feat(main.py): support router.chat.completions.create

allows using router with instructor

https://github.com/BerriAI/litellm/issues/2673
This commit is contained in:
Krrish Dholakia 2024-03-25 08:26:28 -07:00
parent 9e9de7f6e2
commit f98aead602
3 changed files with 91 additions and 42 deletions

View file

@ -116,24 +116,54 @@ class LiteLLM:
default_headers: Optional[Mapping[str, str]] = None,
):
self.params = locals()
self.chat = Chat(self.params)
self.chat = Chat(self.params, router_obj=None)
class Chat:
def __init__(self, params):
def __init__(self, params, router_obj: Optional[Any]):
self.params = params
self.completions = Completions(self.params)
if self.params.get("acompletion", False) == True:
self.params.pop("acompletion")
self.completions: Union[AsyncCompletions, Completions] = AsyncCompletions(
self.params, router_obj=router_obj
)
else:
self.completions = Completions(self.params, router_obj=router_obj)
class Completions:
def __init__(self, params):
def __init__(self, params, router_obj: Optional[Any]):
self.params = params
self.router_obj = router_obj
def create(self, messages, model=None, **kwargs):
for k, v in kwargs.items():
self.params[k] = v
model = model or self.params.get("model")
response = completion(model=model, messages=messages, **self.params)
if self.router_obj is not None:
response = self.router_obj.completion(
model=model, messages=messages, **self.params
)
else:
response = completion(model=model, messages=messages, **self.params)
return response
class AsyncCompletions:
def __init__(self, params, router_obj: Optional[Any]):
self.params = params
self.router_obj = router_obj
async def create(self, messages, model=None, **kwargs):
for k, v in kwargs.items():
self.params[k] = v
model = model or self.params.get("model")
if self.router_obj is not None:
response = await self.router_obj.acompletion(
model=model, messages=messages, **self.params
)
else:
response = await acompletion(model=model, messages=messages, **self.params)
return response

View file

@ -230,7 +230,7 @@ class Router:
) # dict to store aliases for router, ex. {"gpt-4": "gpt-3.5-turbo"}, all requests with gpt-4 -> get routed to gpt-3.5-turbo group
# make Router.chat.completions.create compatible for openai.chat.completions.create
self.chat = litellm.Chat(params=default_litellm_params)
self.chat = litellm.Chat(params=default_litellm_params, router_obj=self)
# default litellm args
self.default_litellm_params = default_litellm_params

View file

@ -4,6 +4,7 @@
# import sys, os
# import traceback
# import pytest
# sys.path.insert(
# 0, os.path.abspath("../..")
# ) # Adds the parent directory to the system path
@ -16,51 +17,68 @@
# from pydantic import BaseModel
# # This enables response_model keyword
# # # from client.chat.completions.create
# # client = instructor.patch(Router(model_list=[{
# # "model_name": "gpt-3.5-turbo", # openai model name
# # "litellm_params": { # params for litellm completion/embedding call
# # "model": "azure/chatgpt-v-2",
# # "api_key": os.getenv("AZURE_API_KEY"),
# # "api_version": os.getenv("AZURE_API_VERSION"),
# # "api_base": os.getenv("AZURE_API_BASE")
# # }
# # }]))
# # from client.chat.completions.create
# client = instructor.patch(
# Router(
# model_list=[
# {
# "model_name": "gpt-3.5-turbo", # openai model name
# "litellm_params": { # params for litellm completion/embedding call
# "model": "azure/chatgpt-v-2",
# "api_key": os.getenv("AZURE_API_KEY"),
# "api_version": os.getenv("AZURE_API_VERSION"),
# "api_base": os.getenv("AZURE_API_BASE"),
# },
# }
# ]
# )
# )
# # class UserDetail(BaseModel):
# # name: str
# # age: int
# # user = client.chat.completions.create(
# # model="gpt-3.5-turbo",
# # response_model=UserDetail,
# # messages=[
# # {"role": "user", "content": "Extract Jason is 25 years old"},
# # ]
# # )
# # assert isinstance(model, UserExtract)
# class UserDetail(BaseModel):
# name: str
# age: int
# # assert isinstance(user, UserDetail)
# # assert user.name == "Jason"
# # assert user.age == 25
# # print(f"user: {user}")
# import instructor
# from openai import AsyncOpenAI
# user = client.chat.completions.create(
# model="gpt-3.5-turbo",
# response_model=UserDetail,
# messages=[
# {"role": "user", "content": "Extract Jason is 25 years old"},
# ],
# )
# assert isinstance(user, UserDetail)
# assert user.name == "Jason"
# assert user.age == 25
# print(f"user: {user}")
# # import instructor
# # from openai import AsyncOpenAI
# aclient = instructor.apatch(
# Router(
# model_list=[
# {
# "model_name": "gpt-3.5-turbo", # openai model name
# "litellm_params": { # params for litellm completion/embedding call
# "model": "azure/chatgpt-v-2",
# "api_key": os.getenv("AZURE_API_KEY"),
# "api_version": os.getenv("AZURE_API_VERSION"),
# "api_base": os.getenv("AZURE_API_BASE"),
# },
# }
# ],
# default_litellm_params={"acompletion": True},
# )
# )
# aclient = instructor.apatch(Router(model_list=[{
# "model_name": "gpt-3.5-turbo", # openai model name
# "litellm_params": { # params for litellm completion/embedding call
# "model": "azure/chatgpt-v-2",
# "api_key": os.getenv("AZURE_API_KEY"),
# "api_version": os.getenv("AZURE_API_VERSION"),
# "api_base": os.getenv("AZURE_API_BASE")
# }
# }], default_litellm_params={"acompletion": True}))
# class UserExtract(BaseModel):
# name: str
# age: int
# async def main():
# model = await aclient.chat.completions.create(
# model="gpt-3.5-turbo",
@ -71,4 +89,5 @@
# )
# print(f"model: {model}")
# asyncio.run(main())