5-turbo" # 👈 SAME as 'Router'
)
### [fin] IMPORTANT ###
## ADDS REQUEST TO QUEUE ##
await scheduler.add_request(request=item)
## POLL QUEUE
default_timeout = router.timeout
end_time = time.time() + default_timeout
poll_interval = 0.03 # poll every 3ms
curr_time = time.time()
make_request = False
while curr_time < end_time:
make_request = await scheduler.poll( ## POLL QUEUE ## - returns 'True' if there's healthy deployments OR if request is at top of queue
id=item.request_id, model_name=item.model_name
)
if make_request: ## IF TRUE -> MAKE REQUEST
break
else: ## ELSE -> loop till default_timeout
await asyncio.sleep(poll_interval)
curr_time = time.time()
if make_request:
try:
_response = await router.acompletion(
model=item.model_name,
messages=[{"role": "user", "content": "Hey!"}],
)
except Exception as e:
print("{}, {}, {}".format(item.priority, item.request_id, "Error occurred"))
print("{}, {}, {}".format(item.priority, item.request_id, time.time()))
print("didn't make request")
```
## LiteLLM Proxy
To prioritize requests on LiteLLM Proxy call our beta openai-compatible `http://localhost:4000/queue` endpoint.
<Tabs>
<TabItem value="curl" label="curl">
```curl
curl -X POST 'http://localhost:4000/queue/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-D '{
"model": "gpt-3.5-turbo-fake-model",
"messages": [
{
"role": "user",
"content": "what is the meaning of the universe? 1234"
}],
"priority": 0 👈 SET VALUE HERE
}'
```
</TabItem>
<TabItem value="openai-sdk" label="OpenAI SDK">
```python
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"priority": 0 👈 SET VALUE HERE
}
)
print(response)
```
</TabItem>
</Tabs>

View file

@ -164,6 +164,7 @@ const sidebars = {
},
"proxy/custom_pricing",
"routing",
"scheduler",
"rules",
"set_keys",
"budget_manager",

View file

@ -805,3 +805,4 @@ from .proxy.proxy_cli import run_server
from .router import Router
from .assistants.main import *
from .batches.main import *
from .scheduler import *

View file

@ -141,7 +141,7 @@ from litellm.proxy.auth.auth_checks import (
from litellm.llms.custom_httpx.httpx_handler import HTTPHandler
from litellm.exceptions import RejectedRequestError
from litellm.integrations.slack_alerting import SlackAlertingArgs, SlackAlerting
from litellm.proxy.queue.scheduler import Scheduler, FlowItem, DefaultPriorities
from litellm.scheduler import Scheduler, FlowItem, DefaultPriorities
try:
from litellm._version import version
@ -11305,7 +11305,7 @@ async def async_queue_request(
flow_item = FlowItem(
priority=data.pop("priority", DefaultPriorities.Medium.value),
request_id=request_id,
model_group=data["model"],
model_name=data["model"],
)
# [TODO] only allow premium users to set non default priorities
@ -11330,9 +11330,7 @@ async def async_queue_request(
)
while curr_time < end_time:
make_request = await scheduler.poll(
id=request_id, model_group=data["model"]
)
make_request = await scheduler.poll(id=request_id, model_name=data["model"])
if make_request: ## IF TRUE -> MAKE REQUEST
break
else: ## ELSE -> loop till default_timeout

View file

@ -20,7 +20,7 @@ class DefaultPriorities(enum.Enum):
class FlowItem(BaseModel):
priority: int # Priority between 0 and 255
request_id: str
model_group: str
model_name: str
class Scheduler:
@ -39,16 +39,26 @@ class Scheduler:
async def add_request(self, request: FlowItem):
# We use the priority directly, as lower values indicate higher priority
# get the queue
queue = await self.get_queue(model_group=request.model_group)
queue = await self.get_queue(model_name=request.model_name)
# update the queue
heapq.heappush(queue, (request.priority, request.request_id))
# save the queue
await self.save_queue(queue=queue, model_group=request.model_group)
await self.save_queue(queue=queue, model_name=request.model_name)
async def poll(self, id: str, model_group: str) -> bool:
"""Return if the id is at the top of the queue and if the token bucket allows processing"""
queue = await self.get_queue(model_group=model_group)
async def poll(self, id: str, model_name: str) -> bool:
"""
Return if request can be processed.
Returns:
- True:
* If healthy deployments are available
* OR If request at the top of queue
- False:
* If no healthy deployments available
* AND request not at the top of queue
"""
queue = await self.get_queue(model_name=model_name)
if not queue or not self.llm_router:
raise Exception(
"Incorrectly setup. Queue or Router is invalid. Queue={}, Router={}".format(
@ -60,13 +70,11 @@ class Scheduler:
# Setup values
# ------------
_healthy_deployments = await self.llm_router._async_get_healthy_deployments(
model=model_group
model=model_name
)
print_verbose(f"len(_healthy_deployments): {len(_healthy_deployments)}")
if len(_healthy_deployments) == 0:
return False
print_verbose(f"queue: {queue}, seeking id={id}")
# Check if the id is at the top of the heap
if queue[0][1] == id:
@ -74,12 +82,14 @@ class Scheduler:
heapq.heappop(queue)
print_verbose(f"Popped id: {id}")
return True
else:
return False
async def peek(self, id: str, model_group: str) -> bool:
return True
async def peek(self, id: str, model_name: str) -> bool:
"""Return if the id is at the top of the queue. Don't pop the value from heap."""
queue = await self.get_queue(model_group=model_group)
queue = await self.get_queue(model_name=model_name)
if not queue or not self.llm_router:
raise Exception(
"Incorrectly setup. Queue or Router is invalid. Queue={}, Router={}".format(
@ -91,7 +101,7 @@ class Scheduler:
# Setup values
# ------------
_healthy_deployments = await self.llm_router._async_get_healthy_deployments(
model=model_group
model=model_name
)
if len(_healthy_deployments) == 0:
return False
@ -106,12 +116,12 @@ class Scheduler:
"""Get the status of items in the queue"""
return self.queue
async def get_queue(self, model_group: str) -> list:
async def get_queue(self, model_name: str) -> list:
"""
Return a queue for that specific model group
"""
if self.cache is not None:
_cache_key = "{}:{}".format(SchedulerCacheKeys.queue.value, model_group)
_cache_key = "{}:{}".format(SchedulerCacheKeys.queue.value, model_name)
response = await self.cache.async_get_cache(key=_cache_key)
if response is None or not isinstance(response, list):
return []
@ -119,11 +129,11 @@ class Scheduler:
return response
return self.queue
async def save_queue(self, queue: list, model_group: str) -> None:
async def save_queue(self, queue: list, model_name: str) -> None:
"""
Save the updated queue of the model group
"""
if self.cache is not None:
_cache_key = "{}:{}".format(SchedulerCacheKeys.queue.value, model_group)
_cache_key = "{}:{}".format(SchedulerCacheKeys.queue.value, model_name)
await self.cache.async_set_cache(key=_cache_key, value=queue)
return None

View file

@ -9,11 +9,11 @@ sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from litellm import Router
from litellm.proxy.queue.scheduler import FlowItem, Scheduler
from litellm.scheduler import FlowItem, Scheduler
@pytest.mark.asyncio
async def test_scheduler_diff_model_groups():
async def test_scheduler_diff_model_names():
"""
Assert 2 requests to 2 diff model groups are top of their respective queue's
"""
@ -33,13 +33,13 @@ async def test_scheduler_diff_model_groups():
scheduler.update_variables(llm_router=router)
item1 = FlowItem(priority=0, request_id="10", model_group="gpt-3.5-turbo")
item2 = FlowItem(priority=0, request_id="11", model_group="gpt-4")
item1 = FlowItem(priority=0, request_id="10", model_name="gpt-3.5-turbo")
item2 = FlowItem(priority=0, request_id="11", model_name="gpt-4")
await scheduler.add_request(item1)
await scheduler.add_request(item2)
assert await scheduler.poll(id="10", model_group="gpt-3.5-turbo") == True
assert await scheduler.poll(id="11", model_group="gpt-4") == True
assert await scheduler.poll(id="10", model_name="gpt-3.5-turbo") == True
assert await scheduler.poll(id="11", model_name="gpt-4") == True
@pytest.mark.parametrize("p0, p1", [(0, 0), (0, 1), (1, 0)])
@ -64,17 +64,17 @@ async def test_scheduler_prioritized_requests(p0, p1):
scheduler.update_variables(llm_router=router)
item1 = FlowItem(priority=p0, request_id="10", model_group="gpt-3.5-turbo")
item2 = FlowItem(priority=p1, request_id="11", model_group="gpt-3.5-turbo")
item1 = FlowItem(priority=p0, request_id="10", model_name="gpt-3.5-turbo")
item2 = FlowItem(priority=p1, request_id="11", model_name="gpt-3.5-turbo")
await scheduler.add_request(item1)
await scheduler.add_request(item2)
if p0 == 0:
assert await scheduler.peek(id="10", model_group="gpt-3.5-turbo") == True
assert await scheduler.peek(id="11", model_group="gpt-3.5-turbo") == False
assert await scheduler.peek(id="10", model_name="gpt-3.5-turbo") == True
assert await scheduler.peek(id="11", model_name="gpt-3.5-turbo") == False
else:
assert await scheduler.peek(id="11", model_group="gpt-3.5-turbo") == True
assert await scheduler.peek(id="10", model_group="gpt-3.5-turbo") == False
assert await scheduler.peek(id="11", model_name="gpt-3.5-turbo") == True
assert await scheduler.peek(id="10", model_name="gpt-3.5-turbo") == False
@pytest.mark.parametrize("p0, p1", [(0, 0), (0, 1), (1, 0)])
@ -92,10 +92,12 @@ async def test_scheduler_prioritized_requests_mock_response(p0, p1):
"litellm_params": {
"model": "gpt-3.5-turbo",
"mock_response": "Hello world this is Macintosh!",
"rpm": 1,
},
},
],
timeout=2,
routing_strategy="usage-based-routing-v2",
)
scheduler.update_variables(llm_router=router)
@ -114,7 +116,7 @@ async def test_scheduler_prioritized_requests_mock_response(p0, p1):
while curr_time < end_time:
make_request = await scheduler.poll(
id=flow_item.request_id, model_group=flow_item.model_group
id=flow_item.request_id, model_name=flow_item.model_name
)
if make_request: ## IF TRUE -> MAKE REQUEST
break
@ -123,10 +125,13 @@ async def test_scheduler_prioritized_requests_mock_response(p0, p1):
curr_time = time.time()
if make_request:
try:
_response = await router.acompletion(
model=flow_item.model_group,
model=flow_item.model_name,
messages=[{"role": "user", "content": "Hey!"}],
)
except Exception as e:
return flow_item.priority, flow_item.request_id, "Error occurred"
return flow_item.priority, flow_item.request_id, time.time()
@ -135,13 +140,13 @@ async def test_scheduler_prioritized_requests_mock_response(p0, p1):
tasks = []
item = FlowItem(
priority=p0, request_id=str(uuid.uuid4()), model_group="gpt-3.5-turbo"
priority=p0, request_id=str(uuid.uuid4()), model_name="gpt-3.5-turbo"
)
await scheduler.add_request(request=item)
tasks.append(_make_prioritized_call(flow_item=item))
item = FlowItem(
priority=p1, request_id=str(uuid.uuid4()), model_group="gpt-3.5-turbo"
priority=p1, request_id=str(uuid.uuid4()), model_name="gpt-3.5-turbo"
)
await scheduler.add_request(request=item)
tasks.append(_make_prioritized_call(flow_item=item))
@ -157,8 +162,4 @@ async def test_scheduler_prioritized_requests_mock_response(p0, p1):
assert (
completed_responses[0][0] == 0
) # assert higher priority request got done first
assert (
completed_responses[0][2] < completed_responses[1][2]
), "1st response time={}, 2nd response time={}".format(
completed_responses[0][1], completed_responses[1][1]
) # assert higher priority request got done first
assert isinstance(completed_responses[1][2], str) # 2nd request errored out