mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
fix - use anthropic class for clients
This commit is contained in:
parent
9be6b7ec7c
commit
fcf5aa278b
2 changed files with 389 additions and 378 deletions
|
@ -8,7 +8,7 @@ from litellm.utils import ModelResponse, Usage, map_finish_reason, CustomStreamW
|
||||||
import litellm
|
import litellm
|
||||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
||||||
|
from .base import BaseLLM
|
||||||
import httpx
|
import httpx
|
||||||
|
|
||||||
|
|
||||||
|
@ -19,9 +19,6 @@ class AnthropicConstants(Enum):
|
||||||
# constants from https://github.com/anthropics/anthropic-sdk-python/blob/main/src/anthropic/_constants.py
|
# constants from https://github.com/anthropics/anthropic-sdk-python/blob/main/src/anthropic/_constants.py
|
||||||
|
|
||||||
|
|
||||||
async_handler = AsyncHTTPHandler(timeout=httpx.Timeout(timeout=600.0, connect=5.0))
|
|
||||||
|
|
||||||
|
|
||||||
class AnthropicError(Exception):
|
class AnthropicError(Exception):
|
||||||
def __init__(self, status_code, message):
|
def __init__(self, status_code, message):
|
||||||
self.status_code = status_code
|
self.status_code = status_code
|
||||||
|
@ -105,384 +102,402 @@ def validate_environment(api_key, user_headers):
|
||||||
return headers
|
return headers
|
||||||
|
|
||||||
|
|
||||||
def process_response(
|
class AnthropicChatCompletion(BaseLLM):
|
||||||
model,
|
def __init__(self) -> None:
|
||||||
response,
|
super().__init__()
|
||||||
model_response,
|
self.async_handler = AsyncHTTPHandler(
|
||||||
_is_function_call,
|
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
|
||||||
stream,
|
|
||||||
logging_obj,
|
|
||||||
api_key,
|
|
||||||
data,
|
|
||||||
messages,
|
|
||||||
print_verbose,
|
|
||||||
):
|
|
||||||
## LOGGING
|
|
||||||
logging_obj.post_call(
|
|
||||||
input=messages,
|
|
||||||
api_key=api_key,
|
|
||||||
original_response=response.text,
|
|
||||||
additional_args={"complete_input_dict": data},
|
|
||||||
)
|
|
||||||
print_verbose(f"raw model_response: {response.text}")
|
|
||||||
## RESPONSE OBJECT
|
|
||||||
try:
|
|
||||||
completion_response = response.json()
|
|
||||||
except:
|
|
||||||
raise AnthropicError(message=response.text, status_code=response.status_code)
|
|
||||||
if "error" in completion_response:
|
|
||||||
raise AnthropicError(
|
|
||||||
message=str(completion_response["error"]),
|
|
||||||
status_code=response.status_code,
|
|
||||||
)
|
|
||||||
elif len(completion_response["content"]) == 0:
|
|
||||||
raise AnthropicError(
|
|
||||||
message="No content in response",
|
|
||||||
status_code=response.status_code,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
text_content = ""
|
|
||||||
tool_calls = []
|
|
||||||
for content in completion_response["content"]:
|
|
||||||
if content["type"] == "text":
|
|
||||||
text_content += content["text"]
|
|
||||||
## TOOL CALLING
|
|
||||||
elif content["type"] == "tool_use":
|
|
||||||
tool_calls.append(
|
|
||||||
{
|
|
||||||
"id": content["id"],
|
|
||||||
"type": "function",
|
|
||||||
"function": {
|
|
||||||
"name": content["name"],
|
|
||||||
"arguments": json.dumps(content["input"]),
|
|
||||||
},
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
_message = litellm.Message(
|
|
||||||
tool_calls=tool_calls,
|
|
||||||
content=text_content or None,
|
|
||||||
)
|
|
||||||
model_response.choices[0].message = _message # type: ignore
|
|
||||||
model_response._hidden_params["original_response"] = completion_response[
|
|
||||||
"content"
|
|
||||||
] # allow user to access raw anthropic tool calling response
|
|
||||||
|
|
||||||
model_response.choices[0].finish_reason = map_finish_reason(
|
|
||||||
completion_response["stop_reason"]
|
|
||||||
)
|
)
|
||||||
|
|
||||||
print_verbose(f"_is_function_call: {_is_function_call}; stream: {stream}")
|
def process_response(
|
||||||
if _is_function_call and stream:
|
self,
|
||||||
print_verbose("INSIDE ANTHROPIC STREAMING TOOL CALLING CONDITION BLOCK")
|
model,
|
||||||
# return an iterator
|
response,
|
||||||
streaming_model_response = ModelResponse(stream=True)
|
model_response,
|
||||||
streaming_model_response.choices[0].finish_reason = model_response.choices[
|
_is_function_call,
|
||||||
0
|
stream,
|
||||||
].finish_reason
|
logging_obj,
|
||||||
# streaming_model_response.choices = [litellm.utils.StreamingChoices()]
|
api_key,
|
||||||
streaming_choice = litellm.utils.StreamingChoices()
|
data,
|
||||||
streaming_choice.index = model_response.choices[0].index
|
messages,
|
||||||
_tool_calls = []
|
print_verbose,
|
||||||
print_verbose(
|
):
|
||||||
f"type of model_response.choices[0]: {type(model_response.choices[0])}"
|
## LOGGING
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=messages,
|
||||||
|
api_key=api_key,
|
||||||
|
original_response=response.text,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
)
|
)
|
||||||
print_verbose(f"type of streaming_choice: {type(streaming_choice)}")
|
print_verbose(f"raw model_response: {response.text}")
|
||||||
if isinstance(model_response.choices[0], litellm.Choices):
|
## RESPONSE OBJECT
|
||||||
if getattr(
|
|
||||||
model_response.choices[0].message, "tool_calls", None
|
|
||||||
) is not None and isinstance(
|
|
||||||
model_response.choices[0].message.tool_calls, list
|
|
||||||
):
|
|
||||||
for tool_call in model_response.choices[0].message.tool_calls:
|
|
||||||
_tool_call = {**tool_call.dict(), "index": 0}
|
|
||||||
_tool_calls.append(_tool_call)
|
|
||||||
delta_obj = litellm.utils.Delta(
|
|
||||||
content=getattr(model_response.choices[0].message, "content", None),
|
|
||||||
role=model_response.choices[0].message.role,
|
|
||||||
tool_calls=_tool_calls,
|
|
||||||
)
|
|
||||||
streaming_choice.delta = delta_obj
|
|
||||||
streaming_model_response.choices = [streaming_choice]
|
|
||||||
completion_stream = ModelResponseIterator(
|
|
||||||
model_response=streaming_model_response
|
|
||||||
)
|
|
||||||
print_verbose(
|
|
||||||
"Returns anthropic CustomStreamWrapper with 'cached_response' streaming object"
|
|
||||||
)
|
|
||||||
return CustomStreamWrapper(
|
|
||||||
completion_stream=completion_stream,
|
|
||||||
model=model,
|
|
||||||
custom_llm_provider="cached_response",
|
|
||||||
logging_obj=logging_obj,
|
|
||||||
)
|
|
||||||
|
|
||||||
## CALCULATING USAGE
|
|
||||||
prompt_tokens = completion_response["usage"]["input_tokens"]
|
|
||||||
completion_tokens = completion_response["usage"]["output_tokens"]
|
|
||||||
total_tokens = prompt_tokens + completion_tokens
|
|
||||||
|
|
||||||
model_response["created"] = int(time.time())
|
|
||||||
model_response["model"] = model
|
|
||||||
usage = Usage(
|
|
||||||
prompt_tokens=prompt_tokens,
|
|
||||||
completion_tokens=completion_tokens,
|
|
||||||
total_tokens=total_tokens,
|
|
||||||
)
|
|
||||||
model_response.usage = usage
|
|
||||||
return model_response
|
|
||||||
|
|
||||||
|
|
||||||
async def acompletion_stream_function(
|
|
||||||
model: str,
|
|
||||||
messages: list,
|
|
||||||
api_base: str,
|
|
||||||
custom_prompt_dict: dict,
|
|
||||||
model_response: ModelResponse,
|
|
||||||
print_verbose: Callable,
|
|
||||||
encoding,
|
|
||||||
api_key,
|
|
||||||
logging_obj,
|
|
||||||
stream,
|
|
||||||
_is_function_call,
|
|
||||||
data=None,
|
|
||||||
optional_params=None,
|
|
||||||
litellm_params=None,
|
|
||||||
logger_fn=None,
|
|
||||||
headers={},
|
|
||||||
):
|
|
||||||
response = await async_handler.post(
|
|
||||||
api_base, headers=headers, data=json.dumps(data)
|
|
||||||
)
|
|
||||||
|
|
||||||
if response.status_code != 200:
|
|
||||||
raise AnthropicError(status_code=response.status_code, message=response.text)
|
|
||||||
|
|
||||||
completion_stream = response.aiter_lines()
|
|
||||||
|
|
||||||
streamwrapper = CustomStreamWrapper(
|
|
||||||
completion_stream=completion_stream,
|
|
||||||
model=model,
|
|
||||||
custom_llm_provider="anthropic",
|
|
||||||
logging_obj=logging_obj,
|
|
||||||
)
|
|
||||||
return streamwrapper
|
|
||||||
|
|
||||||
|
|
||||||
async def acompletion_function(
|
|
||||||
model: str,
|
|
||||||
messages: list,
|
|
||||||
api_base: str,
|
|
||||||
custom_prompt_dict: dict,
|
|
||||||
model_response: ModelResponse,
|
|
||||||
print_verbose: Callable,
|
|
||||||
encoding,
|
|
||||||
api_key,
|
|
||||||
logging_obj,
|
|
||||||
stream,
|
|
||||||
_is_function_call,
|
|
||||||
data=None,
|
|
||||||
optional_params=None,
|
|
||||||
litellm_params=None,
|
|
||||||
logger_fn=None,
|
|
||||||
headers={},
|
|
||||||
):
|
|
||||||
response = await async_handler.post(
|
|
||||||
api_base, headers=headers, data=json.dumps(data)
|
|
||||||
)
|
|
||||||
return process_response(
|
|
||||||
model=model,
|
|
||||||
response=response,
|
|
||||||
model_response=model_response,
|
|
||||||
_is_function_call=_is_function_call,
|
|
||||||
stream=stream,
|
|
||||||
logging_obj=logging_obj,
|
|
||||||
api_key=api_key,
|
|
||||||
data=data,
|
|
||||||
messages=messages,
|
|
||||||
print_verbose=print_verbose,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def completion(
|
|
||||||
model: str,
|
|
||||||
messages: list,
|
|
||||||
api_base: str,
|
|
||||||
custom_prompt_dict: dict,
|
|
||||||
model_response: ModelResponse,
|
|
||||||
print_verbose: Callable,
|
|
||||||
encoding,
|
|
||||||
api_key,
|
|
||||||
logging_obj,
|
|
||||||
optional_params=None,
|
|
||||||
acompletion=None,
|
|
||||||
litellm_params=None,
|
|
||||||
logger_fn=None,
|
|
||||||
headers={},
|
|
||||||
):
|
|
||||||
headers = validate_environment(api_key, headers)
|
|
||||||
_is_function_call = False
|
|
||||||
messages = copy.deepcopy(messages)
|
|
||||||
optional_params = copy.deepcopy(optional_params)
|
|
||||||
if model in custom_prompt_dict:
|
|
||||||
# check if the model has a registered custom prompt
|
|
||||||
model_prompt_details = custom_prompt_dict[model]
|
|
||||||
prompt = custom_prompt(
|
|
||||||
role_dict=model_prompt_details["roles"],
|
|
||||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
|
||||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
|
||||||
messages=messages,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
# Separate system prompt from rest of message
|
|
||||||
system_prompt_indices = []
|
|
||||||
system_prompt = ""
|
|
||||||
for idx, message in enumerate(messages):
|
|
||||||
if message["role"] == "system":
|
|
||||||
system_prompt += message["content"]
|
|
||||||
system_prompt_indices.append(idx)
|
|
||||||
if len(system_prompt_indices) > 0:
|
|
||||||
for idx in reversed(system_prompt_indices):
|
|
||||||
messages.pop(idx)
|
|
||||||
if len(system_prompt) > 0:
|
|
||||||
optional_params["system"] = system_prompt
|
|
||||||
# Format rest of message according to anthropic guidelines
|
|
||||||
try:
|
try:
|
||||||
messages = prompt_factory(
|
completion_response = response.json()
|
||||||
model=model, messages=messages, custom_llm_provider="anthropic"
|
except:
|
||||||
|
raise AnthropicError(
|
||||||
|
message=response.text, status_code=response.status_code
|
||||||
)
|
)
|
||||||
except Exception as e:
|
if "error" in completion_response:
|
||||||
raise AnthropicError(status_code=400, message=str(e))
|
raise AnthropicError(
|
||||||
|
message=str(completion_response["error"]),
|
||||||
## Load Config
|
status_code=response.status_code,
|
||||||
config = litellm.AnthropicConfig.get_config()
|
)
|
||||||
for k, v in config.items():
|
elif len(completion_response["content"]) == 0:
|
||||||
if (
|
raise AnthropicError(
|
||||||
k not in optional_params
|
message="No content in response",
|
||||||
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
status_code=response.status_code,
|
||||||
optional_params[k] = v
|
|
||||||
|
|
||||||
## Handle Tool Calling
|
|
||||||
if "tools" in optional_params:
|
|
||||||
_is_function_call = True
|
|
||||||
headers["anthropic-beta"] = "tools-2024-04-04"
|
|
||||||
|
|
||||||
anthropic_tools = []
|
|
||||||
for tool in optional_params["tools"]:
|
|
||||||
new_tool = tool["function"]
|
|
||||||
new_tool["input_schema"] = new_tool.pop("parameters") # rename key
|
|
||||||
anthropic_tools.append(new_tool)
|
|
||||||
|
|
||||||
optional_params["tools"] = anthropic_tools
|
|
||||||
|
|
||||||
stream = optional_params.pop("stream", None)
|
|
||||||
|
|
||||||
data = {
|
|
||||||
"model": model,
|
|
||||||
"messages": messages,
|
|
||||||
**optional_params,
|
|
||||||
}
|
|
||||||
|
|
||||||
## LOGGING
|
|
||||||
logging_obj.pre_call(
|
|
||||||
input=messages,
|
|
||||||
api_key=api_key,
|
|
||||||
additional_args={
|
|
||||||
"complete_input_dict": data,
|
|
||||||
"api_base": api_base,
|
|
||||||
"headers": headers,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
print_verbose(f"_is_function_call: {_is_function_call}")
|
|
||||||
if acompletion == True:
|
|
||||||
if (
|
|
||||||
stream and not _is_function_call
|
|
||||||
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
|
||||||
print_verbose("makes async anthropic streaming POST request")
|
|
||||||
data["stream"] = stream
|
|
||||||
return acompletion_stream_function(
|
|
||||||
model=model,
|
|
||||||
messages=messages,
|
|
||||||
data=data,
|
|
||||||
api_base=api_base,
|
|
||||||
custom_prompt_dict=custom_prompt_dict,
|
|
||||||
model_response=model_response,
|
|
||||||
print_verbose=print_verbose,
|
|
||||||
encoding=encoding,
|
|
||||||
api_key=api_key,
|
|
||||||
logging_obj=logging_obj,
|
|
||||||
optional_params=optional_params,
|
|
||||||
stream=stream,
|
|
||||||
_is_function_call=_is_function_call,
|
|
||||||
litellm_params=litellm_params,
|
|
||||||
logger_fn=logger_fn,
|
|
||||||
headers=headers,
|
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
return acompletion_function(
|
text_content = ""
|
||||||
model=model,
|
tool_calls = []
|
||||||
|
for content in completion_response["content"]:
|
||||||
|
if content["type"] == "text":
|
||||||
|
text_content += content["text"]
|
||||||
|
## TOOL CALLING
|
||||||
|
elif content["type"] == "tool_use":
|
||||||
|
tool_calls.append(
|
||||||
|
{
|
||||||
|
"id": content["id"],
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": content["name"],
|
||||||
|
"arguments": json.dumps(content["input"]),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
_message = litellm.Message(
|
||||||
|
tool_calls=tool_calls,
|
||||||
|
content=text_content or None,
|
||||||
|
)
|
||||||
|
model_response.choices[0].message = _message # type: ignore
|
||||||
|
model_response._hidden_params["original_response"] = completion_response[
|
||||||
|
"content"
|
||||||
|
] # allow user to access raw anthropic tool calling response
|
||||||
|
|
||||||
|
model_response.choices[0].finish_reason = map_finish_reason(
|
||||||
|
completion_response["stop_reason"]
|
||||||
|
)
|
||||||
|
|
||||||
|
print_verbose(f"_is_function_call: {_is_function_call}; stream: {stream}")
|
||||||
|
if _is_function_call and stream:
|
||||||
|
print_verbose("INSIDE ANTHROPIC STREAMING TOOL CALLING CONDITION BLOCK")
|
||||||
|
# return an iterator
|
||||||
|
streaming_model_response = ModelResponse(stream=True)
|
||||||
|
streaming_model_response.choices[0].finish_reason = model_response.choices[
|
||||||
|
0
|
||||||
|
].finish_reason
|
||||||
|
# streaming_model_response.choices = [litellm.utils.StreamingChoices()]
|
||||||
|
streaming_choice = litellm.utils.StreamingChoices()
|
||||||
|
streaming_choice.index = model_response.choices[0].index
|
||||||
|
_tool_calls = []
|
||||||
|
print_verbose(
|
||||||
|
f"type of model_response.choices[0]: {type(model_response.choices[0])}"
|
||||||
|
)
|
||||||
|
print_verbose(f"type of streaming_choice: {type(streaming_choice)}")
|
||||||
|
if isinstance(model_response.choices[0], litellm.Choices):
|
||||||
|
if getattr(
|
||||||
|
model_response.choices[0].message, "tool_calls", None
|
||||||
|
) is not None and isinstance(
|
||||||
|
model_response.choices[0].message.tool_calls, list
|
||||||
|
):
|
||||||
|
for tool_call in model_response.choices[0].message.tool_calls:
|
||||||
|
_tool_call = {**tool_call.dict(), "index": 0}
|
||||||
|
_tool_calls.append(_tool_call)
|
||||||
|
delta_obj = litellm.utils.Delta(
|
||||||
|
content=getattr(model_response.choices[0].message, "content", None),
|
||||||
|
role=model_response.choices[0].message.role,
|
||||||
|
tool_calls=_tool_calls,
|
||||||
|
)
|
||||||
|
streaming_choice.delta = delta_obj
|
||||||
|
streaming_model_response.choices = [streaming_choice]
|
||||||
|
completion_stream = ModelResponseIterator(
|
||||||
|
model_response=streaming_model_response
|
||||||
|
)
|
||||||
|
print_verbose(
|
||||||
|
"Returns anthropic CustomStreamWrapper with 'cached_response' streaming object"
|
||||||
|
)
|
||||||
|
return CustomStreamWrapper(
|
||||||
|
completion_stream=completion_stream,
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider="cached_response",
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
)
|
||||||
|
|
||||||
|
## CALCULATING USAGE
|
||||||
|
prompt_tokens = completion_response["usage"]["input_tokens"]
|
||||||
|
completion_tokens = completion_response["usage"]["output_tokens"]
|
||||||
|
total_tokens = prompt_tokens + completion_tokens
|
||||||
|
|
||||||
|
model_response["created"] = int(time.time())
|
||||||
|
model_response["model"] = model
|
||||||
|
usage = Usage(
|
||||||
|
prompt_tokens=prompt_tokens,
|
||||||
|
completion_tokens=completion_tokens,
|
||||||
|
total_tokens=total_tokens,
|
||||||
|
)
|
||||||
|
model_response.usage = usage
|
||||||
|
return model_response
|
||||||
|
|
||||||
|
async def acompletion_stream_function(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
api_base: str,
|
||||||
|
custom_prompt_dict: dict,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
api_key,
|
||||||
|
logging_obj,
|
||||||
|
stream,
|
||||||
|
_is_function_call,
|
||||||
|
data=None,
|
||||||
|
optional_params=None,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
headers={},
|
||||||
|
):
|
||||||
|
response = await self.async_handler.post(
|
||||||
|
api_base, headers=headers, data=json.dumps(data)
|
||||||
|
)
|
||||||
|
|
||||||
|
if response.status_code != 200:
|
||||||
|
raise AnthropicError(
|
||||||
|
status_code=response.status_code, message=response.text
|
||||||
|
)
|
||||||
|
|
||||||
|
completion_stream = response.aiter_lines()
|
||||||
|
|
||||||
|
streamwrapper = CustomStreamWrapper(
|
||||||
|
completion_stream=completion_stream,
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider="anthropic",
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
)
|
||||||
|
return streamwrapper
|
||||||
|
|
||||||
|
async def acompletion_function(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
api_base: str,
|
||||||
|
custom_prompt_dict: dict,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
api_key,
|
||||||
|
logging_obj,
|
||||||
|
stream,
|
||||||
|
_is_function_call,
|
||||||
|
data=None,
|
||||||
|
optional_params=None,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
headers={},
|
||||||
|
):
|
||||||
|
response = await self.async_handler.post(
|
||||||
|
api_base, headers=headers, data=json.dumps(data)
|
||||||
|
)
|
||||||
|
return self.process_response(
|
||||||
|
model=model,
|
||||||
|
response=response,
|
||||||
|
model_response=model_response,
|
||||||
|
_is_function_call=_is_function_call,
|
||||||
|
stream=stream,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
api_key=api_key,
|
||||||
|
data=data,
|
||||||
|
messages=messages,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
)
|
||||||
|
|
||||||
|
def completion(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
api_base: str,
|
||||||
|
custom_prompt_dict: dict,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
print_verbose: Callable,
|
||||||
|
encoding,
|
||||||
|
api_key,
|
||||||
|
logging_obj,
|
||||||
|
optional_params=None,
|
||||||
|
acompletion=None,
|
||||||
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
|
headers={},
|
||||||
|
):
|
||||||
|
headers = validate_environment(api_key, headers)
|
||||||
|
_is_function_call = False
|
||||||
|
messages = copy.deepcopy(messages)
|
||||||
|
optional_params = copy.deepcopy(optional_params)
|
||||||
|
if model in custom_prompt_dict:
|
||||||
|
# check if the model has a registered custom prompt
|
||||||
|
model_prompt_details = custom_prompt_dict[model]
|
||||||
|
prompt = custom_prompt(
|
||||||
|
role_dict=model_prompt_details["roles"],
|
||||||
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||||
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||||
messages=messages,
|
messages=messages,
|
||||||
data=data,
|
|
||||||
api_base=api_base,
|
|
||||||
custom_prompt_dict=custom_prompt_dict,
|
|
||||||
model_response=model_response,
|
|
||||||
print_verbose=print_verbose,
|
|
||||||
encoding=encoding,
|
|
||||||
api_key=api_key,
|
|
||||||
logging_obj=logging_obj,
|
|
||||||
optional_params=optional_params,
|
|
||||||
stream=stream,
|
|
||||||
_is_function_call=_is_function_call,
|
|
||||||
litellm_params=litellm_params,
|
|
||||||
logger_fn=logger_fn,
|
|
||||||
headers=headers,
|
|
||||||
)
|
)
|
||||||
else:
|
|
||||||
## COMPLETION CALL
|
|
||||||
if (
|
|
||||||
stream and not _is_function_call
|
|
||||||
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
|
||||||
print_verbose("makes anthropic streaming POST request")
|
|
||||||
data["stream"] = stream
|
|
||||||
response = requests.post(
|
|
||||||
api_base,
|
|
||||||
headers=headers,
|
|
||||||
data=json.dumps(data),
|
|
||||||
stream=stream,
|
|
||||||
)
|
|
||||||
|
|
||||||
if response.status_code != 200:
|
|
||||||
raise AnthropicError(
|
|
||||||
status_code=response.status_code, message=response.text
|
|
||||||
)
|
|
||||||
|
|
||||||
completion_stream = response.iter_lines()
|
|
||||||
streaming_response = CustomStreamWrapper(
|
|
||||||
completion_stream=completion_stream,
|
|
||||||
model=model,
|
|
||||||
custom_llm_provider="anthropic",
|
|
||||||
logging_obj=logging_obj,
|
|
||||||
)
|
|
||||||
return streaming_response
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
response = requests.post(api_base, headers=headers, data=json.dumps(data))
|
# Separate system prompt from rest of message
|
||||||
if response.status_code != 200:
|
system_prompt_indices = []
|
||||||
raise AnthropicError(
|
system_prompt = ""
|
||||||
status_code=response.status_code, message=response.text
|
for idx, message in enumerate(messages):
|
||||||
|
if message["role"] == "system":
|
||||||
|
system_prompt += message["content"]
|
||||||
|
system_prompt_indices.append(idx)
|
||||||
|
if len(system_prompt_indices) > 0:
|
||||||
|
for idx in reversed(system_prompt_indices):
|
||||||
|
messages.pop(idx)
|
||||||
|
if len(system_prompt) > 0:
|
||||||
|
optional_params["system"] = system_prompt
|
||||||
|
# Format rest of message according to anthropic guidelines
|
||||||
|
try:
|
||||||
|
messages = prompt_factory(
|
||||||
|
model=model, messages=messages, custom_llm_provider="anthropic"
|
||||||
)
|
)
|
||||||
return process_response(
|
except Exception as e:
|
||||||
model=model,
|
raise AnthropicError(status_code=400, message=str(e))
|
||||||
response=response,
|
|
||||||
model_response=model_response,
|
## Load Config
|
||||||
_is_function_call=_is_function_call,
|
config = litellm.AnthropicConfig.get_config()
|
||||||
stream=stream,
|
for k, v in config.items():
|
||||||
logging_obj=logging_obj,
|
if (
|
||||||
api_key=api_key,
|
k not in optional_params
|
||||||
data=data,
|
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||||
messages=messages,
|
optional_params[k] = v
|
||||||
print_verbose=print_verbose,
|
|
||||||
)
|
## Handle Tool Calling
|
||||||
|
if "tools" in optional_params:
|
||||||
|
_is_function_call = True
|
||||||
|
headers["anthropic-beta"] = "tools-2024-04-04"
|
||||||
|
|
||||||
|
anthropic_tools = []
|
||||||
|
for tool in optional_params["tools"]:
|
||||||
|
new_tool = tool["function"]
|
||||||
|
new_tool["input_schema"] = new_tool.pop("parameters") # rename key
|
||||||
|
anthropic_tools.append(new_tool)
|
||||||
|
|
||||||
|
optional_params["tools"] = anthropic_tools
|
||||||
|
|
||||||
|
stream = optional_params.pop("stream", None)
|
||||||
|
|
||||||
|
data = {
|
||||||
|
"model": model,
|
||||||
|
"messages": messages,
|
||||||
|
**optional_params,
|
||||||
|
}
|
||||||
|
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(
|
||||||
|
input=messages,
|
||||||
|
api_key=api_key,
|
||||||
|
additional_args={
|
||||||
|
"complete_input_dict": data,
|
||||||
|
"api_base": api_base,
|
||||||
|
"headers": headers,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
print_verbose(f"_is_function_call: {_is_function_call}")
|
||||||
|
if acompletion == True:
|
||||||
|
if (
|
||||||
|
stream and not _is_function_call
|
||||||
|
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
||||||
|
print_verbose("makes async anthropic streaming POST request")
|
||||||
|
data["stream"] = stream
|
||||||
|
return self.acompletion_stream_function(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
data=data,
|
||||||
|
api_base=api_base,
|
||||||
|
custom_prompt_dict=custom_prompt_dict,
|
||||||
|
model_response=model_response,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
encoding=encoding,
|
||||||
|
api_key=api_key,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
optional_params=optional_params,
|
||||||
|
stream=stream,
|
||||||
|
_is_function_call=_is_function_call,
|
||||||
|
litellm_params=litellm_params,
|
||||||
|
logger_fn=logger_fn,
|
||||||
|
headers=headers,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
return self.acompletion_function(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
data=data,
|
||||||
|
api_base=api_base,
|
||||||
|
custom_prompt_dict=custom_prompt_dict,
|
||||||
|
model_response=model_response,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
encoding=encoding,
|
||||||
|
api_key=api_key,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
optional_params=optional_params,
|
||||||
|
stream=stream,
|
||||||
|
_is_function_call=_is_function_call,
|
||||||
|
litellm_params=litellm_params,
|
||||||
|
logger_fn=logger_fn,
|
||||||
|
headers=headers,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
## COMPLETION CALL
|
||||||
|
if (
|
||||||
|
stream and not _is_function_call
|
||||||
|
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
||||||
|
print_verbose("makes anthropic streaming POST request")
|
||||||
|
data["stream"] = stream
|
||||||
|
response = requests.post(
|
||||||
|
api_base,
|
||||||
|
headers=headers,
|
||||||
|
data=json.dumps(data),
|
||||||
|
stream=stream,
|
||||||
|
)
|
||||||
|
|
||||||
|
if response.status_code != 200:
|
||||||
|
raise AnthropicError(
|
||||||
|
status_code=response.status_code, message=response.text
|
||||||
|
)
|
||||||
|
|
||||||
|
completion_stream = response.iter_lines()
|
||||||
|
streaming_response = CustomStreamWrapper(
|
||||||
|
completion_stream=completion_stream,
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider="anthropic",
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
)
|
||||||
|
return streaming_response
|
||||||
|
|
||||||
|
else:
|
||||||
|
response = requests.post(
|
||||||
|
api_base, headers=headers, data=json.dumps(data)
|
||||||
|
)
|
||||||
|
if response.status_code != 200:
|
||||||
|
raise AnthropicError(
|
||||||
|
status_code=response.status_code, message=response.text
|
||||||
|
)
|
||||||
|
return self.process_response(
|
||||||
|
model=model,
|
||||||
|
response=response,
|
||||||
|
model_response=model_response,
|
||||||
|
_is_function_call=_is_function_call,
|
||||||
|
stream=stream,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
api_key=api_key,
|
||||||
|
data=data,
|
||||||
|
messages=messages,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
)
|
||||||
|
|
||||||
|
def embedding(self):
|
||||||
|
# logic for parsing in - calling - parsing out model embedding calls
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
class ModelResponseIterator:
|
class ModelResponseIterator:
|
||||||
|
@ -509,8 +524,3 @@ class ModelResponseIterator:
|
||||||
raise StopAsyncIteration
|
raise StopAsyncIteration
|
||||||
self.is_done = True
|
self.is_done = True
|
||||||
return self.model_response
|
return self.model_response
|
||||||
|
|
||||||
|
|
||||||
def embedding():
|
|
||||||
# logic for parsing in - calling - parsing out model embedding calls
|
|
||||||
pass
|
|
||||||
|
|
|
@ -39,7 +39,6 @@ from litellm.utils import (
|
||||||
get_optional_params_image_gen,
|
get_optional_params_image_gen,
|
||||||
)
|
)
|
||||||
from .llms import (
|
from .llms import (
|
||||||
anthropic,
|
|
||||||
anthropic_text,
|
anthropic_text,
|
||||||
together_ai,
|
together_ai,
|
||||||
ai21,
|
ai21,
|
||||||
|
@ -68,6 +67,7 @@ from .llms import (
|
||||||
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
|
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
|
||||||
from .llms.azure import AzureChatCompletion
|
from .llms.azure import AzureChatCompletion
|
||||||
from .llms.azure_text import AzureTextCompletion
|
from .llms.azure_text import AzureTextCompletion
|
||||||
|
from .llms.anthropic import AnthropicChatCompletion
|
||||||
from .llms.huggingface_restapi import Huggingface
|
from .llms.huggingface_restapi import Huggingface
|
||||||
from .llms.prompt_templates.factory import (
|
from .llms.prompt_templates.factory import (
|
||||||
prompt_factory,
|
prompt_factory,
|
||||||
|
@ -99,6 +99,7 @@ from litellm.utils import (
|
||||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||||
openai_chat_completions = OpenAIChatCompletion()
|
openai_chat_completions = OpenAIChatCompletion()
|
||||||
openai_text_completions = OpenAITextCompletion()
|
openai_text_completions = OpenAITextCompletion()
|
||||||
|
anthropic_chat_completions = AnthropicChatCompletion()
|
||||||
azure_chat_completions = AzureChatCompletion()
|
azure_chat_completions = AzureChatCompletion()
|
||||||
azure_text_completions = AzureTextCompletion()
|
azure_text_completions = AzureTextCompletion()
|
||||||
huggingface = Huggingface()
|
huggingface = Huggingface()
|
||||||
|
@ -1181,7 +1182,7 @@ def completion(
|
||||||
or get_secret("ANTHROPIC_API_BASE")
|
or get_secret("ANTHROPIC_API_BASE")
|
||||||
or "https://api.anthropic.com/v1/messages"
|
or "https://api.anthropic.com/v1/messages"
|
||||||
)
|
)
|
||||||
response = anthropic.completion(
|
response = anthropic_chat_completions.completion(
|
||||||
model=model,
|
model=model,
|
||||||
messages=messages,
|
messages=messages,
|
||||||
api_base=api_base,
|
api_base=api_base,
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue