feat add support for aws_region_name

This commit is contained in:
Ishaan Jaff 2024-08-15 19:32:59 -07:00
parent b4ba12e22c
commit fa569aaf6f
2 changed files with 102 additions and 7 deletions

View file

@ -104,17 +104,11 @@ os.environ['AWS_SECRET_ACCESS_KEY'] = ""
# set os.environ['AWS_REGION_NAME'] = <your-region_name>
class SagemakerLLM(BaseAWSLLM):
def _prepare_request(
def _load_credentials(
self,
model: str,
data: dict,
optional_params: dict,
extra_headers: Optional[dict] = None,
):
try:
import boto3
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
except ImportError as e:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
@ -163,6 +157,25 @@ class SagemakerLLM(BaseAWSLLM):
aws_web_identity_token=aws_web_identity_token,
aws_sts_endpoint=aws_sts_endpoint,
)
return credentials, aws_region_name
def _prepare_request(
self,
credentials,
model: str,
data: dict,
optional_params: dict,
aws_region_name: str,
extra_headers: Optional[dict] = None,
):
try:
import boto3
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
except ImportError as e:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name)
if optional_params.get("stream") is True:
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream"
@ -198,6 +211,7 @@ class SagemakerLLM(BaseAWSLLM):
):
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
credentials, aws_region_name = self._load_credentials(optional_params)
inference_params = deepcopy(optional_params)
## Load Config
@ -250,6 +264,8 @@ class SagemakerLLM(BaseAWSLLM):
model=model,
data=data,
optional_params=optional_params,
credentials=credentials,
aws_region_name=aws_region_name,
)
if model_id is not None:
# Add model_id as InferenceComponentName header
@ -313,6 +329,8 @@ class SagemakerLLM(BaseAWSLLM):
model=model,
data=_data,
optional_params=optional_params,
credentials=credentials,
aws_region_name=aws_region_name,
)
# Async completion
@ -357,6 +375,12 @@ class SagemakerLLM(BaseAWSLLM):
json=_data,
timeout=timeout,
)
if sync_response.status_code != 200:
raise SagemakerError(
status_code=sync_response.status_code,
message=sync_response.text,
)
except Exception as e:
## LOGGING
logging_obj.post_call(
@ -367,6 +391,7 @@ class SagemakerLLM(BaseAWSLLM):
)
raise e
except Exception as e:
verbose_logger.error("Sagemaker error %s", str(e))
status_code = (
getattr(e, "response", {})
.get("ResponseMetadata", {})
@ -547,6 +572,11 @@ class SagemakerLLM(BaseAWSLLM):
json=data,
timeout=timeout,
)
if response.status_code != 200:
raise SagemakerError(
status_code=response.status_code, message=response.text
)
except Exception as e:
## LOGGING
logging_obj.post_call(