OpenAI /v1/realtime api support (#6047)

* feat(azure/realtime): initial working commit for proxy azure openai realtime endpoint support

Adds support for passing /v1/realtime calls via litellm proxy

* feat(realtime_api/main.py): abstraction for handling openai realtime api calls

* feat(router.py): add `arealtime()` endpoint in router for realtime api calls

Allows using `model_list` in proxy for realtime as well

* fix: make realtime api a private function

Structure might change based on feedback. Make that clear to users.

* build(requirements.txt): add websockets to the requirements.txt

* feat(openai/realtime): add openai /v1/realtime api support
This commit is contained in:
Krish Dholakia 2024-10-03 17:11:22 -04:00 committed by GitHub
parent 130842537f
commit f9d0bcc5a1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 350 additions and 7 deletions

View file

@ -0,0 +1,91 @@
"""Abstraction function for OpenAI's realtime API"""
import os
from typing import Any, Optional
import litellm
from litellm import get_llm_provider
from litellm.secret_managers.main import get_secret_str
from litellm.types.router import GenericLiteLLMParams
from ..llms.AzureOpenAI.realtime.handler import AzureOpenAIRealtime
from ..llms.OpenAI.realtime.handler import OpenAIRealtime
azure_realtime = AzureOpenAIRealtime()
openai_realtime = OpenAIRealtime()
async def _arealtime(
model: str,
websocket: Any, # fastapi websocket
api_base: Optional[str] = None,
api_key: Optional[str] = None,
api_version: Optional[str] = None,
azure_ad_token: Optional[str] = None,
client: Optional[Any] = None,
timeout: Optional[float] = None,
**kwargs,
):
"""
Private function to handle the realtime API call.
For PROXY use only.
"""
litellm_params = GenericLiteLLMParams(**kwargs)
model, _custom_llm_provider, dynamic_api_key, dynamic_api_base = get_llm_provider(
model=model,
api_base=api_base,
api_key=api_key,
)
if _custom_llm_provider == "azure":
api_base = (
dynamic_api_base
or litellm_params.api_base
or litellm.api_base
or get_secret_str("AZURE_API_BASE")
)
# set API KEY
api_key = (
dynamic_api_key
or litellm.api_key
or litellm.openai_key
or get_secret_str("AZURE_API_KEY")
)
await azure_realtime.async_realtime(
model=model,
websocket=websocket,
api_base=api_base,
api_key=api_key,
api_version="2024-10-01-preview",
azure_ad_token=None,
client=None,
timeout=timeout,
)
elif _custom_llm_provider == "openai":
api_base = (
dynamic_api_base
or litellm_params.api_base
or litellm.api_base
or "https://api.openai.com/"
)
# set API KEY
api_key = (
dynamic_api_key
or litellm.api_key
or litellm.openai_key
or get_secret_str("OPENAI_API_KEY")
)
await openai_realtime.async_realtime(
model=model,
websocket=websocket,
api_base=api_base,
api_key=api_key,
client=None,
timeout=timeout,
)
else:
raise ValueError(f"Unsupported model: {model}")