LiteLLM Minor Fixes + Improvements (#5474)

* feat(proxy/_types.py): add lago billing to callbacks ui

Closes https://github.com/BerriAI/litellm/issues/5472

* fix(anthropic.py): return anthropic prompt caching information

Fixes https://github.com/BerriAI/litellm/issues/5364

* feat(bedrock/chat.py): support 'json_schema' for bedrock models

Closes https://github.com/BerriAI/litellm/issues/5434

* fix(bedrock/embed/embeddings.py): support async embeddings for amazon titan models

* fix: linting fixes

* fix: handle key errors

* fix(bedrock/chat.py): fix bedrock ai21 streaming object

* feat(bedrock/embed): support bedrock embedding optional params

* fix(databricks.py): fix usage chunk

* fix(internal_user_endpoints.py): apply internal user defaults, if user role updated

Fixes issue where user update wouldn't apply defaults

* feat(slack_alerting.py): provide multiple slack channels for a given alert type

multiple channels might be interested in receiving an alert for a given type

* docs(alerting.md): add multiple channel alerting to docs
This commit is contained in:
Krish Dholakia 2024-09-02 14:29:57 -07:00 committed by GitHub
parent 02f288a8a3
commit f9e6507cd1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
22 changed files with 720 additions and 209 deletions

View file

@ -2550,7 +2550,7 @@ def get_optional_params_image_gen(
def get_optional_params_embeddings(
# 2 optional params
model=None,
model: str,
user=None,
encoding_format=None,
dimensions=None,
@ -2606,7 +2606,7 @@ def get_optional_params_embeddings(
):
raise UnsupportedParamsError(
status_code=500,
message=f"Setting dimensions is not supported for OpenAI `text-embedding-3` and later models. To drop it from the call, set `litellm.drop_params = True`.",
message="Setting dimensions is not supported for OpenAI `text-embedding-3` and later models. To drop it from the call, set `litellm.drop_params = True`.",
)
if custom_llm_provider == "triton":
keys = list(non_default_params.keys())
@ -2641,39 +2641,57 @@ def get_optional_params_embeddings(
)
final_params = {**optional_params, **kwargs}
return final_params
if custom_llm_provider == "vertex_ai":
if len(non_default_params.keys()) > 0:
if litellm.drop_params is True: # drop the unsupported non-default values
keys = list(non_default_params.keys())
for k in keys:
non_default_params.pop(k, None)
final_params = {**non_default_params, **kwargs}
return final_params
raise UnsupportedParamsError(
status_code=500,
message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
)
if custom_llm_provider == "bedrock":
# if dimensions is in non_default_params -> pass it for model=bedrock/amazon.titan-embed-text-v2
if (
"dimensions" in non_default_params.keys()
and "amazon.titan-embed-text-v2" in model
):
kwargs["dimensions"] = non_default_params["dimensions"]
non_default_params.pop("dimensions", None)
if "amazon.titan-embed-text-v1" in model:
object: Any = litellm.AmazonTitanG1Config()
elif "amazon.titan-embed-image-v1" in model:
object = litellm.AmazonTitanMultimodalEmbeddingG1Config()
elif "amazon.titan-embed-text-v2:0" in model:
object = litellm.AmazonTitanV2Config()
elif "cohere.embed-multilingual-v3" in model:
object = litellm.BedrockCohereEmbeddingConfig()
else: # unmapped model
supported_params = []
_check_valid_arg(supported_params=supported_params)
final_params = {**kwargs}
return final_params
if len(non_default_params.keys()) > 0:
if litellm.drop_params is True: # drop the unsupported non-default values
keys = list(non_default_params.keys())
for k in keys:
non_default_params.pop(k, None)
final_params = {**non_default_params, **kwargs}
return final_params
raise UnsupportedParamsError(
status_code=500,
message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
)
return {**non_default_params, **kwargs}
supported_params = object.get_supported_openai_params()
_check_valid_arg(supported_params=supported_params)
optional_params = object.map_openai_params(
non_default_params=non_default_params, optional_params={}
)
final_params = {**optional_params, **kwargs}
return final_params
# elif model == "amazon.titan-embed-image-v1":
# supported_params = litellm.AmazonTitanG1Config().get_supported_openai_params()
# _check_valid_arg(supported_params=supported_params)
# optional_params = litellm.AmazonTitanG1Config().map_openai_params(
# non_default_params=non_default_params, optional_params={}
# )
# final_params = {**optional_params, **kwargs}
# return final_params
# if (
# "dimensions" in non_default_params.keys()
# and "amazon.titan-embed-text-v2" in model
# ):
# kwargs["dimensions"] = non_default_params["dimensions"]
# non_default_params.pop("dimensions", None)
# if len(non_default_params.keys()) > 0:
# if litellm.drop_params is True: # drop the unsupported non-default values
# keys = list(non_default_params.keys())
# for k in keys:
# non_default_params.pop(k, None)
# final_params = {**non_default_params, **kwargs}
# return final_params
# raise UnsupportedParamsError(
# status_code=500,
# message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
# )
# return {**non_default_params, **kwargs}
if custom_llm_provider == "mistral":
supported_params = get_supported_openai_params(
model=model,
@ -9888,11 +9906,7 @@ class CustomStreamWrapper:
if anthropic_response_obj["usage"] is not None:
model_response.usage = litellm.Usage(
prompt_tokens=anthropic_response_obj["usage"]["prompt_tokens"],
completion_tokens=anthropic_response_obj["usage"][
"completion_tokens"
],
total_tokens=anthropic_response_obj["usage"]["total_tokens"],
**anthropic_response_obj["usage"]
)
if (
@ -10507,10 +10521,10 @@ class CustomStreamWrapper:
original_chunk.system_fingerprint
)
print_verbose(f"self.sent_first_chunk: {self.sent_first_chunk}")
if self.sent_first_chunk == False:
if self.sent_first_chunk is False:
model_response.choices[0].delta["role"] = "assistant"
self.sent_first_chunk = True
elif self.sent_first_chunk == True and hasattr(
elif self.sent_first_chunk is True and hasattr(
model_response.choices[0].delta, "role"
):
_initial_delta = model_response.choices[
@ -10575,7 +10589,7 @@ class CustomStreamWrapper:
model_response.choices[0].delta.tool_calls is not None
or model_response.choices[0].delta.function_call is not None
):
if self.sent_first_chunk == False:
if self.sent_first_chunk is False:
model_response.choices[0].delta["role"] = "assistant"
self.sent_first_chunk = True
return model_response