diff --git a/litellm/__init__.py b/litellm/__init__.py index cc6f88c0c8..9b8082d390 100644 --- a/litellm/__init__.py +++ b/litellm/__init__.py @@ -38,6 +38,7 @@ cache: Optional[Cache] = None # cache object model_alias_map: Dict[str, str] = {} max_budget: float = 0.0 # set the max budget across all providers _current_cost = 0 # private variable, used if max budget is set +error_logs: Dict = {} ############################################# def get_model_cost_map(): diff --git a/litellm/main.py b/litellm/main.py index b9acd6e4af..78a0a8af0a 100644 --- a/litellm/main.py +++ b/litellm/main.py @@ -1046,7 +1046,7 @@ def completion( except Exception as e: ## Map to OpenAI Exception raise exception_type( - model=model, custom_llm_provider=custom_llm_provider, original_exception=e + model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=args, ) diff --git a/litellm/tests/test_completion.py b/litellm/tests/test_completion.py index 3bfd3956db..0a01affa7c 100644 --- a/litellm/tests/test_completion.py +++ b/litellm/tests/test_completion.py @@ -134,24 +134,24 @@ def test_completion_with_litellm_call_id(): # pytest.fail(f"Error occurred: {e}") # using Non TGI or conversational LLMs -# def hf_test_completion(): -# try: -# # litellm.set_verbose=True -# user_message = "My name is Merve and my favorite" -# messages = [{ "content": user_message,"role": "user"}] -# response = completion( -# model="huggingface/roneneldan/TinyStories-3M", -# messages=messages, -# api_base="https://p69xlsj6rpno5drq.us-east-1.aws.endpoints.huggingface.cloud", -# task=None, -# ) -# # Add any assertions here to check the response -# print(response) +def hf_test_completion(): + try: + # litellm.set_verbose=True + user_message = "My name is Merve and my favorite" + messages = [{ "content": user_message,"role": "user"}] + response = completion( + model="huggingface/roneneldan/TinyStories-3M", + messages=messages, + api_base="https://p69xlsj6rpno5drq.us-east-1.aws.endpoints.huggingface.cloud", -# except Exception as e: -# pytest.fail(f"Error occurred: {e}") + ) + # Add any assertions here to check the response + print(response) -# hf_test_completion() + except Exception as e: + pytest.fail(f"Error occurred: {e}") + +hf_test_completion() def test_completion_cohere(): # commenting for now as the cohere endpoint is being flaky try: @@ -352,7 +352,7 @@ def test_completion_azure(): try: print("azure gpt-3.5 test\n\n") response = completion( - model="azure/chatgpt-v-2", + model="chatgpt-v-2", messages=messages, ) # Add any assertions here to check the response diff --git a/litellm/utils.py b/litellm/utils.py index ec525f5367..e1257a8c54 100644 --- a/litellm/utils.py +++ b/litellm/utils.py @@ -198,6 +198,7 @@ class Logging: def pre_call(self, input, api_key, model=None, additional_args={}): # Log the exact input to the LLM API print_verbose(f"Logging Details Pre-API Call for call id {self.litellm_call_id}") + litellm.error_logs['PRE_CALL'] = locals() try: # print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}") self.model_call_details["input"] = input @@ -280,6 +281,7 @@ class Logging: def post_call(self, original_response, input=None, api_key=None, additional_args={}): # Log the exact result from the LLM API, for streaming - log the type of response received + litellm.error_logs['POST_CALL'] = locals() try: self.model_call_details["input"] = input self.model_call_details["api_key"] = api_key @@ -1870,9 +1872,40 @@ def get_model_list(): ) ####### EXCEPTION MAPPING ################ -def exception_type(model, original_exception, custom_llm_provider): +def exception_type( + model, + original_exception, + custom_llm_provider, + completion_kwargs={}, + ): global user_logger_fn, liteDebuggerClient exception_mapping_worked = False + + litellm.error_logs['EXCEPTION'] = original_exception + litellm.error_logs['KWARGS'] = completion_kwargs + + import urllib.parse + import json + for log_key in litellm.error_logs: + current_logs = litellm.error_logs[log_key] + if type(current_logs) == dict: + filtered_error_logs = {key: value for key, value in current_logs.items() if isinstance(value, (str, int, float, bool, list, dict))} + litellm.error_logs[log_key] = filtered_error_logs + else: + litellm.error_logs[log_key] = str(current_logs) + + # Convert the filtered_error_logs dictionary to a JSON string + error_logs_json = json.dumps(litellm.error_logs) + # URL-encode the JSON data + encoded_data = urllib.parse.quote(error_logs_json) + print(encoded_data) + # Print the encoded data (this is what you can include in a URL) + print("\033[91m" + str(litellm.error_logs) + "\033[0m") + + decoded_data = urllib.parse.unquote(encoded_data) + + # Print the decoded data + print(decoded_data) try: if isinstance(original_exception, OriginalError): # Handle the OpenAIError