Merge branch 'main' into main

This commit is contained in:
Yujie.Zhu 2025-04-23 11:01:35 +08:00 committed by GitHub
commit fd8be583c5
1076 changed files with 71418 additions and 14510 deletions

View file

@ -3,6 +3,18 @@ orbs:
codecov: codecov/codecov@4.0.1 codecov: codecov/codecov@4.0.1
node: circleci/node@5.1.0 # Add this line to declare the node orb node: circleci/node@5.1.0 # Add this line to declare the node orb
commands:
setup_google_dns:
steps:
- run:
name: "Configure Google DNS"
command: |
# Backup original resolv.conf
sudo cp /etc/resolv.conf /etc/resolv.conf.backup
# Add both local and Google DNS servers
echo "nameserver 127.0.0.11" | sudo tee /etc/resolv.conf
echo "nameserver 8.8.8.8" | sudo tee -a /etc/resolv.conf
echo "nameserver 8.8.4.4" | sudo tee -a /etc/resolv.conf
jobs: jobs:
local_testing: local_testing:
@ -15,7 +27,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Show git commit hash name: Show git commit hash
command: | command: |
@ -49,7 +61,7 @@ jobs:
pip install opentelemetry-api==1.25.0 pip install opentelemetry-api==1.25.0
pip install opentelemetry-sdk==1.25.0 pip install opentelemetry-sdk==1.25.0
pip install opentelemetry-exporter-otlp==1.25.0 pip install opentelemetry-exporter-otlp==1.25.0
pip install openai==1.66.1 pip install openai==1.68.2
pip install prisma==0.11.0 pip install prisma==0.11.0
pip install "detect_secrets==1.5.0" pip install "detect_secrets==1.5.0"
pip install "httpx==0.24.1" pip install "httpx==0.24.1"
@ -66,7 +78,7 @@ jobs:
pip install python-multipart pip install python-multipart
pip install google-cloud-aiplatform pip install google-cloud-aiplatform
pip install prometheus-client==0.20.0 pip install prometheus-client==0.20.0
pip install "pydantic==2.7.1" pip install "pydantic==2.10.2"
pip install "diskcache==5.6.1" pip install "diskcache==5.6.1"
pip install "Pillow==10.3.0" pip install "Pillow==10.3.0"
pip install "jsonschema==4.22.0" pip install "jsonschema==4.22.0"
@ -134,7 +146,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Show git commit hash name: Show git commit hash
command: | command: |
@ -168,7 +180,7 @@ jobs:
pip install opentelemetry-api==1.25.0 pip install opentelemetry-api==1.25.0
pip install opentelemetry-sdk==1.25.0 pip install opentelemetry-sdk==1.25.0
pip install opentelemetry-exporter-otlp==1.25.0 pip install opentelemetry-exporter-otlp==1.25.0
pip install openai==1.66.1 pip install openai==1.68.2
pip install prisma==0.11.0 pip install prisma==0.11.0
pip install "detect_secrets==1.5.0" pip install "detect_secrets==1.5.0"
pip install "httpx==0.24.1" pip install "httpx==0.24.1"
@ -185,7 +197,7 @@ jobs:
pip install python-multipart pip install python-multipart
pip install google-cloud-aiplatform pip install google-cloud-aiplatform
pip install prometheus-client==0.20.0 pip install prometheus-client==0.20.0
pip install "pydantic==2.7.1" pip install "pydantic==2.10.2"
pip install "diskcache==5.6.1" pip install "diskcache==5.6.1"
pip install "Pillow==10.3.0" pip install "Pillow==10.3.0"
pip install "jsonschema==4.22.0" pip install "jsonschema==4.22.0"
@ -234,7 +246,13 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run:
name: DNS lookup for Redis host
command: |
sudo apt-get update
sudo apt-get install -y dnsutils
dig redis-19899.c239.us-east-1-2.ec2.redns.redis-cloud.com +short
- run: - run:
name: Show git commit hash name: Show git commit hash
command: | command: |
@ -268,7 +286,7 @@ jobs:
pip install opentelemetry-api==1.25.0 pip install opentelemetry-api==1.25.0
pip install opentelemetry-sdk==1.25.0 pip install opentelemetry-sdk==1.25.0
pip install opentelemetry-exporter-otlp==1.25.0 pip install opentelemetry-exporter-otlp==1.25.0
pip install openai==1.66.1 pip install openai==1.68.2
pip install prisma==0.11.0 pip install prisma==0.11.0
pip install "detect_secrets==1.5.0" pip install "detect_secrets==1.5.0"
pip install "httpx==0.24.1" pip install "httpx==0.24.1"
@ -285,7 +303,7 @@ jobs:
pip install python-multipart pip install python-multipart
pip install google-cloud-aiplatform pip install google-cloud-aiplatform
pip install prometheus-client==0.20.0 pip install prometheus-client==0.20.0
pip install "pydantic==2.7.1" pip install "pydantic==2.10.2"
pip install "diskcache==5.6.1" pip install "diskcache==5.6.1"
pip install "Pillow==10.3.0" pip install "Pillow==10.3.0"
pip install "jsonschema==4.22.0" pip install "jsonschema==4.22.0"
@ -334,6 +352,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
@ -388,6 +407,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
@ -404,7 +424,7 @@ jobs:
command: | command: |
pwd pwd
ls ls
python -m pytest tests/local_testing tests/router_unit_tests --cov=litellm --cov-report=xml -vv -k "router" -x -s -v --junitxml=test-results/junit.xml --durations=5 python -m pytest tests/local_testing tests/router_unit_tests --cov=litellm --cov-report=xml -vv -k "router" -x -v --junitxml=test-results/junit.xml --durations=5
no_output_timeout: 120m no_output_timeout: 120m
- run: - run:
name: Rename the coverage files name: Rename the coverage files
@ -429,6 +449,7 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Show git commit hash name: Show git commit hash
command: | command: |
@ -479,7 +500,13 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- run:
name: Install PostgreSQL
command: |
sudo apt-get update
sudo apt-get install postgresql postgresql-contrib
echo 'export PATH=/usr/lib/postgresql/*/bin:$PATH' >> $BASH_ENV
- setup_google_dns
- run: - run:
name: Show git commit hash name: Show git commit hash
command: | command: |
@ -513,7 +540,7 @@ jobs:
pip install opentelemetry-api==1.25.0 pip install opentelemetry-api==1.25.0
pip install opentelemetry-sdk==1.25.0 pip install opentelemetry-sdk==1.25.0
pip install opentelemetry-exporter-otlp==1.25.0 pip install opentelemetry-exporter-otlp==1.25.0
pip install openai==1.66.1 pip install openai==1.68.2
pip install prisma==0.11.0 pip install prisma==0.11.0
pip install "detect_secrets==1.5.0" pip install "detect_secrets==1.5.0"
pip install "httpx==0.24.1" pip install "httpx==0.24.1"
@ -530,10 +557,11 @@ jobs:
pip install python-multipart pip install python-multipart
pip install google-cloud-aiplatform pip install google-cloud-aiplatform
pip install prometheus-client==0.20.0 pip install prometheus-client==0.20.0
pip install "pydantic==2.7.1" pip install "pydantic==2.10.2"
pip install "diskcache==5.6.1" pip install "diskcache==5.6.1"
pip install "Pillow==10.3.0" pip install "Pillow==10.3.0"
pip install "jsonschema==4.22.0" pip install "jsonschema==4.22.0"
pip install "pytest-postgresql==7.0.1"
- save_cache: - save_cache:
paths: paths:
- ./venv - ./venv
@ -569,7 +597,7 @@ jobs:
- litellm_proxy_unit_tests_coverage - litellm_proxy_unit_tests_coverage
litellm_assistants_api_testing: # Runs all tests with the "assistants" keyword litellm_assistants_api_testing: # Runs all tests with the "assistants" keyword
docker: docker:
- image: cimg/python:3.11 - image: cimg/python:3.13.1
auth: auth:
username: ${DOCKERHUB_USERNAME} username: ${DOCKERHUB_USERNAME}
password: ${DOCKERHUB_PASSWORD} password: ${DOCKERHUB_PASSWORD}
@ -577,10 +605,13 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install wheel
pip install --upgrade pip wheel setuptools
python -m pip install -r requirements.txt python -m pip install -r requirements.txt
pip install "pytest==7.3.1" pip install "pytest==7.3.1"
pip install "respx==0.21.1" pip install "respx==0.21.1"
@ -618,6 +649,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
@ -625,7 +657,13 @@ jobs:
python -m pip install -r requirements.txt python -m pip install -r requirements.txt
pip install "pytest==7.3.1" pip install "pytest==7.3.1"
pip install "pytest-retry==1.6.3" pip install "pytest-retry==1.6.3"
pip install "pytest-cov==5.0.0"
pip install "pytest-asyncio==0.21.1" pip install "pytest-asyncio==0.21.1"
pip install "respx==0.21.1"
- run:
name: Show current pydantic version
command: |
python -m pip show pydantic
# Run pytest and generate JUnit XML report # Run pytest and generate JUnit XML report
- run: - run:
name: Run tests name: Run tests
@ -648,6 +686,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
@ -664,7 +703,7 @@ jobs:
command: | command: |
pwd pwd
ls ls
python -m pytest -vv tests/llm_translation --cov=litellm --cov-report=xml -x -s -v --junitxml=test-results/junit.xml --durations=5 python -m pytest -vv tests/llm_translation --cov=litellm --cov-report=xml -x -v --junitxml=test-results/junit.xml --durations=5
no_output_timeout: 120m no_output_timeout: 120m
- run: - run:
name: Rename the coverage files name: Rename the coverage files
@ -680,6 +719,51 @@ jobs:
paths: paths:
- llm_translation_coverage.xml - llm_translation_coverage.xml
- llm_translation_coverage - llm_translation_coverage
mcp_testing:
docker:
- image: cimg/python:3.11
auth:
username: ${DOCKERHUB_USERNAME}
password: ${DOCKERHUB_PASSWORD}
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
python -m pip install --upgrade pip
python -m pip install -r requirements.txt
pip install "pytest==7.3.1"
pip install "pytest-retry==1.6.3"
pip install "pytest-cov==5.0.0"
pip install "pytest-asyncio==0.21.1"
pip install "respx==0.21.1"
pip install "pydantic==2.10.2"
pip install "mcp==1.5.0"
# Run pytest and generate JUnit XML report
- run:
name: Run tests
command: |
pwd
ls
python -m pytest -vv tests/mcp_tests --cov=litellm --cov-report=xml -x -s -v --junitxml=test-results/junit.xml --durations=5
no_output_timeout: 120m
- run:
name: Rename the coverage files
command: |
mv coverage.xml mcp_coverage.xml
mv .coverage mcp_coverage
# Store test results
- store_test_results:
path: test-results
- persist_to_workspace:
root: .
paths:
- mcp_coverage.xml
- mcp_coverage
llm_responses_api_testing: llm_responses_api_testing:
docker: docker:
- image: cimg/python:3.11 - image: cimg/python:3.11
@ -690,6 +774,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
@ -732,6 +817,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
@ -744,6 +830,8 @@ jobs:
pip install "pytest-asyncio==0.21.1" pip install "pytest-asyncio==0.21.1"
pip install "respx==0.21.1" pip install "respx==0.21.1"
pip install "hypercorn==0.17.3" pip install "hypercorn==0.17.3"
pip install "pydantic==2.10.2"
pip install "mcp==1.5.0"
# Run pytest and generate JUnit XML report # Run pytest and generate JUnit XML report
- run: - run:
name: Run tests name: Run tests
@ -776,6 +864,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
@ -820,10 +909,12 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install numpydoc
python -m pip install -r requirements.txt python -m pip install -r requirements.txt
pip install "respx==0.21.1" pip install "respx==0.21.1"
pip install "pytest==7.3.1" pip install "pytest==7.3.1"
@ -832,7 +923,6 @@ jobs:
pip install "pytest-cov==5.0.0" pip install "pytest-cov==5.0.0"
pip install "google-generativeai==0.3.2" pip install "google-generativeai==0.3.2"
pip install "google-cloud-aiplatform==1.43.0" pip install "google-cloud-aiplatform==1.43.0"
pip install numpydoc
# Run pytest and generate JUnit XML report # Run pytest and generate JUnit XML report
- run: - run:
name: Run tests name: Run tests
@ -866,6 +956,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
@ -908,6 +999,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
@ -950,6 +1042,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
@ -996,6 +1089,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
@ -1008,8 +1102,8 @@ jobs:
pip install click pip install click
pip install "boto3==1.34.34" pip install "boto3==1.34.34"
pip install jinja2 pip install jinja2
pip install tokenizers=="0.20.0" pip install "tokenizers==0.20.0"
pip install uvloop==0.21.0 pip install "uvloop==0.21.0"
pip install jsonschema pip install jsonschema
- run: - run:
name: Run tests name: Run tests
@ -1028,10 +1122,12 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
python -m pip install wheel setuptools
python -m pip install -r requirements.txt python -m pip install -r requirements.txt
pip install "pytest==7.3.1" pip install "pytest==7.3.1"
pip install "pytest-retry==1.6.3" pip install "pytest-retry==1.6.3"
@ -1052,6 +1148,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
# Install Helm # Install Helm
- run: - run:
name: Install Helm name: Install Helm
@ -1121,6 +1218,7 @@ jobs:
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Dependencies name: Install Dependencies
command: | command: |
@ -1157,6 +1255,7 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Python 3.9 name: Install Python 3.9
command: | command: |
@ -1231,6 +1330,7 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Docker CLI (In case it's not already installed) name: Install Docker CLI (In case it's not already installed)
command: | command: |
@ -1278,7 +1378,7 @@ jobs:
pip install "aiodynamo==23.10.1" pip install "aiodynamo==23.10.1"
pip install "asyncio==3.4.3" pip install "asyncio==3.4.3"
pip install "PyGithub==1.59.1" pip install "PyGithub==1.59.1"
pip install "openai==1.66.1" pip install "openai==1.68.2"
- run: - run:
name: Install Grype name: Install Grype
command: | command: |
@ -1353,7 +1453,7 @@ jobs:
command: | command: |
pwd pwd
ls ls
python -m pytest -s -vv tests/*.py -x --junitxml=test-results/junit.xml --durations=5 --ignore=tests/otel_tests --ignore=tests/pass_through_tests --ignore=tests/proxy_admin_ui_tests --ignore=tests/load_tests --ignore=tests/llm_translation --ignore=tests/llm_responses_api_testing --ignore=tests/image_gen_tests --ignore=tests/pass_through_unit_tests python -m pytest -s -vv tests/*.py -x --junitxml=test-results/junit.xml --durations=5 --ignore=tests/otel_tests --ignore=tests/spend_tracking_tests --ignore=tests/pass_through_tests --ignore=tests/proxy_admin_ui_tests --ignore=tests/load_tests --ignore=tests/llm_translation --ignore=tests/llm_responses_api_testing --ignore=tests/mcp_tests --ignore=tests/image_gen_tests --ignore=tests/pass_through_unit_tests
no_output_timeout: 120m no_output_timeout: 120m
# Store test results # Store test results
@ -1366,6 +1466,7 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Docker CLI (In case it's not already installed) name: Install Docker CLI (In case it's not already installed)
command: | command: |
@ -1402,6 +1503,7 @@ jobs:
pip install "boto3==1.34.34" pip install "boto3==1.34.34"
pip install "aioboto3==12.3.0" pip install "aioboto3==12.3.0"
pip install langchain pip install langchain
pip install "langchain_mcp_adapters==0.0.5"
pip install "langfuse>=2.0.0" pip install "langfuse>=2.0.0"
pip install "logfire==0.29.0" pip install "logfire==0.29.0"
pip install numpydoc pip install numpydoc
@ -1414,7 +1516,7 @@ jobs:
pip install "aiodynamo==23.10.1" pip install "aiodynamo==23.10.1"
pip install "asyncio==3.4.3" pip install "asyncio==3.4.3"
pip install "PyGithub==1.59.1" pip install "PyGithub==1.59.1"
pip install "openai==1.66.1" pip install "openai==1.68.2"
# Run pytest and generate JUnit XML report # Run pytest and generate JUnit XML report
- run: - run:
name: Build Docker image name: Build Docker image
@ -1489,6 +1591,7 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Docker CLI (In case it's not already installed) name: Install Docker CLI (In case it's not already installed)
command: | command: |
@ -1536,7 +1639,7 @@ jobs:
pip install "aiodynamo==23.10.1" pip install "aiodynamo==23.10.1"
pip install "asyncio==3.4.3" pip install "asyncio==3.4.3"
pip install "PyGithub==1.59.1" pip install "PyGithub==1.59.1"
pip install "openai==1.66.1" pip install "openai==1.68.2"
- run: - run:
name: Build Docker image name: Build Docker image
command: docker build -t my-app:latest -f ./docker/Dockerfile.database . command: docker build -t my-app:latest -f ./docker/Dockerfile.database .
@ -1643,6 +1746,96 @@ jobs:
# Store test results # Store test results
- store_test_results: - store_test_results:
path: test-results path: test-results
proxy_spend_accuracy_tests:
machine:
image: ubuntu-2204:2023.10.1
resource_class: xlarge
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Install Docker CLI (In case it's not already installed)
command: |
sudo apt-get update
sudo apt-get install -y docker-ce docker-ce-cli containerd.io
- run:
name: Install Python 3.9
command: |
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh --output miniconda.sh
bash miniconda.sh -b -p $HOME/miniconda
export PATH="$HOME/miniconda/bin:$PATH"
conda init bash
source ~/.bashrc
conda create -n myenv python=3.9 -y
conda activate myenv
python --version
- run:
name: Install Dependencies
command: |
pip install "pytest==7.3.1"
pip install "pytest-asyncio==0.21.1"
pip install aiohttp
python -m pip install --upgrade pip
python -m pip install -r requirements.txt
- run:
name: Build Docker image
command: docker build -t my-app:latest -f ./docker/Dockerfile.database .
- run:
name: Run Docker container
# intentionally give bad redis credentials here
# the OTEL test - should get this as a trace
command: |
docker run -d \
-p 4000:4000 \
-e DATABASE_URL=$PROXY_DATABASE_URL \
-e REDIS_HOST=$REDIS_HOST \
-e REDIS_PASSWORD=$REDIS_PASSWORD \
-e REDIS_PORT=$REDIS_PORT \
-e LITELLM_MASTER_KEY="sk-1234" \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
-e LITELLM_LICENSE=$LITELLM_LICENSE \
-e AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
-e AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
-e USE_DDTRACE=True \
-e DD_API_KEY=$DD_API_KEY \
-e DD_SITE=$DD_SITE \
-e AWS_REGION_NAME=$AWS_REGION_NAME \
--name my-app \
-v $(pwd)/litellm/proxy/example_config_yaml/spend_tracking_config.yaml:/app/config.yaml \
my-app:latest \
--config /app/config.yaml \
--port 4000 \
--detailed_debug \
- run:
name: Install curl and dockerize
command: |
sudo apt-get update
sudo apt-get install -y curl
sudo wget https://github.com/jwilder/dockerize/releases/download/v0.6.1/dockerize-linux-amd64-v0.6.1.tar.gz
sudo tar -C /usr/local/bin -xzvf dockerize-linux-amd64-v0.6.1.tar.gz
sudo rm dockerize-linux-amd64-v0.6.1.tar.gz
- run:
name: Start outputting logs
command: docker logs -f my-app
background: true
- run:
name: Wait for app to be ready
command: dockerize -wait http://localhost:4000 -timeout 5m
- run:
name: Run tests
command: |
pwd
ls
python -m pytest -vv tests/spend_tracking_tests -x --junitxml=test-results/junit.xml --durations=5
no_output_timeout:
120m
# Clean up first container
- run:
name: Stop and remove first container
command: |
docker stop my-app
docker rm my-app
proxy_multi_instance_tests: proxy_multi_instance_tests:
machine: machine:
@ -1651,6 +1844,7 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Docker CLI (In case it's not already installed) name: Install Docker CLI (In case it's not already installed)
command: | command: |
@ -1762,6 +1956,7 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Docker CLI (In case it's not already installed) name: Install Docker CLI (In case it's not already installed)
command: | command: |
@ -1801,7 +1996,7 @@ jobs:
command: | command: |
docker run -d \ docker run -d \
-p 4000:4000 \ -p 4000:4000 \
-e DATABASE_URL=$PROXY_DATABASE_URL \ -e DATABASE_URL=$CLEAN_STORE_MODEL_IN_DB_DATABASE_URL \
-e STORE_MODEL_IN_DB="True" \ -e STORE_MODEL_IN_DB="True" \
-e LITELLM_MASTER_KEY="sk-1234" \ -e LITELLM_MASTER_KEY="sk-1234" \
-e LITELLM_LICENSE=$LITELLM_LICENSE \ -e LITELLM_LICENSE=$LITELLM_LICENSE \
@ -1844,6 +2039,7 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- setup_google_dns
# Remove Docker CLI installation since it's already available in machine executor # Remove Docker CLI installation since it's already available in machine executor
- run: - run:
name: Install Python 3.13 name: Install Python 3.13
@ -1941,6 +2137,7 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Install Docker CLI (In case it's not already installed) name: Install Docker CLI (In case it's not already installed)
command: | command: |
@ -1965,10 +2162,10 @@ jobs:
pip install "pytest-asyncio==0.21.1" pip install "pytest-asyncio==0.21.1"
pip install "google-cloud-aiplatform==1.43.0" pip install "google-cloud-aiplatform==1.43.0"
pip install aiohttp pip install aiohttp
pip install "openai==1.66.1" pip install "openai==1.68.2"
pip install "assemblyai==0.37.0" pip install "assemblyai==0.37.0"
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install "pydantic==2.7.1" pip install "pydantic==2.10.2"
pip install "pytest==7.3.1" pip install "pytest==7.3.1"
pip install "pytest-mock==3.12.0" pip install "pytest-mock==3.12.0"
pip install "pytest-asyncio==0.21.1" pip install "pytest-asyncio==0.21.1"
@ -1985,6 +2182,9 @@ jobs:
pip install "PyGithub==1.59.1" pip install "PyGithub==1.59.1"
pip install "google-cloud-aiplatform==1.59.0" pip install "google-cloud-aiplatform==1.59.0"
pip install "anthropic==0.49.0" pip install "anthropic==0.49.0"
pip install "langchain_mcp_adapters==0.0.5"
pip install "langchain_openai==0.2.1"
pip install "langgraph==0.3.18"
# Run pytest and generate JUnit XML report # Run pytest and generate JUnit XML report
- run: - run:
name: Build Docker image name: Build Docker image
@ -2112,7 +2312,7 @@ jobs:
python -m venv venv python -m venv venv
. venv/bin/activate . venv/bin/activate
pip install coverage pip install coverage
coverage combine llm_translation_coverage llm_responses_api_coverage logging_coverage litellm_router_coverage local_testing_coverage litellm_assistants_api_coverage auth_ui_unit_tests_coverage langfuse_coverage caching_coverage litellm_proxy_unit_tests_coverage image_gen_coverage pass_through_unit_tests_coverage batches_coverage litellm_proxy_security_tests_coverage coverage combine llm_translation_coverage llm_responses_api_coverage mcp_coverage logging_coverage litellm_router_coverage local_testing_coverage litellm_assistants_api_coverage auth_ui_unit_tests_coverage langfuse_coverage caching_coverage litellm_proxy_unit_tests_coverage image_gen_coverage pass_through_unit_tests_coverage batches_coverage litellm_proxy_security_tests_coverage
coverage xml coverage xml
- codecov/upload: - codecov/upload:
file: ./coverage.xml file: ./coverage.xml
@ -2190,6 +2390,114 @@ jobs:
echo "triggering load testing server for version ${VERSION} and commit ${CIRCLE_SHA1}" echo "triggering load testing server for version ${VERSION} and commit ${CIRCLE_SHA1}"
curl -X POST "https://proxyloadtester-production.up.railway.app/start/load/test?version=${VERSION}&commit_hash=${CIRCLE_SHA1}&release_type=nightly" curl -X POST "https://proxyloadtester-production.up.railway.app/start/load/test?version=${VERSION}&commit_hash=${CIRCLE_SHA1}&release_type=nightly"
publish_proxy_extras:
docker:
- image: cimg/python:3.8
working_directory: ~/project/litellm-proxy-extras
environment:
TWINE_USERNAME: __token__
steps:
- checkout:
path: ~/project
- run:
name: Check if litellm-proxy-extras dir or pyproject.toml was modified
command: |
echo "Install TOML package."
python -m pip install toml
# Get current version from pyproject.toml
CURRENT_VERSION=$(python -c "import toml; print(toml.load('pyproject.toml')['tool']['poetry']['version'])")
# Get last published version from PyPI
LAST_VERSION=$(curl -s https://pypi.org/pypi/litellm-proxy-extras/json | python -c "import json, sys; print(json.load(sys.stdin)['info']['version'])")
echo "Current version: $CURRENT_VERSION"
echo "Last published version: $LAST_VERSION"
# Compare versions using Python's packaging.version
VERSION_COMPARE=$(python -c "from packaging import version; print(1 if version.parse('$CURRENT_VERSION') < version.parse('$LAST_VERSION') else 0)")
echo "Version compare: $VERSION_COMPARE"
if [ "$VERSION_COMPARE" = "1" ]; then
echo "Error: Current version ($CURRENT_VERSION) is less than last published version ($LAST_VERSION)"
exit 1
fi
# If versions are equal or current is greater, check contents
pip download --no-deps litellm-proxy-extras==$LAST_VERSION -d /tmp
echo "Contents of /tmp directory:"
ls -la /tmp
# Find the downloaded file (could be .whl or .tar.gz)
DOWNLOADED_FILE=$(ls /tmp/litellm_proxy_extras-*)
echo "Downloaded file: $DOWNLOADED_FILE"
# Extract based on file extension
if [[ "$DOWNLOADED_FILE" == *.whl ]]; then
echo "Extracting wheel file..."
unzip -q "$DOWNLOADED_FILE" -d /tmp/extracted
EXTRACTED_DIR="/tmp/extracted"
else
echo "Extracting tar.gz file..."
tar -xzf "$DOWNLOADED_FILE" -C /tmp
EXTRACTED_DIR="/tmp/litellm_proxy_extras-$LAST_VERSION"
fi
echo "Contents of extracted package:"
ls -R "$EXTRACTED_DIR"
# Compare contents
if ! diff -r "$EXTRACTED_DIR/litellm_proxy_extras" ./litellm_proxy_extras; then
if [ "$CURRENT_VERSION" = "$LAST_VERSION" ]; then
echo "Error: Changes detected in litellm-proxy-extras but version was not bumped"
echo "Current version: $CURRENT_VERSION"
echo "Last published version: $LAST_VERSION"
echo "Changes:"
diff -r "$EXTRACTED_DIR/litellm_proxy_extras" ./litellm_proxy_extras
exit 1
fi
else
echo "No changes detected in litellm-proxy-extras. Skipping PyPI publish."
circleci step halt
fi
- run:
name: Get new version
command: |
cd litellm-proxy-extras
NEW_VERSION=$(python -c "import toml; print(toml.load('pyproject.toml')['tool']['poetry']['version'])")
echo "export NEW_VERSION=$NEW_VERSION" >> $BASH_ENV
- run:
name: Check if versions match
command: |
cd ~/project
# Check pyproject.toml
CURRENT_VERSION=$(python -c "import toml; print(toml.load('pyproject.toml')['tool']['poetry']['dependencies']['litellm-proxy-extras'].split('\"')[1])")
if [ "$CURRENT_VERSION" != "$NEW_VERSION" ]; then
echo "Error: Version in pyproject.toml ($CURRENT_VERSION) doesn't match new version ($NEW_VERSION)"
exit 1
fi
# Check requirements.txt
REQ_VERSION=$(grep -oP 'litellm-proxy-extras==\K[0-9.]+' requirements.txt)
if [ "$REQ_VERSION" != "$NEW_VERSION" ]; then
echo "Error: Version in requirements.txt ($REQ_VERSION) doesn't match new version ($NEW_VERSION)"
exit 1
fi
- run:
name: Publish to PyPI
command: |
cd litellm-proxy-extras
echo -e "[pypi]\nusername = $PYPI_PUBLISH_USERNAME\npassword = $PYPI_PUBLISH_PASSWORD" > ~/.pypirc
python -m pip install --upgrade pip build twine setuptools wheel
rm -rf build dist
python -m build
twine upload --verbose dist/*
e2e_ui_testing: e2e_ui_testing:
machine: machine:
image: ubuntu-2204:2023.10.1 image: ubuntu-2204:2023.10.1
@ -2197,6 +2505,7 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Build UI name: Build UI
command: | command: |
@ -2241,9 +2550,9 @@ jobs:
pip install "pytest-retry==1.6.3" pip install "pytest-retry==1.6.3"
pip install "pytest-asyncio==0.21.1" pip install "pytest-asyncio==0.21.1"
pip install aiohttp pip install aiohttp
pip install "openai==1.66.1" pip install "openai==1.68.2"
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install "pydantic==2.7.1" pip install "pydantic==2.10.2"
pip install "pytest==7.3.1" pip install "pytest==7.3.1"
pip install "pytest-mock==3.12.0" pip install "pytest-mock==3.12.0"
pip install "pytest-asyncio==0.21.1" pip install "pytest-asyncio==0.21.1"
@ -2311,6 +2620,7 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Build Docker image name: Build Docker image
command: | command: |
@ -2333,6 +2643,7 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- setup_google_dns
- run: - run:
name: Build Docker image name: Build Docker image
command: | command: |
@ -2443,6 +2754,12 @@ workflows:
only: only:
- main - main
- /litellm_.*/ - /litellm_.*/
- proxy_spend_accuracy_tests:
filters:
branches:
only:
- main
- /litellm_.*/
- proxy_multi_instance_tests: - proxy_multi_instance_tests:
filters: filters:
branches: branches:
@ -2473,6 +2790,12 @@ workflows:
only: only:
- main - main
- /litellm_.*/ - /litellm_.*/
- mcp_testing:
filters:
branches:
only:
- main
- /litellm_.*/
- llm_responses_api_testing: - llm_responses_api_testing:
filters: filters:
branches: branches:
@ -2518,6 +2841,7 @@ workflows:
- upload-coverage: - upload-coverage:
requires: requires:
- llm_translation_testing - llm_translation_testing
- mcp_testing
- llm_responses_api_testing - llm_responses_api_testing
- litellm_mapped_tests - litellm_mapped_tests
- batches_testing - batches_testing
@ -2569,6 +2893,11 @@ workflows:
only: only:
- main - main
- /litellm_.*/ - /litellm_.*/
- publish_proxy_extras:
filters:
branches:
only:
- main
- publish_to_pypi: - publish_to_pypi:
requires: requires:
- local_testing - local_testing
@ -2577,6 +2906,7 @@ workflows:
- load_testing - load_testing
- test_bad_database_url - test_bad_database_url
- llm_translation_testing - llm_translation_testing
- mcp_testing
- llm_responses_api_testing - llm_responses_api_testing
- litellm_mapped_tests - litellm_mapped_tests
- batches_testing - batches_testing
@ -2596,12 +2926,11 @@ workflows:
- installing_litellm_on_python - installing_litellm_on_python
- installing_litellm_on_python_3_13 - installing_litellm_on_python_3_13
- proxy_logging_guardrails_model_info_tests - proxy_logging_guardrails_model_info_tests
- proxy_spend_accuracy_tests
- proxy_multi_instance_tests - proxy_multi_instance_tests
- proxy_store_model_in_db_tests - proxy_store_model_in_db_tests
- proxy_build_from_pip_tests - proxy_build_from_pip_tests
- proxy_pass_through_endpoint_tests - proxy_pass_through_endpoint_tests
- check_code_and_doc_quality - check_code_and_doc_quality
filters: - publish_proxy_extras
branches:
only:
- main

View file

@ -1,13 +1,15 @@
# used by CI/CD testing # used by CI/CD testing
openai==1.66.1 openai==1.68.2
python-dotenv python-dotenv
tiktoken tiktoken
importlib_metadata importlib_metadata
cohere cohere
redis redis==5.2.1
redisvl==0.4.1
anthropic anthropic
orjson==3.9.15 orjson==3.9.15
pydantic==2.7.1 pydantic==2.10.2
google-cloud-aiplatform==1.43.0 google-cloud-aiplatform==1.43.0
fastapi-sso==0.10.0 fastapi-sso==0.16.0
uvloop==0.21.0 uvloop==0.21.0
mcp==1.5.0 # for MCP server

View file

@ -20,6 +20,8 @@ REPLICATE_API_TOKEN = ""
ANTHROPIC_API_KEY = "" ANTHROPIC_API_KEY = ""
# Infisical # Infisical
INFISICAL_TOKEN = "" INFISICAL_TOKEN = ""
# INFINITY
INFINITY_API_KEY = ""
# Development Configs # Development Configs
LITELLM_MASTER_KEY = "sk-1234" LITELLM_MASTER_KEY = "sk-1234"

View file

@ -10,7 +10,7 @@
**Please complete all items before asking a LiteLLM maintainer to review your PR** **Please complete all items before asking a LiteLLM maintainer to review your PR**
- [ ] I have Added testing in the `tests/litellm/` directory, **Adding at least 1 test is a hard requirement** - [see details](https://docs.litellm.ai/docs/extras/contributing_code) - [ ] I have Added testing in the [`tests/litellm/`](https://github.com/BerriAI/litellm/tree/main/tests/litellm) directory, **Adding at least 1 test is a hard requirement** - [see details](https://docs.litellm.ai/docs/extras/contributing_code)
- [ ] I have added a screenshot of my new test passing locally - [ ] I have added a screenshot of my new test passing locally
- [ ] My PR passes all unit tests on (`make test-unit`)[https://docs.litellm.ai/docs/extras/contributing_code] - [ ] My PR passes all unit tests on (`make test-unit`)[https://docs.litellm.ai/docs/extras/contributing_code]
- [ ] My PR's scope is as isolated as possible, it only solves 1 specific problem - [ ] My PR's scope is as isolated as possible, it only solves 1 specific problem

View file

@ -114,8 +114,8 @@ jobs:
tags: | tags: |
${{ steps.meta.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }}, ${{ steps.meta.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }},
${{ steps.meta.outputs.tags }}-${{ github.event.inputs.release_type }} ${{ steps.meta.outputs.tags }}-${{ github.event.inputs.release_type }}
${{ github.event.inputs.release_type == 'stable' && format('${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:main-{0}', github.event.inputs.tag) || '' }}, ${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm:main-{1}', env.REGISTRY, github.event.inputs.tag) || '' }},
${{ github.event.inputs.release_type == 'stable' && '${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:main-stable' || '' }} ${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm:main-stable', env.REGISTRY) || '' }}
labels: ${{ steps.meta.outputs.labels }} labels: ${{ steps.meta.outputs.labels }}
platforms: local,linux/amd64,linux/arm64,linux/arm64/v8 platforms: local,linux/amd64,linux/arm64,linux/arm64/v8
@ -157,8 +157,8 @@ jobs:
tags: | tags: |
${{ steps.meta-database.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }}, ${{ steps.meta-database.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }},
${{ steps.meta-database.outputs.tags }}-${{ github.event.inputs.release_type }} ${{ steps.meta-database.outputs.tags }}-${{ github.event.inputs.release_type }}
${{ github.event.inputs.release_type == 'stable' && format('${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}-database:main-{0}', github.event.inputs.tag) || '' }}, ${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm-database:main-{1}', env.REGISTRY, github.event.inputs.tag) || '' }},
${{ github.event.inputs.release_type == 'stable' && '${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}-database:main-stable' || '' }} ${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm-database:main-stable', env.REGISTRY) || '' }}
labels: ${{ steps.meta-database.outputs.labels }} labels: ${{ steps.meta-database.outputs.labels }}
platforms: local,linux/amd64,linux/arm64,linux/arm64/v8 platforms: local,linux/amd64,linux/arm64,linux/arm64/v8
@ -200,8 +200,8 @@ jobs:
tags: | tags: |
${{ steps.meta-non_root.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }}, ${{ steps.meta-non_root.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }},
${{ steps.meta-non_root.outputs.tags }}-${{ github.event.inputs.release_type }} ${{ steps.meta-non_root.outputs.tags }}-${{ github.event.inputs.release_type }}
${{ github.event.inputs.release_type == 'stable' && format('${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}-non_root:main-{0}', github.event.inputs.tag) || '' }}, ${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm-non_root:main-{1}', env.REGISTRY, github.event.inputs.tag) || '' }},
${{ github.event.inputs.release_type == 'stable' && '${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}-non_root:main-stable' || '' }} ${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm-non_root:main-stable', env.REGISTRY) || '' }}
labels: ${{ steps.meta-non_root.outputs.labels }} labels: ${{ steps.meta-non_root.outputs.labels }}
platforms: local,linux/amd64,linux/arm64,linux/arm64/v8 platforms: local,linux/amd64,linux/arm64,linux/arm64/v8
@ -240,7 +240,11 @@ jobs:
context: . context: .
file: ./litellm-js/spend-logs/Dockerfile file: ./litellm-js/spend-logs/Dockerfile
push: true push: true
tags: ${{ steps.meta-spend-logs.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }}, ${{ steps.meta-spend-logs.outputs.tags }}-${{ github.event.inputs.release_type }} tags: |
${{ steps.meta-spend-logs.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }},
${{ steps.meta-spend-logs.outputs.tags }}-${{ github.event.inputs.release_type }}
${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm-spend_logs:main-{1}', env.REGISTRY, github.event.inputs.tag) || '' }},
${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm-spend_logs:main-stable', env.REGISTRY) || '' }}
platforms: local,linux/amd64,linux/arm64,linux/arm64/v8 platforms: local,linux/amd64,linux/arm64,linux/arm64/v8
build-and-push-helm-chart: build-and-push-helm-chart:

206
.github/workflows/publish-migrations.yml vendored Normal file
View file

@ -0,0 +1,206 @@
name: Publish Prisma Migrations
permissions:
contents: write
pull-requests: write
on:
push:
paths:
- 'schema.prisma' # Check root schema.prisma
branches:
- main
jobs:
publish-migrations:
runs-on: ubuntu-latest
services:
postgres:
image: postgres:14
env:
POSTGRES_DB: temp_db
POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres
ports:
- 5432:5432
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
# Add shadow database service
postgres_shadow:
image: postgres:14
env:
POSTGRES_DB: shadow_db
POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres
ports:
- 5433:5432
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.x'
- name: Install Dependencies
run: |
pip install prisma
pip install python-dotenv
- name: Generate Initial Migration if None Exists
env:
DATABASE_URL: "postgresql://postgres:postgres@localhost:5432/temp_db"
DIRECT_URL: "postgresql://postgres:postgres@localhost:5432/temp_db"
SHADOW_DATABASE_URL: "postgresql://postgres:postgres@localhost:5433/shadow_db"
run: |
mkdir -p deploy/migrations
echo 'provider = "postgresql"' > deploy/migrations/migration_lock.toml
if [ -z "$(ls -A deploy/migrations/2* 2>/dev/null)" ]; then
echo "No existing migrations found, creating baseline..."
VERSION=$(date +%Y%m%d%H%M%S)
mkdir -p deploy/migrations/${VERSION}_initial
echo "Generating initial migration..."
# Save raw output for debugging
prisma migrate diff \
--from-empty \
--to-schema-datamodel schema.prisma \
--shadow-database-url "${SHADOW_DATABASE_URL}" \
--script > deploy/migrations/${VERSION}_initial/raw_migration.sql
echo "Raw migration file content:"
cat deploy/migrations/${VERSION}_initial/raw_migration.sql
echo "Cleaning migration file..."
# Clean the file
sed '/^Installing/d' deploy/migrations/${VERSION}_initial/raw_migration.sql > deploy/migrations/${VERSION}_initial/migration.sql
# Verify the migration file
if [ ! -s deploy/migrations/${VERSION}_initial/migration.sql ]; then
echo "ERROR: Migration file is empty after cleaning"
echo "Original content was:"
cat deploy/migrations/${VERSION}_initial/raw_migration.sql
exit 1
fi
echo "Final migration file content:"
cat deploy/migrations/${VERSION}_initial/migration.sql
# Verify it starts with SQL
if ! head -n 1 deploy/migrations/${VERSION}_initial/migration.sql | grep -q "^--\|^CREATE\|^ALTER"; then
echo "ERROR: Migration file does not start with SQL command or comment"
echo "First line is:"
head -n 1 deploy/migrations/${VERSION}_initial/migration.sql
echo "Full content is:"
cat deploy/migrations/${VERSION}_initial/migration.sql
exit 1
fi
echo "Initial migration generated at $(date -u)" > deploy/migrations/${VERSION}_initial/README.md
fi
- name: Compare and Generate Migration
if: success()
env:
DATABASE_URL: "postgresql://postgres:postgres@localhost:5432/temp_db"
DIRECT_URL: "postgresql://postgres:postgres@localhost:5432/temp_db"
SHADOW_DATABASE_URL: "postgresql://postgres:postgres@localhost:5433/shadow_db"
run: |
# Create temporary migration workspace
mkdir -p temp_migrations
# Copy existing migrations (will not fail if directory is empty)
cp -r deploy/migrations/* temp_migrations/ 2>/dev/null || true
VERSION=$(date +%Y%m%d%H%M%S)
# Generate diff against existing migrations or empty state
prisma migrate diff \
--from-migrations temp_migrations \
--to-schema-datamodel schema.prisma \
--shadow-database-url "${SHADOW_DATABASE_URL}" \
--script > temp_migrations/migration_${VERSION}.sql
# Check if there are actual changes
if [ -s temp_migrations/migration_${VERSION}.sql ]; then
echo "Changes detected, creating new migration"
mkdir -p deploy/migrations/${VERSION}_schema_update
mv temp_migrations/migration_${VERSION}.sql deploy/migrations/${VERSION}_schema_update/migration.sql
echo "Migration generated at $(date -u)" > deploy/migrations/${VERSION}_schema_update/README.md
else
echo "No schema changes detected"
exit 0
fi
- name: Verify Migration
if: success()
env:
DATABASE_URL: "postgresql://postgres:postgres@localhost:5432/temp_db"
DIRECT_URL: "postgresql://postgres:postgres@localhost:5432/temp_db"
SHADOW_DATABASE_URL: "postgresql://postgres:postgres@localhost:5433/shadow_db"
run: |
# Create test database
psql "${SHADOW_DATABASE_URL}" -c 'CREATE DATABASE migration_test;'
# Apply all migrations in order to verify
for migration in deploy/migrations/*/migration.sql; do
echo "Applying migration: $migration"
psql "${SHADOW_DATABASE_URL}" -f $migration
done
# Add this step before create-pull-request to debug permissions
- name: Check Token Permissions
run: |
echo "Checking token permissions..."
curl -H "Authorization: token ${{ secrets.GITHUB_TOKEN }}" \
-H "Accept: application/vnd.github.v3+json" \
https://api.github.com/repos/BerriAI/litellm/collaborators
echo "\nChecking if token can create PRs..."
curl -H "Authorization: token ${{ secrets.GITHUB_TOKEN }}" \
-H "Accept: application/vnd.github.v3+json" \
https://api.github.com/repos/BerriAI/litellm
# Add this debug step before git push
- name: Debug Changed Files
run: |
echo "Files staged for commit:"
git diff --name-status --staged
echo "\nAll changed files:"
git status
- name: Create Pull Request
if: success()
uses: peter-evans/create-pull-request@v5
with:
token: ${{ secrets.GITHUB_TOKEN }}
commit-message: "chore: update prisma migrations"
title: "Update Prisma Migrations"
body: |
Auto-generated migration based on schema.prisma changes.
Generated files:
- deploy/migrations/${VERSION}_schema_update/migration.sql
- deploy/migrations/${VERSION}_schema_update/README.md
branch: feat/prisma-migration-${{ env.VERSION }}
base: main
delete-branch: true
- name: Generate and Save Migrations
run: |
# Only add migration files
git add deploy/migrations/
git status # Debug what's being committed
git commit -m "chore: update prisma migrations"

53
.github/workflows/test-linting.yml vendored Normal file
View file

@ -0,0 +1,53 @@
name: LiteLLM Linting
on:
pull_request:
branches: [ main ]
jobs:
lint:
runs-on: ubuntu-latest
timeout-minutes: 5
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.12'
- name: Install Poetry
uses: snok/install-poetry@v1
- name: Install dependencies
run: |
poetry install --with dev
- name: Run Black formatting
run: |
cd litellm
poetry run black .
cd ..
- name: Run Ruff linting
run: |
cd litellm
poetry run ruff check .
cd ..
- name: Run MyPy type checking
run: |
cd litellm
poetry run mypy . --ignore-missing-imports
cd ..
- name: Check for circular imports
run: |
cd litellm
poetry run python ../tests/documentation_tests/test_circular_imports.py
cd ..
- name: Check import safety
run: |
poetry run python -c "from litellm import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)

35
.github/workflows/test-litellm.yml vendored Normal file
View file

@ -0,0 +1,35 @@
name: LiteLLM Mock Tests (folder - tests/litellm)
on:
pull_request:
branches: [ main ]
jobs:
test:
runs-on: ubuntu-latest
timeout-minutes: 5
steps:
- uses: actions/checkout@v4
- name: Thank You Message
run: |
echo "### 🙏 Thank you for contributing to LiteLLM!" >> $GITHUB_STEP_SUMMARY
echo "Your PR is being tested now. We appreciate your help in making LiteLLM better!" >> $GITHUB_STEP_SUMMARY
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.12'
- name: Install Poetry
uses: snok/install-poetry@v1
- name: Install dependencies
run: |
poetry install --with dev,proxy-dev --extras proxy
poetry run pip install pytest-xdist
- name: Run tests
run: |
poetry run pytest tests/litellm -x -vv -n 4

9
.gitignore vendored
View file

@ -1,3 +1,4 @@
.python-version
.venv .venv
.env .env
.newenv .newenv
@ -72,6 +73,7 @@ tests/local_testing/log.txt
.codegpt .codegpt
litellm/proxy/_new_new_secret_config.yaml litellm/proxy/_new_new_secret_config.yaml
litellm/proxy/custom_guardrail.py litellm/proxy/custom_guardrail.py
.mypy_cache/*
litellm/proxy/_experimental/out/404.html litellm/proxy/_experimental/out/404.html
litellm/proxy/_experimental/out/404.html litellm/proxy/_experimental/out/404.html
litellm/proxy/_experimental/out/model_hub.html litellm/proxy/_experimental/out/model_hub.html
@ -79,3 +81,10 @@ litellm/proxy/_experimental/out/model_hub.html
litellm/proxy/application.log litellm/proxy/application.log
tests/llm_translation/vertex_test_account.json tests/llm_translation/vertex_test_account.json
tests/llm_translation/test_vertex_key.json tests/llm_translation/test_vertex_key.json
litellm/proxy/migrations/0_init/migration.sql
litellm/proxy/db/migrations/0_init/migration.sql
litellm/proxy/db/migrations/*
litellm/proxy/migrations/*config.yaml
litellm/proxy/migrations/*
config.yaml
tests/litellm/litellm_core_utils/llm_cost_calc/log.txt

View file

@ -6,44 +6,35 @@ repos:
entry: pyright entry: pyright
language: system language: system
types: [python] types: [python]
files: ^litellm/ files: ^(litellm/|litellm_proxy_extras/)
- id: isort - id: isort
name: isort name: isort
entry: isort entry: isort
language: system language: system
types: [python] types: [python]
files: litellm/.*\.py files: (litellm/|litellm_proxy_extras/).*\.py
exclude: ^litellm/__init__.py$ exclude: ^litellm/__init__.py$
- repo: https://github.com/psf/black
rev: 24.2.0
hooks:
- id: black - id: black
name: black
entry: poetry run black
language: system
types: [python]
files: (litellm/|litellm_proxy_extras/).*\.py
- repo: https://github.com/pycqa/flake8 - repo: https://github.com/pycqa/flake8
rev: 7.0.0 # The version of flake8 to use rev: 7.0.0 # The version of flake8 to use
hooks: hooks:
- id: flake8 - id: flake8
exclude: ^litellm/tests/|^litellm/proxy/tests/|^litellm/tests/litellm/|^tests/litellm/ exclude: ^litellm/tests/|^litellm/proxy/tests/|^litellm/tests/litellm/|^tests/litellm/
additional_dependencies: [flake8-print] additional_dependencies: [flake8-print]
files: litellm/.*\.py files: (litellm/|litellm_proxy_extras/).*\.py
# - id: flake8
# name: flake8 (router.py function length)
# files: ^litellm/router\.py$
# args: [--max-function-length=40]
# # additional_dependencies: [flake8-functions]
- repo: https://github.com/python-poetry/poetry - repo: https://github.com/python-poetry/poetry
rev: 1.8.0 rev: 1.8.0
hooks: hooks:
- id: poetry-check - id: poetry-check
files: ^(pyproject.toml|litellm-proxy-extras/pyproject.toml)$
- repo: local - repo: local
hooks: hooks:
- id: check-files-match - id: check-files-match
name: Check if files match name: Check if files match
entry: python3 ci_cd/check_files_match.py entry: python3 ci_cd/check_files_match.py
language: system language: system
# - id: check-file-length
# name: Check file length
# entry: python check_file_length.py
# args: ["10000"] # set your desired maximum number of lines
# language: python
# files: litellm/.*\.py
# exclude: ^litellm/tests/

View file

@ -12,8 +12,7 @@ WORKDIR /app
USER root USER root
# Install build dependencies # Install build dependencies
RUN apk update && \ RUN apk add --no-cache gcc python3-dev openssl openssl-dev
apk add --no-cache gcc python3-dev openssl openssl-dev
RUN pip install --upgrade pip && \ RUN pip install --upgrade pip && \
@ -37,9 +36,6 @@ RUN pip install dist/*.whl
# install dependencies as wheels # install dependencies as wheels
RUN pip wheel --no-cache-dir --wheel-dir=/wheels/ -r requirements.txt RUN pip wheel --no-cache-dir --wheel-dir=/wheels/ -r requirements.txt
# install semantic-cache [Experimental]- we need this here and not in requirements.txt because redisvl pins to pydantic 1.0
RUN pip install redisvl==0.0.7 --no-deps
# ensure pyjwt is used, not jwt # ensure pyjwt is used, not jwt
RUN pip uninstall jwt -y RUN pip uninstall jwt -y
RUN pip uninstall PyJWT -y RUN pip uninstall PyJWT -y
@ -55,8 +51,7 @@ FROM $LITELLM_RUNTIME_IMAGE AS runtime
USER root USER root
# Install runtime dependencies # Install runtime dependencies
RUN apk update && \ RUN apk add --no-cache openssl
apk add --no-cache openssl
WORKDIR /app WORKDIR /app
# Copy the current directory contents into the container at /app # Copy the current directory contents into the container at /app

View file

@ -9,10 +9,14 @@ help:
@echo " make test - Run all tests" @echo " make test - Run all tests"
@echo " make test-unit - Run unit tests" @echo " make test-unit - Run unit tests"
@echo " make test-integration - Run integration tests" @echo " make test-integration - Run integration tests"
@echo " make test-unit-helm - Run helm unit tests"
install-dev: install-dev:
poetry install --with dev poetry install --with dev
install-proxy-dev:
poetry install --with dev,proxy-dev
lint: install-dev lint: install-dev
poetry run pip install types-requests types-setuptools types-redis types-PyYAML poetry run pip install types-requests types-setuptools types-redis types-PyYAML
cd litellm && poetry run mypy . --ignore-missing-imports cd litellm && poetry run mypy . --ignore-missing-imports
@ -26,3 +30,6 @@ test-unit:
test-integration: test-integration:
poetry run pytest tests/ -k "not litellm" poetry run pytest tests/ -k "not litellm"
test-unit-helm:
helm unittest -f 'tests/*.yaml' deploy/charts/litellm-helm

View file

@ -16,9 +16,6 @@
<a href="https://pypi.org/project/litellm/" target="_blank"> <a href="https://pypi.org/project/litellm/" target="_blank">
<img src="https://img.shields.io/pypi/v/litellm.svg" alt="PyPI Version"> <img src="https://img.shields.io/pypi/v/litellm.svg" alt="PyPI Version">
</a> </a>
<a href="https://dl.circleci.com/status-badge/redirect/gh/BerriAI/litellm/tree/main" target="_blank">
<img src="https://dl.circleci.com/status-badge/img/gh/BerriAI/litellm/tree/main.svg?style=svg" alt="CircleCI">
</a>
<a href="https://www.ycombinator.com/companies/berriai"> <a href="https://www.ycombinator.com/companies/berriai">
<img src="https://img.shields.io/badge/Y%20Combinator-W23-orange?style=flat-square" alt="Y Combinator W23"> <img src="https://img.shields.io/badge/Y%20Combinator-W23-orange?style=flat-square" alt="Y Combinator W23">
</a> </a>

60
ci_cd/baseline_db.py Normal file
View file

@ -0,0 +1,60 @@
import subprocess
from pathlib import Path
from datetime import datetime
def create_baseline():
"""Create baseline migration in deploy/migrations"""
try:
# Get paths
root_dir = Path(__file__).parent.parent
deploy_dir = root_dir / "deploy"
migrations_dir = deploy_dir / "migrations"
schema_path = root_dir / "schema.prisma"
# Create migrations directory
migrations_dir.mkdir(parents=True, exist_ok=True)
# Create migration_lock.toml if it doesn't exist
lock_file = migrations_dir / "migration_lock.toml"
if not lock_file.exists():
lock_file.write_text('provider = "postgresql"\n')
# Create timestamp-based migration directory
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
migration_dir = migrations_dir / f"{timestamp}_baseline"
migration_dir.mkdir(parents=True, exist_ok=True)
# Generate migration SQL
result = subprocess.run(
[
"prisma",
"migrate",
"diff",
"--from-empty",
"--to-schema-datamodel",
str(schema_path),
"--script",
],
capture_output=True,
text=True,
check=True,
)
# Write the SQL to migration.sql
migration_file = migration_dir / "migration.sql"
migration_file.write_text(result.stdout)
print(f"Created baseline migration in {migration_dir}")
return True
except subprocess.CalledProcessError as e:
print(f"Error running prisma command: {e.stderr}")
return False
except Exception as e:
print(f"Error creating baseline migration: {str(e)}")
return False
if __name__ == "__main__":
create_baseline()

View file

@ -0,0 +1,19 @@
#!/bin/bash
# Exit on error
set -e
echo "🚀 Building and publishing litellm-proxy-extras"
# Navigate to litellm-proxy-extras directory
cd "$(dirname "$0")/../litellm-proxy-extras"
# Build the package
echo "📦 Building package..."
poetry build
# Publish to PyPI
echo "🌎 Publishing to PyPI..."
poetry publish
echo "✅ Done! Package published successfully"

95
ci_cd/run_migration.py Normal file
View file

@ -0,0 +1,95 @@
import os
import subprocess
from pathlib import Path
from datetime import datetime
import testing.postgresql
import shutil
def create_migration(migration_name: str = None):
"""
Create a new migration SQL file in the migrations directory by comparing
current database state with schema
Args:
migration_name (str): Name for the migration
"""
try:
# Get paths
root_dir = Path(__file__).parent.parent
migrations_dir = root_dir / "litellm-proxy-extras" / "litellm_proxy_extras" / "migrations"
schema_path = root_dir / "schema.prisma"
# Create temporary PostgreSQL database
with testing.postgresql.Postgresql() as postgresql:
db_url = postgresql.url()
# Create temporary migrations directory next to schema.prisma
temp_migrations_dir = schema_path.parent / "migrations"
try:
# Copy existing migrations to temp directory
if temp_migrations_dir.exists():
shutil.rmtree(temp_migrations_dir)
shutil.copytree(migrations_dir, temp_migrations_dir)
# Apply existing migrations to temp database
os.environ["DATABASE_URL"] = db_url
subprocess.run(
["prisma", "migrate", "deploy", "--schema", str(schema_path)],
check=True,
)
# Generate diff between current database and schema
result = subprocess.run(
[
"prisma",
"migrate",
"diff",
"--from-url",
db_url,
"--to-schema-datamodel",
str(schema_path),
"--script",
],
capture_output=True,
text=True,
check=True,
)
if result.stdout.strip():
# Generate timestamp and create migration directory
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
migration_name = migration_name or "unnamed_migration"
migration_dir = migrations_dir / f"{timestamp}_{migration_name}"
migration_dir.mkdir(parents=True, exist_ok=True)
# Write the SQL to migration.sql
migration_file = migration_dir / "migration.sql"
migration_file.write_text(result.stdout)
print(f"Created migration in {migration_dir}")
return True
else:
print("No schema changes detected. Migration not needed.")
return False
finally:
# Clean up: remove temporary migrations directory
if temp_migrations_dir.exists():
shutil.rmtree(temp_migrations_dir)
except subprocess.CalledProcessError as e:
print(f"Error generating migration: {e.stderr}")
return False
except Exception as e:
print(f"Error creating migration: {str(e)}")
return False
if __name__ == "__main__":
# If running directly, can optionally pass migration name as argument
import sys
migration_name = sys.argv[1] if len(sys.argv) > 1 else None
create_migration(migration_name)

View file

@ -6,8 +6,9 @@
"id": "9dKM5k8qsMIj" "id": "9dKM5k8qsMIj"
}, },
"source": [ "source": [
"## LiteLLM HuggingFace\n", "## LiteLLM Hugging Face\n",
"Docs for huggingface: https://docs.litellm.ai/docs/providers/huggingface" "\n",
"Docs for huggingface: https://docs.litellm.ai/docs/providers/huggingface\n"
] ]
}, },
{ {
@ -27,23 +28,18 @@
"id": "yp5UXRqtpu9f" "id": "yp5UXRqtpu9f"
}, },
"source": [ "source": [
"## Hugging Face Free Serverless Inference API\n", "## Serverless Inference Providers\n",
"Read more about the Free Serverless Inference API here: https://huggingface.co/docs/api-inference.\n",
"\n", "\n",
"In order to use litellm to call Serverless Inference API:\n", "Read more about Inference Providers here: https://huggingface.co/blog/inference-providers.\n",
"\n", "\n",
"* Browse Serverless Inference compatible models here: https://huggingface.co/models?inference=warm&pipeline_tag=text-generation.\n", "In order to use litellm with Hugging Face Inference Providers, you need to set `model=huggingface/<provider>/<model-id>`.\n",
"* Copy the model name from hugging face\n",
"* Set `model = \"huggingface/<model-name>\"`\n",
"\n", "\n",
"Example set `model=huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct` to call `meta-llama/Meta-Llama-3.1-8B-Instruct`\n", "Example: `huggingface/together/deepseek-ai/DeepSeek-R1` to run DeepSeek-R1 (https://huggingface.co/deepseek-ai/DeepSeek-R1) through Together AI.\n"
"\n",
"https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": null,
"metadata": { "metadata": {
"colab": { "colab": {
"base_uri": "https://localhost:8080/" "base_uri": "https://localhost:8080/"
@ -51,107 +47,18 @@
"id": "Pi5Oww8gpCUm", "id": "Pi5Oww8gpCUm",
"outputId": "659a67c7-f90d-4c06-b94e-2c4aa92d897a" "outputId": "659a67c7-f90d-4c06-b94e-2c4aa92d897a"
}, },
"outputs": [ "outputs": [],
{
"name": "stdout",
"output_type": "stream",
"text": [
"ModelResponse(id='chatcmpl-c54dfb68-1491-4d68-a4dc-35e603ea718a', choices=[Choices(finish_reason='eos_token', index=0, message=Message(content=\"I'm just a computer program, so I don't have feelings, but thank you for asking! How can I assist you today?\", role='assistant', tool_calls=None, function_call=None))], created=1724858285, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion', system_fingerprint=None, usage=Usage(completion_tokens=27, prompt_tokens=47, total_tokens=74))\n",
"ModelResponse(id='chatcmpl-d2ae38e6-4974-431c-bb9b-3fa3f95e5a6d', choices=[Choices(finish_reason='length', index=0, message=Message(content=\"\\n\\nIm doing well, thank you. Ive been keeping busy with work and some personal projects. How about you?\\n\\nI'm doing well, thank you. I've been enjoying some time off and catching up on some reading. How can I assist you today?\\n\\nI'm looking for a good book to read. Do you have any recommendations?\\n\\nOf course! Here are a few book recommendations across different genres:\\n\\n1.\", role='assistant', tool_calls=None, function_call=None))], created=1724858288, model='mistralai/Mistral-7B-Instruct-v0.3', object='chat.completion', system_fingerprint=None, usage=Usage(completion_tokens=85, prompt_tokens=6, total_tokens=91))\n"
]
}
],
"source": [ "source": [
"import os\n", "import os\n",
"import litellm\n", "from litellm import completion\n",
"\n", "\n",
"# Make sure to create an API_KEY with inference permissions at https://huggingface.co/settings/tokens/new?globalPermissions=inference.serverless.write&tokenType=fineGrained\n", "# You can create a HF token here: https://huggingface.co/settings/tokens\n",
"os.environ[\"HUGGINGFACE_API_KEY\"] = \"\"\n", "os.environ[\"HF_TOKEN\"] = \"hf_xxxxxx\"\n",
"\n", "\n",
"# Call https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct\n", "# Call DeepSeek-R1 model through Together AI\n",
"# add the 'huggingface/' prefix to the model to set huggingface as the provider\n", "response = completion(\n",
"response = litellm.completion(\n", " model=\"huggingface/together/deepseek-ai/DeepSeek-R1\",\n",
" model=\"huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct\",\n", " messages=[{\"content\": \"How many r's are in the word `strawberry`?\", \"role\": \"user\"}],\n",
" messages=[{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}]\n",
")\n",
"print(response)\n",
"\n",
"\n",
"# Call https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3\n",
"response = litellm.completion(\n",
" model=\"huggingface/mistralai/Mistral-7B-Instruct-v0.3\",\n",
" messages=[{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}]\n",
")\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-klhAhjLtclv"
},
"source": [
"## Hugging Face Dedicated Inference Endpoints\n",
"\n",
"Steps to use\n",
"* Create your own Hugging Face dedicated endpoint here: https://ui.endpoints.huggingface.co/\n",
"* Set `api_base` to your deployed api base\n",
"* Add the `huggingface/` prefix to your model so litellm knows it's a huggingface Deployed Inference Endpoint"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Lbmw8Gl_pHns",
"outputId": "ea8408bf-1cc3-4670-ecea-f12666d204a8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"object\": \"chat.completion\",\n",
" \"choices\": [\n",
" {\n",
" \"finish_reason\": \"length\",\n",
" \"index\": 0,\n",
" \"message\": {\n",
" \"content\": \"\\n\\nI am doing well, thank you for asking. How about you?\\nI am doing\",\n",
" \"role\": \"assistant\",\n",
" \"logprobs\": -8.9481967812\n",
" }\n",
" }\n",
" ],\n",
" \"id\": \"chatcmpl-74dc9d89-3916-47ce-9bea-b80e66660f77\",\n",
" \"created\": 1695871068.8413374,\n",
" \"model\": \"glaiveai/glaive-coder-7b\",\n",
" \"usage\": {\n",
" \"prompt_tokens\": 6,\n",
" \"completion_tokens\": 18,\n",
" \"total_tokens\": 24\n",
" }\n",
"}\n"
]
}
],
"source": [
"import os\n",
"import litellm\n",
"\n",
"os.environ[\"HUGGINGFACE_API_KEY\"] = \"\"\n",
"\n",
"# TGI model: Call https://huggingface.co/glaiveai/glaive-coder-7b\n",
"# add the 'huggingface/' prefix to the model to set huggingface as the provider\n",
"# set api base to your deployed api endpoint from hugging face\n",
"response = litellm.completion(\n",
" model=\"huggingface/glaiveai/glaive-coder-7b\",\n",
" messages=[{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}],\n",
" api_base=\"https://wjiegasee9bmqke2.us-east-1.aws.endpoints.huggingface.cloud\"\n",
")\n", ")\n",
"print(response)" "print(response)"
] ]
@ -162,13 +69,12 @@
"id": "EU0UubrKzTFe" "id": "EU0UubrKzTFe"
}, },
"source": [ "source": [
"## HuggingFace - Streaming (Serveless or Dedicated)\n", "## Streaming\n"
"Set stream = True"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": null,
"metadata": { "metadata": {
"colab": { "colab": {
"base_uri": "https://localhost:8080/" "base_uri": "https://localhost:8080/"
@ -176,74 +82,147 @@
"id": "y-QfIvA-uJKX", "id": "y-QfIvA-uJKX",
"outputId": "b007bb98-00d0-44a4-8264-c8a2caed6768" "outputId": "b007bb98-00d0-44a4-8264-c8a2caed6768"
}, },
"outputs": [ "outputs": [],
{
"name": "stdout",
"output_type": "stream",
"text": [
"<litellm.utils.CustomStreamWrapper object at 0x1278471d0>\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content='I', role='assistant', function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=\"'m\", role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' just', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' a', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' computer', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' program', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=',', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' so', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' I', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' don', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=\"'t\", role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' have', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' feelings', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=',', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' but', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' thank', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' you', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' for', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' asking', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content='!', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' How', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' can', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' I', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' assist', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' you', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content=' today', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content='?', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason=None, index=0, delta=Delta(content='<|eot_id|>', role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n",
"ModelResponse(id='chatcmpl-ffeb4491-624b-4ddf-8005-60358cf67d36', choices=[StreamingChoices(finish_reason='stop', index=0, delta=Delta(content=None, role=None, function_call=None, tool_calls=None), logprobs=None)], created=1724858353, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion.chunk', system_fingerprint=None)\n"
]
}
],
"source": [ "source": [
"import os\n", "import os\n",
"import litellm\n", "from litellm import completion\n",
"\n", "\n",
"# Make sure to create an API_KEY with inference permissions at https://huggingface.co/settings/tokens/new?globalPermissions=inference.serverless.write&tokenType=fineGrained\n", "os.environ[\"HF_TOKEN\"] = \"hf_xxxxxx\"\n",
"os.environ[\"HUGGINGFACE_API_KEY\"] = \"\"\n",
"\n", "\n",
"# Call https://huggingface.co/glaiveai/glaive-coder-7b\n", "response = completion(\n",
"# add the 'huggingface/' prefix to the model to set huggingface as the provider\n", " model=\"huggingface/together/deepseek-ai/DeepSeek-R1\",\n",
"# set api base to your deployed api endpoint from hugging face\n", " messages=[\n",
"response = litellm.completion(\n", " {\n",
" model=\"huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct\",\n", " \"role\": \"user\",\n",
" messages=[{ \"content\": \"Hello, how are you?\",\"role\": \"user\"}],\n", " \"content\": \"How many r's are in the word `strawberry`?\",\n",
" stream=True\n", " \n",
" }\n",
" ],\n",
" stream=True,\n",
")\n", ")\n",
"\n", "\n",
"print(response)\n",
"\n",
"for chunk in response:\n", "for chunk in response:\n",
" print(chunk)" " print(chunk)"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## With images as input\n"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": { "metadata": {},
"id": "CKXAnK55zQRl"
},
"outputs": [], "outputs": [],
"source": [] "source": [
"from litellm import completion\n",
"\n",
"# Set your Hugging Face Token\n",
"os.environ[\"HF_TOKEN\"] = \"hf_xxxxxx\"\n",
"\n",
"messages = [\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\"type\": \"text\", \"text\": \"What's in this image?\"},\n",
" {\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {\n",
" \"url\": \"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg\",\n",
" },\n",
" },\n",
" ],\n",
" }\n",
"]\n",
"\n",
"response = completion(\n",
" model=\"huggingface/sambanova/meta-llama/Llama-3.3-70B-Instruct\",\n",
" messages=messages,\n",
")\n",
"print(response.choices[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tools - Function Calling\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from litellm import completion\n",
"\n",
"\n",
"# Set your Hugging Face Token\n",
"os.environ[\"HF_TOKEN\"] = \"hf_xxxxxx\"\n",
"\n",
"tools = [\n",
" {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"get_current_weather\",\n",
" \"description\": \"Get the current weather in a given location\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, e.g. San Francisco, CA\",\n",
" },\n",
" \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"]},\n",
" },\n",
" \"required\": [\"location\"],\n",
" },\n",
" },\n",
" }\n",
"]\n",
"messages = [{\"role\": \"user\", \"content\": \"What's the weather like in Boston today?\"}]\n",
"\n",
"response = completion(\n",
" model=\"huggingface/sambanova/meta-llama/Llama-3.1-8B-Instruct\", messages=messages, tools=tools, tool_choice=\"auto\"\n",
")\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Hugging Face Dedicated Inference Endpoints\n",
"\n",
"Steps to use\n",
"\n",
"- Create your own Hugging Face dedicated endpoint here: https://ui.endpoints.huggingface.co/\n",
"- Set `api_base` to your deployed api base\n",
"- set the model to `huggingface/tgi` so that litellm knows it's a huggingface Deployed Inference Endpoint.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import litellm\n",
"\n",
"\n",
"response = litellm.completion(\n",
" model=\"huggingface/tgi\",\n",
" messages=[{\"content\": \"Hello, how are you?\", \"role\": \"user\"}],\n",
" api_base=\"https://my-endpoint.endpoints.huggingface.cloud/v1/\",\n",
")\n",
"print(response)"
]
} }
], ],
"metadata": { "metadata": {
@ -251,7 +230,8 @@
"provenance": [] "provenance": []
}, },
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": ".venv",
"language": "python",
"name": "python3" "name": "python3"
}, },
"language_info": { "language_info": {
@ -264,7 +244,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.12.2" "version": "3.12.0"
} }
}, },
"nbformat": 4, "nbformat": 4,

View file

@ -1 +1 @@
litellm==1.55.3 litellm==1.61.15

View file

@ -1,2 +1,11 @@
python3 -m build python3 -m build
twine upload --verbose dist/litellm-1.18.13.dev4.tar.gz -u __token__ - twine upload --verbose dist/litellm-1.18.13.dev4.tar.gz -u __token__ -
Note: You might need to make a MANIFEST.ini file on root for build process incase it fails
Place this in MANIFEST.ini
recursive-exclude venv *
recursive-exclude myenv *
recursive-exclude py313_env *
recursive-exclude **/.venv *

View file

@ -18,7 +18,7 @@ type: application
# This is the chart version. This version number should be incremented each time you make changes # This is the chart version. This version number should be incremented each time you make changes
# to the chart and its templates, including the app version. # to the chart and its templates, including the app version.
# Versions are expected to follow Semantic Versioning (https://semver.org/) # Versions are expected to follow Semantic Versioning (https://semver.org/)
version: 0.4.1 version: 0.4.3
# This is the version number of the application being deployed. This version number should be # This is the version number of the application being deployed. This version number should be
# incremented each time you make changes to the application. Versions are not expected to # incremented each time you make changes to the application. Versions are not expected to

View file

@ -22,6 +22,8 @@ If `db.useStackgresOperator` is used (not yet implemented):
| Name | Description | Value | | Name | Description | Value |
| ---------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----- | | ---------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----- |
| `replicaCount` | The number of LiteLLM Proxy pods to be deployed | `1` | | `replicaCount` | The number of LiteLLM Proxy pods to be deployed | `1` |
| `masterkeySecretName` | The name of the Kubernetes Secret that contains the Master API Key for LiteLLM. If not specified, use the generated secret name. | N/A |
| `masterkeySecretKey` | The key within the Kubernetes Secret that contains the Master API Key for LiteLLM. If not specified, use `masterkey` as the key. | N/A |
| `masterkey` | The Master API Key for LiteLLM. If not specified, a random key is generated. | N/A | | `masterkey` | The Master API Key for LiteLLM. If not specified, a random key is generated. | N/A |
| `environmentSecrets` | An optional array of Secret object names. The keys and values in these secrets will be presented to the LiteLLM proxy pod as environment variables. See below for an example Secret object. | `[]` | | `environmentSecrets` | An optional array of Secret object names. The keys and values in these secrets will be presented to the LiteLLM proxy pod as environment variables. See below for an example Secret object. | `[]` |
| `environmentConfigMaps` | An optional array of ConfigMap object names. The keys and values in these configmaps will be presented to the LiteLLM proxy pod as environment variables. See below for an example Secret object. | `[]` | | `environmentConfigMaps` | An optional array of ConfigMap object names. The keys and values in these configmaps will be presented to the LiteLLM proxy pod as environment variables. See below for an example Secret object. | `[]` |

View file

@ -78,8 +78,8 @@ spec:
- name: PROXY_MASTER_KEY - name: PROXY_MASTER_KEY
valueFrom: valueFrom:
secretKeyRef: secretKeyRef:
name: {{ include "litellm.fullname" . }}-masterkey name: {{ .Values.masterkeySecretName | default (printf "%s-masterkey" (include "litellm.fullname" .)) }}
key: masterkey key: {{ .Values.masterkeySecretKey | default "masterkey" }}
{{- if .Values.redis.enabled }} {{- if .Values.redis.enabled }}
- name: REDIS_HOST - name: REDIS_HOST
value: {{ include "litellm.redis.serviceName" . }} value: {{ include "litellm.redis.serviceName" . }}
@ -97,6 +97,9 @@ spec:
value: {{ $val | quote }} value: {{ $val | quote }}
{{- end }} {{- end }}
{{- end }} {{- end }}
{{- with .Values.extraEnvVars }}
{{- toYaml . | nindent 12 }}
{{- end }}
envFrom: envFrom:
{{- range .Values.environmentSecrets }} {{- range .Values.environmentSecrets }}
- secretRef: - secretRef:

View file

@ -1,3 +1,4 @@
{{- if not .Values.masterkeySecretName }}
{{ $masterkey := (.Values.masterkey | default (randAlphaNum 17)) }} {{ $masterkey := (.Values.masterkey | default (randAlphaNum 17)) }}
apiVersion: v1 apiVersion: v1
kind: Secret kind: Secret
@ -6,3 +7,4 @@ metadata:
data: data:
masterkey: {{ $masterkey | b64enc }} masterkey: {{ $masterkey | b64enc }}
type: Opaque type: Opaque
{{- end }}

View file

@ -2,6 +2,10 @@ apiVersion: v1
kind: Service kind: Service
metadata: metadata:
name: {{ include "litellm.fullname" . }} name: {{ include "litellm.fullname" . }}
{{- with .Values.service.annotations }}
annotations:
{{- toYaml . | nindent 4 }}
{{- end }}
labels: labels:
{{- include "litellm.labels" . | nindent 4 }} {{- include "litellm.labels" . | nindent 4 }}
spec: spec:

View file

@ -52,3 +52,66 @@ tests:
- equal: - equal:
path: spec.template.spec.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution.nodeSelectorTerms[0].matchExpressions[0].values[0] path: spec.template.spec.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution.nodeSelectorTerms[0].matchExpressions[0].values[0]
value: antarctica-east1 value: antarctica-east1
- it: should work without masterkeySecretName or masterkeySecretKey
template: deployment.yaml
set:
masterkeySecretName: ""
masterkeySecretKey: ""
asserts:
- contains:
path: spec.template.spec.containers[0].env
content:
name: PROXY_MASTER_KEY
valueFrom:
secretKeyRef:
name: RELEASE-NAME-litellm-masterkey
key: masterkey
- it: should work with masterkeySecretName and masterkeySecretKey
template: deployment.yaml
set:
masterkeySecretName: my-secret
masterkeySecretKey: my-key
asserts:
- contains:
path: spec.template.spec.containers[0].env
content:
name: PROXY_MASTER_KEY
valueFrom:
secretKeyRef:
name: my-secret
key: my-key
- it: should work with extraEnvVars
template: deployment.yaml
set:
extraEnvVars:
- name: EXTRA_ENV_VAR
valueFrom:
fieldRef:
fieldPath: metadata.labels['env']
asserts:
- contains:
path: spec.template.spec.containers[0].env
content:
name: EXTRA_ENV_VAR
valueFrom:
fieldRef:
fieldPath: metadata.labels['env']
- it: should work with both extraEnvVars and envVars
template: deployment.yaml
set:
envVars:
ENV_VAR: ENV_VAR_VALUE
extraEnvVars:
- name: EXTRA_ENV_VAR
value: EXTRA_ENV_VAR_VALUE
asserts:
- contains:
path: spec.template.spec.containers[0].env
content:
name: ENV_VAR
value: ENV_VAR_VALUE
- contains:
path: spec.template.spec.containers[0].env
content:
name: EXTRA_ENV_VAR
value: EXTRA_ENV_VAR_VALUE

View file

@ -0,0 +1,18 @@
suite: test masterkey secret
templates:
- secret-masterkey.yaml
tests:
- it: should create a secret if masterkeySecretName is not set
template: secret-masterkey.yaml
set:
masterkeySecretName: ""
asserts:
- isKind:
of: Secret
- it: should not create a secret if masterkeySecretName is set
template: secret-masterkey.yaml
set:
masterkeySecretName: my-secret
asserts:
- hasDocuments:
count: 0

View file

@ -75,6 +75,12 @@ ingress:
# masterkey: changeit # masterkey: changeit
# if set, use this secret for the master key; otherwise, autogenerate a new one
masterkeySecretName: ""
# if set, use this secret key for the master key; otherwise, use the default key
masterkeySecretKey: ""
# The elements within proxy_config are rendered as config.yaml for the proxy # The elements within proxy_config are rendered as config.yaml for the proxy
# Examples: https://github.com/BerriAI/litellm/tree/main/litellm/proxy/example_config_yaml # Examples: https://github.com/BerriAI/litellm/tree/main/litellm/proxy/example_config_yaml
# Reference: https://docs.litellm.ai/docs/proxy/configs # Reference: https://docs.litellm.ai/docs/proxy/configs
@ -189,9 +195,15 @@ migrationJob:
annotations: {} annotations: {}
ttlSecondsAfterFinished: 120 ttlSecondsAfterFinished: 120
# Additional environment variables to be added to the deployment # Additional environment variables to be added to the deployment as a map of key-value pairs
envVars: { envVars: {
# USE_DDTRACE: "true" # USE_DDTRACE: "true"
} }
# Additional environment variables to be added to the deployment as a list of k8s env vars
extraEnvVars: {
# - name: EXTRA_ENV_VAR
# value: EXTRA_ENV_VAR_VALUE
}

View file

@ -66,5 +66,3 @@ volumes:
postgres_data: postgres_data:
name: litellm_postgres_data # Named volume for Postgres data persistence name: litellm_postgres_data # Named volume for Postgres data persistence
# ...rest of your docker-compose config if any

View file

@ -35,7 +35,7 @@ RUN pip wheel --no-cache-dir --wheel-dir=/wheels/ -r requirements.txt
FROM $LITELLM_RUNTIME_IMAGE AS runtime FROM $LITELLM_RUNTIME_IMAGE AS runtime
# Update dependencies and clean up # Update dependencies and clean up
RUN apk update && apk upgrade && rm -rf /var/cache/apk/* RUN apk upgrade --no-cache
WORKDIR /app WORKDIR /app

View file

@ -12,8 +12,7 @@ WORKDIR /app
USER root USER root
# Install build dependencies # Install build dependencies
RUN apk update && \ RUN apk add --no-cache gcc python3-dev openssl openssl-dev
apk add --no-cache gcc python3-dev openssl openssl-dev
RUN pip install --upgrade pip && \ RUN pip install --upgrade pip && \
@ -44,8 +43,7 @@ FROM $LITELLM_RUNTIME_IMAGE AS runtime
USER root USER root
# Install runtime dependencies # Install runtime dependencies
RUN apk update && \ RUN apk add --no-cache openssl
apk add --no-cache openssl
WORKDIR /app WORKDIR /app
# Copy the current directory contents into the container at /app # Copy the current directory contents into the container at /app
@ -59,9 +57,6 @@ COPY --from=builder /wheels/ /wheels/
# Install the built wheel using pip; again using a wildcard if it's the only file # Install the built wheel using pip; again using a wildcard if it's the only file
RUN pip install *.whl /wheels/* --no-index --find-links=/wheels/ && rm -f *.whl && rm -rf /wheels RUN pip install *.whl /wheels/* --no-index --find-links=/wheels/ && rm -f *.whl && rm -rf /wheels
# install semantic-cache [Experimental]- we need this here and not in requirements.txt because redisvl pins to pydantic 1.0
RUN pip install redisvl==0.0.7 --no-deps
# ensure pyjwt is used, not jwt # ensure pyjwt is used, not jwt
RUN pip uninstall jwt -y RUN pip uninstall jwt -y
RUN pip uninstall PyJWT -y RUN pip uninstall PyJWT -y

View file

@ -14,7 +14,7 @@ SHELL ["/bin/bash", "-o", "pipefail", "-c"]
# Install build dependencies # Install build dependencies
RUN apt-get clean && apt-get update && \ RUN apt-get clean && apt-get update && \
apt-get install -y gcc python3-dev && \ apt-get install -y gcc g++ python3-dev && \
rm -rf /var/lib/apt/lists/* rm -rf /var/lib/apt/lists/*
RUN pip install --no-cache-dir --upgrade pip && \ RUN pip install --no-cache-dir --upgrade pip && \
@ -56,10 +56,8 @@ COPY --from=builder /wheels/ /wheels/
# Install the built wheel using pip; again using a wildcard if it's the only file # Install the built wheel using pip; again using a wildcard if it's the only file
RUN pip install *.whl /wheels/* --no-index --find-links=/wheels/ && rm -f *.whl && rm -rf /wheels RUN pip install *.whl /wheels/* --no-index --find-links=/wheels/ && rm -f *.whl && rm -rf /wheels
# install semantic-cache [Experimental]- we need this here and not in requirements.txt because redisvl pins to pydantic 1.0
# ensure pyjwt is used, not jwt # ensure pyjwt is used, not jwt
RUN pip install redisvl==0.0.7 --no-deps --no-cache-dir && \ RUN pip uninstall jwt -y && \
pip uninstall jwt -y && \
pip uninstall PyJWT -y && \ pip uninstall PyJWT -y && \
pip install PyJWT==2.9.0 --no-cache-dir pip install PyJWT==2.9.0 --no-cache-dir

View file

@ -3,9 +3,10 @@ import TabItem from '@theme/TabItem';
# /v1/messages [BETA] # /v1/messages [BETA]
LiteLLM provides a BETA endpoint in the spec of Anthropic's `/v1/messages` endpoint. Use LiteLLM to call all your LLM APIs in the Anthropic `v1/messages` format.
This currently just supports the Anthropic API.
## Overview
| Feature | Supported | Notes | | Feature | Supported | Notes |
|-------|-------|-------| |-------|-------|-------|
@ -21,9 +22,61 @@ Planned improvement:
- Bedrock Anthropic support - Bedrock Anthropic support
## Usage ## Usage
---
### LiteLLM Python SDK
#### Non-streaming example
```python showLineNumbers title="Example using LiteLLM Python SDK"
import litellm
response = await litellm.anthropic.messages.acreate(
messages=[{"role": "user", "content": "Hello, can you tell me a short joke?"}],
api_key=api_key,
model="anthropic/claude-3-haiku-20240307",
max_tokens=100,
)
```
Example response:
```json
{
"content": [
{
"text": "Hi! this is a very short joke",
"type": "text"
}
],
"id": "msg_013Zva2CMHLNnXjNJJKqJ2EF",
"model": "claude-3-7-sonnet-20250219",
"role": "assistant",
"stop_reason": "end_turn",
"stop_sequence": null,
"type": "message",
"usage": {
"input_tokens": 2095,
"output_tokens": 503,
"cache_creation_input_tokens": 2095,
"cache_read_input_tokens": 0
}
}
```
#### Streaming example
```python showLineNumbers title="Example using LiteLLM Python SDK"
import litellm
response = await litellm.anthropic.messages.acreate(
messages=[{"role": "user", "content": "Hello, can you tell me a short joke?"}],
api_key=api_key,
model="anthropic/claude-3-haiku-20240307",
max_tokens=100,
stream=True,
)
async for chunk in response:
print(chunk)
```
### LiteLLM Proxy Server
<Tabs>
<TabItem label="PROXY" value="proxy">
1. Setup config.yaml 1. Setup config.yaml
@ -42,7 +95,28 @@ litellm --config /path/to/config.yaml
3. Test it! 3. Test it!
```bash <Tabs>
<TabItem label="Anthropic Python SDK" value="python">
```python showLineNumbers title="Example using LiteLLM Proxy Server"
import anthropic
# point anthropic sdk to litellm proxy
client = anthropic.Anthropic(
base_url="http://0.0.0.0:4000",
api_key="sk-1234",
)
response = client.messages.create(
messages=[{"role": "user", "content": "Hello, can you tell me a short joke?"}],
model="anthropic-claude",
max_tokens=100,
)
```
</TabItem>
<TabItem label="curl" value="curl">
```bash showLineNumbers title="Example using LiteLLM Proxy Server"
curl -L -X POST 'http://0.0.0.0:4000/v1/messages' \ curl -L -X POST 'http://0.0.0.0:4000/v1/messages' \
-H 'content-type: application/json' \ -H 'content-type: application/json' \
-H 'x-api-key: $LITELLM_API_KEY' \ -H 'x-api-key: $LITELLM_API_KEY' \
@ -52,41 +126,176 @@ curl -L -X POST 'http://0.0.0.0:4000/v1/messages' \
"messages": [ "messages": [
{ {
"role": "user", "role": "user",
"content": [ "content": "Hello, can you tell me a short joke?"
{
"type": "text",
"text": "List 5 important events in the XIX century"
}
]
} }
], ],
"max_tokens": 4096 "max_tokens": 100
}' }'
``` ```
</TabItem>
<TabItem value="sdk" label="SDK">
```python
from litellm.llms.anthropic.experimental_pass_through.messages.handler import anthropic_messages
import asyncio
import os
# set env
os.environ["ANTHROPIC_API_KEY"] = "my-api-key"
messages = [{"role": "user", "content": "Hello, can you tell me a short joke?"}]
# Call the handler
async def call():
response = await anthropic_messages(
messages=messages,
api_key=api_key,
model="claude-3-haiku-20240307",
max_tokens=100,
)
asyncio.run(call())
```
</TabItem> </TabItem>
</Tabs> </Tabs>
## Request Format
---
Request body will be in the Anthropic messages API format. **litellm follows the Anthropic messages specification for this endpoint.**
#### Example request body
```json
{
"model": "claude-3-7-sonnet-20250219",
"max_tokens": 1024,
"messages": [
{
"role": "user",
"content": "Hello, world"
}
]
}
```
#### Required Fields
- **model** (string):
The model identifier (e.g., `"claude-3-7-sonnet-20250219"`).
- **max_tokens** (integer):
The maximum number of tokens to generate before stopping.
_Note: The model may stop before reaching this limit; value must be greater than 1._
- **messages** (array of objects):
An ordered list of conversational turns.
Each message object must include:
- **role** (enum: `"user"` or `"assistant"`):
Specifies the speaker of the message.
- **content** (string or array of content blocks):
The text or content blocks (e.g., an array containing objects with a `type` such as `"text"`) that form the message.
_Example equivalence:_
```json
{"role": "user", "content": "Hello, Claude"}
```
is equivalent to:
```json
{"role": "user", "content": [{"type": "text", "text": "Hello, Claude"}]}
```
#### Optional Fields
- **metadata** (object):
Contains additional metadata about the request (e.g., `user_id` as an opaque identifier).
- **stop_sequences** (array of strings):
Custom sequences that, when encountered in the generated text, cause the model to stop.
- **stream** (boolean):
Indicates whether to stream the response using server-sent events.
- **system** (string or array):
A system prompt providing context or specific instructions to the model.
- **temperature** (number):
Controls randomness in the models responses. Valid range: `0 < temperature < 1`.
- **thinking** (object):
Configuration for enabling extended thinking. If enabled, it includes:
- **budget_tokens** (integer):
Minimum of 1024 tokens (and less than `max_tokens`).
- **type** (enum):
E.g., `"enabled"`.
- **tool_choice** (object):
Instructs how the model should utilize any provided tools.
- **tools** (array of objects):
Definitions for tools available to the model. Each tool includes:
- **name** (string):
The tools name.
- **description** (string):
A detailed description of the tool.
- **input_schema** (object):
A JSON schema describing the expected input format for the tool.
- **top_k** (integer):
Limits sampling to the top K options.
- **top_p** (number):
Enables nucleus sampling with a cumulative probability cutoff. Valid range: `0 < top_p < 1`.
## Response Format
---
Responses will be in the Anthropic messages API format.
#### Example Response
```json
{
"content": [
{
"text": "Hi! My name is Claude.",
"type": "text"
}
],
"id": "msg_013Zva2CMHLNnXjNJJKqJ2EF",
"model": "claude-3-7-sonnet-20250219",
"role": "assistant",
"stop_reason": "end_turn",
"stop_sequence": null,
"type": "message",
"usage": {
"input_tokens": 2095,
"output_tokens": 503,
"cache_creation_input_tokens": 2095,
"cache_read_input_tokens": 0
}
}
```
#### Response fields
- **content** (array of objects):
Contains the generated content blocks from the model. Each block includes:
- **type** (string):
Indicates the type of content (e.g., `"text"`, `"tool_use"`, `"thinking"`, or `"redacted_thinking"`).
- **text** (string):
The generated text from the model.
_Note: Maximum length is 5,000,000 characters._
- **citations** (array of objects or `null`):
Optional field providing citation details. Each citation includes:
- **cited_text** (string):
The excerpt being cited.
- **document_index** (integer):
An index referencing the cited document.
- **document_title** (string or `null`):
The title of the cited document.
- **start_char_index** (integer):
The starting character index for the citation.
- **end_char_index** (integer):
The ending character index for the citation.
- **type** (string):
Typically `"char_location"`.
- **id** (string):
A unique identifier for the response message.
_Note: The format and length of IDs may change over time._
- **model** (string):
Specifies the model that generated the response.
- **role** (string):
Indicates the role of the generated message. For responses, this is always `"assistant"`.
- **stop_reason** (string):
Explains why the model stopped generating text. Possible values include:
- `"end_turn"`: The model reached a natural stopping point.
- `"max_tokens"`: The generation stopped because the maximum token limit was reached.
- `"stop_sequence"`: A custom stop sequence was encountered.
- `"tool_use"`: The model invoked one or more tools.
- **stop_sequence** (string or `null`):
Contains the specific stop sequence that caused the generation to halt, if applicable; otherwise, it is `null`.
- **type** (string):
Denotes the type of response object, which is always `"message"`.
- **usage** (object):
Provides details on token usage for billing and rate limiting. This includes:
- **input_tokens** (integer):
Total number of input tokens processed.
- **output_tokens** (integer):
Total number of output tokens generated.
- **cache_creation_input_tokens** (integer or `null`):
Number of tokens used to create a cache entry.
- **cache_read_input_tokens** (integer or `null`):
Number of tokens read from the cache.

View file

@ -3,7 +3,7 @@ import TabItem from '@theme/TabItem';
# Caching - In-Memory, Redis, s3, Redis Semantic Cache, Disk # Caching - In-Memory, Redis, s3, Redis Semantic Cache, Disk
[**See Code**](https://github.com/BerriAI/litellm/blob/main/litellm.caching.caching.py) [**See Code**](https://github.com/BerriAI/litellm/blob/main/litellm/caching/caching.py)
:::info :::info
@ -26,7 +26,7 @@ Install redis
pip install redis pip install redis
``` ```
For the hosted version you can setup your own Redis DB here: https://app.redislabs.com/ For the hosted version you can setup your own Redis DB here: https://redis.io/try-free/
```python ```python
import litellm import litellm
@ -91,12 +91,12 @@ response2 = completion(
<TabItem value="redis-sem" label="redis-semantic cache"> <TabItem value="redis-sem" label="redis-semantic cache">
Install redis Install redisvl client
```shell ```shell
pip install redisvl==0.0.7 pip install redisvl==0.4.1
``` ```
For the hosted version you can setup your own Redis DB here: https://app.redislabs.com/ For the hosted version you can setup your own Redis DB here: https://redis.io/try-free/
```python ```python
import litellm import litellm
@ -114,6 +114,7 @@ litellm.cache = Cache(
port=os.environ["REDIS_PORT"], port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"], password=os.environ["REDIS_PASSWORD"],
similarity_threshold=0.8, # similarity threshold for cache hits, 0 == no similarity, 1 = exact matches, 0.5 == 50% similarity similarity_threshold=0.8, # similarity threshold for cache hits, 0 == no similarity, 1 = exact matches, 0.5 == 50% similarity
ttl=120,
redis_semantic_cache_embedding_model="text-embedding-ada-002", # this model is passed to litellm.embedding(), any litellm.embedding() model is supported here redis_semantic_cache_embedding_model="text-embedding-ada-002", # this model is passed to litellm.embedding(), any litellm.embedding() model is supported here
) )
response1 = completion( response1 = completion(
@ -471,11 +472,13 @@ def __init__(
password: Optional[str] = None, password: Optional[str] = None,
namespace: Optional[str] = None, namespace: Optional[str] = None,
default_in_redis_ttl: Optional[float] = None, default_in_redis_ttl: Optional[float] = None,
similarity_threshold: Optional[float] = None,
redis_semantic_cache_use_async=False,
redis_semantic_cache_embedding_model="text-embedding-ada-002",
redis_flush_size=None, redis_flush_size=None,
# redis semantic cache params
similarity_threshold: Optional[float] = None,
redis_semantic_cache_embedding_model: str = "text-embedding-ada-002",
redis_semantic_cache_index_name: Optional[str] = None,
# s3 Bucket, boto3 configuration # s3 Bucket, boto3 configuration
s3_bucket_name: Optional[str] = None, s3_bucket_name: Optional[str] = None,
s3_region_name: Optional[str] = None, s3_region_name: Optional[str] = None,

View file

@ -27,16 +27,18 @@ os.environ["AWS_REGION_NAME"] = ""
# pdf url # pdf url
image_url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf" file_url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf"
# model # model
model = "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0" model = "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0"
image_content = [ file_content = [
{"type": "text", "text": "What's this file about?"}, {"type": "text", "text": "What's this file about?"},
{ {
"type": "image_url", "type": "file",
"image_url": image_url, # OR {"url": image_url} "file": {
"file_id": file_url,
}
}, },
] ]
@ -46,7 +48,7 @@ if not supports_pdf_input(model, None):
response = completion( response = completion(
model=model, model=model,
messages=[{"role": "user", "content": image_content}], messages=[{"role": "user", "content": file_content}],
) )
assert response is not None assert response is not None
``` ```
@ -80,11 +82,15 @@ curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-d '{ -d '{
"model": "bedrock-model", "model": "bedrock-model",
"messages": [ "messages": [
{"role": "user", "content": {"type": "text", "text": "What's this file about?"}}, {"role": "user", "content": [
{"type": "text", "text": "What's this file about?"},
{ {
"type": "image_url", "type": "file",
"image_url": "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf", "file": {
"file_id": "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf",
} }
}
]},
] ]
}' }'
``` ```
@ -116,11 +122,13 @@ base64_url = f"data:application/pdf;base64,{encoded_file}"
# model # model
model = "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0" model = "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0"
image_content = [ file_content = [
{"type": "text", "text": "What's this file about?"}, {"type": "text", "text": "What's this file about?"},
{ {
"type": "image_url", "type": "file",
"image_url": base64_url, # OR {"url": base64_url} "file": {
"file_data": base64_url,
}
}, },
] ]
@ -130,11 +138,53 @@ if not supports_pdf_input(model, None):
response = completion( response = completion(
model=model, model=model,
messages=[{"role": "user", "content": image_content}], messages=[{"role": "user", "content": file_content}],
) )
assert response is not None assert response is not None
``` ```
</TabItem> </TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: bedrock-model
litellm_params:
model: bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0
aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
aws_region_name: os.environ/AWS_REGION_NAME
```
2. Start the proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "bedrock-model",
"messages": [
{"role": "user", "content": [
{"type": "text", "text": "What's this file about?"},
{
"type": "file",
"file": {
"file_data": "data:application/pdf;base64...",
}
}
]},
]
}'
```
</TabItem>
</Tabs> </Tabs>
## Checking if a model supports pdf input ## Checking if a model supports pdf input

View file

@ -108,3 +108,75 @@ response = litellm.completion(
</Tabs> </Tabs>
**additional_drop_params**: List or null - Is a list of openai params you want to drop when making a call to the model. **additional_drop_params**: List or null - Is a list of openai params you want to drop when making a call to the model.
## Specify allowed openai params in a request
Tell litellm to allow specific openai params in a request. Use this if you get a `litellm.UnsupportedParamsError` and want to allow a param. LiteLLM will pass the param as is to the model.
<Tabs>
<TabItem value="sdk" label="LiteLLM Python SDK">
In this example we pass `allowed_openai_params=["tools"]` to allow the `tools` param.
```python showLineNumbers title="Pass allowed_openai_params to LiteLLM Python SDK"
await litellm.acompletion(
model="azure/o_series/<my-deployment-name>",
api_key="xxxxx",
api_base=api_base,
messages=[{"role": "user", "content": "Hello! return a json object"}],
tools=[{"type": "function", "function": {"name": "get_current_time", "description": "Get the current time in a given location.", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "The city name, e.g. San Francisco"}}, "required": ["location"]}}}]
allowed_openai_params=["tools"],
)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM Proxy">
When using litellm proxy you can pass `allowed_openai_params` in two ways:
1. Dynamically pass `allowed_openai_params` in a request
2. Set `allowed_openai_params` on the config.yaml file for a specific model
#### Dynamically pass allowed_openai_params in a request
In this example we pass `allowed_openai_params=["tools"]` to allow the `tools` param for a request sent to the model set on the proxy.
```python showLineNumbers title="Dynamically pass allowed_openai_params in a request"
import openai
from openai import AsyncAzureOpenAI
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"allowed_openai_params": ["tools"]
}
)
```
#### Set allowed_openai_params on config.yaml
You can also set `allowed_openai_params` on the config.yaml file for a specific model. This means that all requests to this deployment are allowed to pass in the `tools` param.
```yaml showLineNumbers title="Set allowed_openai_params on config.yaml"
model_list:
- model_name: azure-o1-preview
litellm_params:
model: azure/o_series/<my-deployment-name>
api_key: xxxxx
api_base: https://openai-prod-test.openai.azure.com/openai/deployments/o1/chat/completions?api-version=2025-01-01-preview
allowed_openai_params: ["tools"]
```
</TabItem>
</Tabs>

View file

@ -4,7 +4,7 @@ import TabItem from '@theme/TabItem';
# Prompt Caching # Prompt Caching
Supported Providers: Supported Providers:
- OpenAI (`deepseek/`) - OpenAI (`openai/`)
- Anthropic API (`anthropic/`) - Anthropic API (`anthropic/`)
- Bedrock (`bedrock/`, `bedrock/invoke/`, `bedrock/converse`) ([All models bedrock supports prompt caching on](https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-caching.html)) - Bedrock (`bedrock/`, `bedrock/invoke/`, `bedrock/converse`) ([All models bedrock supports prompt caching on](https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-caching.html))
- Deepseek API (`deepseek/`) - Deepseek API (`deepseek/`)

View file

@ -0,0 +1,308 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Using Web Search
Use web search with litellm
| Feature | Details |
|---------|---------|
| Supported Endpoints | - `/chat/completions` <br/> - `/responses` |
| Supported Providers | `openai` |
| LiteLLM Cost Tracking | ✅ Supported |
| LiteLLM Version | `v1.63.15-nightly` or higher |
## `/chat/completions` (litellm.completion)
### Quick Start
<Tabs>
<TabItem value="sdk" label="SDK">
```python showLineNumbers
from litellm import completion
response = completion(
model="openai/gpt-4o-search-preview",
messages=[
{
"role": "user",
"content": "What was a positive news story from today?",
}
],
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gpt-4o-search-preview
litellm_params:
model: openai/gpt-4o-search-preview
api_key: os.environ/OPENAI_API_KEY
```
2. Start the proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```python showLineNumbers
from openai import OpenAI
# Point to your proxy server
client = OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(
model="gpt-4o-search-preview",
messages=[
{
"role": "user",
"content": "What was a positive news story from today?"
}
]
)
```
</TabItem>
</Tabs>
### Search context size
<Tabs>
<TabItem value="sdk" label="SDK">
```python showLineNumbers
from litellm import completion
# Customize search context size
response = completion(
model="openai/gpt-4o-search-preview",
messages=[
{
"role": "user",
"content": "What was a positive news story from today?",
}
],
web_search_options={
"search_context_size": "low" # Options: "low", "medium" (default), "high"
}
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```python showLineNumbers
from openai import OpenAI
# Point to your proxy server
client = OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)
# Customize search context size
response = client.chat.completions.create(
model="gpt-4o-search-preview",
messages=[
{
"role": "user",
"content": "What was a positive news story from today?"
}
],
web_search_options={
"search_context_size": "low" # Options: "low", "medium" (default), "high"
}
)
```
</TabItem>
</Tabs>
## `/responses` (litellm.responses)
### Quick Start
<Tabs>
<TabItem value="sdk" label="SDK">
```python showLineNumbers
from litellm import responses
response = responses(
model="openai/gpt-4o",
input=[
{
"role": "user",
"content": "What was a positive news story from today?"
}
],
tools=[{
"type": "web_search_preview" # enables web search with default medium context size
}]
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY
```
2. Start the proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```python showLineNumbers
from openai import OpenAI
# Point to your proxy server
client = OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)
response = client.responses.create(
model="gpt-4o",
tools=[{
"type": "web_search_preview"
}],
input="What was a positive news story from today?",
)
print(response.output_text)
```
</TabItem>
</Tabs>
### Search context size
<Tabs>
<TabItem value="sdk" label="SDK">
```python showLineNumbers
from litellm import responses
# Customize search context size
response = responses(
model="openai/gpt-4o",
input=[
{
"role": "user",
"content": "What was a positive news story from today?"
}
],
tools=[{
"type": "web_search_preview",
"search_context_size": "low" # Options: "low", "medium" (default), "high"
}]
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```python showLineNumbers
from openai import OpenAI
# Point to your proxy server
client = OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)
# Customize search context size
response = client.responses.create(
model="gpt-4o",
tools=[{
"type": "web_search_preview",
"search_context_size": "low" # Options: "low", "medium" (default), "high"
}],
input="What was a positive news story from today?",
)
print(response.output_text)
```
</TabItem>
</Tabs>
## Checking if a model supports web search
<Tabs>
<TabItem label="SDK" value="sdk">
Use `litellm.supports_web_search(model="openai/gpt-4o-search-preview")` -> returns `True` if model can perform web searches
```python showLineNumbers
assert litellm.supports_web_search(model="openai/gpt-4o-search-preview") == True
```
</TabItem>
<TabItem label="PROXY" value="proxy">
1. Define OpenAI models in config.yaml
```yaml
model_list:
- model_name: gpt-4o-search-preview
litellm_params:
model: openai/gpt-4o-search-preview
api_key: os.environ/OPENAI_API_KEY
model_info:
supports_web_search: True
```
2. Run proxy server
```bash
litellm --config config.yaml
```
3. Call `/model_group/info` to check if a model supports web search
```shell
curl -X 'GET' \
'http://localhost:4000/model_group/info' \
-H 'accept: application/json' \
-H 'x-api-key: sk-1234'
```
Expected Response
```json showLineNumbers
{
"data": [
{
"model_group": "gpt-4o-search-preview",
"providers": ["openai"],
"max_tokens": 128000,
"supports_web_search": true, # 👈 supports_web_search is true
}
]
}
```
</TabItem>
</Tabs>

View file

@ -1,3 +1,5 @@
import Image from '@theme/IdealImage';
# Enterprise # Enterprise
For companies that need SSO, user management and professional support for LiteLLM Proxy For companies that need SSO, user management and professional support for LiteLLM Proxy
@ -7,6 +9,8 @@ Get free 7-day trial key [here](https://www.litellm.ai/#trial)
Includes all enterprise features. Includes all enterprise features.
<Image img={require('../img/enterprise_vs_oss.png')} />
[**Procurement available via AWS / Azure Marketplace**](./data_security.md#legalcompliance-faqs) [**Procurement available via AWS / Azure Marketplace**](./data_security.md#legalcompliance-faqs)
@ -34,9 +38,9 @@ You can use our cloud product where we setup a dedicated instance for you.
Professional Support can assist with LLM/Provider integrations, deployment, upgrade management, and LLM Provider troubleshooting. We cant solve your own infrastructure-related issues but we will guide you to fix them. Professional Support can assist with LLM/Provider integrations, deployment, upgrade management, and LLM Provider troubleshooting. We cant solve your own infrastructure-related issues but we will guide you to fix them.
- 1 hour for Sev0 issues - 1 hour for Sev0 issues - 100% production traffic is failing
- 6 hours for Sev1 - 6 hours for Sev1 - <100% production traffic is failing
- 24h for Sev2-Sev3 between 7am 7pm PT (Monday through Saturday) - 24h for Sev2-Sev3 between 7am 7pm PT (Monday through Saturday) - setup issues e.g. Redis working on our end, but not on your infrastructure.
- 72h SLA for patching vulnerabilities in the software. - 72h SLA for patching vulnerabilities in the software.
**We can offer custom SLAs** based on your needs and the severity of the issue **We can offer custom SLAs** based on your needs and the severity of the issue

View file

@ -2,10 +2,12 @@
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
# /files # Provider Files Endpoints
Files are used to upload documents that can be used with features like Assistants, Fine-tuning, and Batch API. Files are used to upload documents that can be used with features like Assistants, Fine-tuning, and Batch API.
Use this to call the provider's `/files` endpoints directly, in the OpenAI format.
## Quick Start ## Quick Start
- Upload a File - Upload a File
@ -14,48 +16,105 @@ Files are used to upload documents that can be used with features like Assistant
- Delete File - Delete File
- Get File Content - Get File Content
<Tabs> <Tabs>
<TabItem value="proxy" label="LiteLLM PROXY Server"> <TabItem value="proxy" label="LiteLLM PROXY Server">
```bash 1. Setup config.yaml
$ export OPENAI_API_KEY="sk-..."
$ litellm ```
# for /files endpoints
# RUNNING on http://0.0.0.0:4000 files_settings:
- custom_llm_provider: azure
api_base: https://exampleopenaiendpoint-production.up.railway.app
api_key: fake-key
api_version: "2023-03-15-preview"
- custom_llm_provider: openai
api_key: os.environ/OPENAI_API_KEY
``` ```
**Upload a File** 2. Start LiteLLM PROXY Server
```bash ```bash
curl http://localhost:4000/v1/files \ litellm --config /path/to/config.yaml
-H "Authorization: Bearer sk-1234" \
-F purpose="fine-tune" \ ## RUNNING on http://0.0.0.0:4000
-F file="@mydata.jsonl"
``` ```
**List Files** 3. Use OpenAI's /files endpoints
```bash
curl http://localhost:4000/v1/files \ Upload a File
-H "Authorization: Bearer sk-1234"
```python
from openai import OpenAI
client = OpenAI(
api_key="sk-...",
base_url="http://0.0.0.0:4000/v1"
)
client.files.create(
file=wav_data,
purpose="user_data",
extra_body={"custom_llm_provider": "openai"}
)
``` ```
**Retrieve File Information** List Files
```bash
curl http://localhost:4000/v1/files/file-abc123 \ ```python
-H "Authorization: Bearer sk-1234" from openai import OpenAI
client = OpenAI(
api_key="sk-...",
base_url="http://0.0.0.0:4000/v1"
)
files = client.files.list(extra_body={"custom_llm_provider": "openai"})
print("files=", files)
``` ```
**Delete File** Retrieve File Information
```bash
curl http://localhost:4000/v1/files/file-abc123 \ ```python
-X DELETE \ from openai import OpenAI
-H "Authorization: Bearer sk-1234"
client = OpenAI(
api_key="sk-...",
base_url="http://0.0.0.0:4000/v1"
)
file = client.files.retrieve(file_id="file-abc123", extra_body={"custom_llm_provider": "openai"})
print("file=", file)
``` ```
**Get File Content** Delete File
```bash
curl http://localhost:4000/v1/files/file-abc123/content \ ```python
-H "Authorization: Bearer sk-1234" from openai import OpenAI
client = OpenAI(
api_key="sk-...",
base_url="http://0.0.0.0:4000/v1"
)
response = client.files.delete(file_id="file-abc123", extra_body={"custom_llm_provider": "openai"})
print("delete response=", response)
```
Get File Content
```python
from openai import OpenAI
client = OpenAI(
api_key="sk-...",
base_url="http://0.0.0.0:4000/v1"
)
content = client.files.content(file_id="file-abc123", extra_body={"custom_llm_provider": "openai"})
print("content=", content)
``` ```
</TabItem> </TabItem>
@ -120,7 +179,7 @@ print("file content=", content)
### [OpenAI](#quick-start) ### [OpenAI](#quick-start)
## [Azure OpenAI](./providers/azure#azure-batches-api) ### [Azure OpenAI](./providers/azure#azure-batches-api)
### [Vertex AI](./providers/vertex#batch-apis) ### [Vertex AI](./providers/vertex#batch-apis)

View file

@ -0,0 +1,66 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# SSL Security Settings
If you're in an environment using an older TTS bundle, with an older encryption, follow this guide.
LiteLLM uses HTTPX for network requests, unless otherwise specified.
1. Disable SSL verification
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import litellm
litellm.ssl_verify = False
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```yaml
litellm_settings:
ssl_verify: false
```
</TabItem>
<TabItem value="env_var" label="Environment Variables">
```bash
export SSL_VERIFY="False"
```
</TabItem>
</Tabs>
2. Lower security settings
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import litellm
litellm.ssl_security_level = 1
litellm.ssl_certificate = "/path/to/certificate.pem"
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```yaml
litellm_settings:
ssl_security_level: 1
ssl_certificate: "/path/to/certificate.pem"
```
</TabItem>
<TabItem value="env_var" label="Environment Variables">
```bash
export SSL_SECURITY_LEVEL="1"
export SSL_CERTIFICATE="/path/to/certificate.pem"
```
</TabItem>
</Tabs>

View file

@ -111,8 +111,8 @@ from litellm import completion
import os import os
# auth: run 'gcloud auth application-default' # auth: run 'gcloud auth application-default'
os.environ["VERTEX_PROJECT"] = "hardy-device-386718" os.environ["VERTEXAI_PROJECT"] = "hardy-device-386718"
os.environ["VERTEX_LOCATION"] = "us-central1" os.environ["VERTEXAI_LOCATION"] = "us-central1"
response = completion( response = completion(
model="vertex_ai/gemini-1.5-pro", model="vertex_ai/gemini-1.5-pro",

427
docs/my-website/docs/mcp.md Normal file
View file

@ -0,0 +1,427 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import Image from '@theme/IdealImage';
# /mcp [BETA] - Model Context Protocol
## Expose MCP tools on LiteLLM Proxy Server
This allows you to define tools that can be called by any MCP compatible client. Define your `mcp_servers` with LiteLLM and all your clients can list and call available tools.
<Image
img={require('../img/mcp_2.png')}
style={{width: '100%', display: 'block', margin: '2rem auto'}}
/>
<p style={{textAlign: 'left', color: '#666'}}>
LiteLLM MCP Architecture: Use MCP tools with all LiteLLM supported models
</p>
#### How it works
LiteLLM exposes the following MCP endpoints:
- `/mcp/tools/list` - List all available tools
- `/mcp/tools/call` - Call a specific tool with the provided arguments
When MCP clients connect to LiteLLM they can follow this workflow:
1. Connect to the LiteLLM MCP server
2. List all available tools on LiteLLM
3. Client makes LLM API request with tool call(s)
4. LLM API returns which tools to call and with what arguments
5. MCP client makes MCP tool calls to LiteLLM
6. LiteLLM makes the tool calls to the appropriate MCP server
7. LiteLLM returns the tool call results to the MCP client
#### Usage
#### 1. Define your tools on under `mcp_servers` in your config.yaml file.
LiteLLM allows you to define your tools on the `mcp_servers` section in your config.yaml file. All tools listed here will be available to MCP clients (when they connect to LiteLLM and call `list_tools`).
```yaml title="config.yaml" showLineNumbers
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: sk-xxxxxxx
mcp_servers:
{
"zapier_mcp": {
"url": "https://actions.zapier.com/mcp/sk-akxxxxx/sse"
},
"fetch": {
"url": "http://localhost:8000/sse"
}
}
```
#### 2. Start LiteLLM Gateway
<Tabs>
<TabItem value="docker" label="Docker Run">
```shell title="Docker Run" showLineNumbers
docker run -d \
-p 4000:4000 \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
--name my-app \
-v $(pwd)/my_config.yaml:/app/config.yaml \
my-app:latest \
--config /app/config.yaml \
--port 4000 \
--detailed_debug \
```
</TabItem>
<TabItem value="py" label="litellm pip">
```shell title="litellm pip" showLineNumbers
litellm --config config.yaml --detailed_debug
```
</TabItem>
</Tabs>
#### 3. Make an LLM API request
In this example we will do the following:
1. Use MCP client to list MCP tools on LiteLLM Proxy
2. Use `transform_mcp_tool_to_openai_tool` to convert MCP tools to OpenAI tools
3. Provide the MCP tools to `gpt-4o`
4. Handle tool call from `gpt-4o`
5. Convert OpenAI tool call to MCP tool call
6. Execute tool call on MCP server
```python title="MCP Client List Tools" showLineNumbers
import asyncio
from openai import AsyncOpenAI
from openai.types.chat import ChatCompletionUserMessageParam
from mcp import ClientSession
from mcp.client.sse import sse_client
from litellm.experimental_mcp_client.tools import (
transform_mcp_tool_to_openai_tool,
transform_openai_tool_call_request_to_mcp_tool_call_request,
)
async def main():
# Initialize clients
# point OpenAI client to LiteLLM Proxy
client = AsyncOpenAI(api_key="sk-1234", base_url="http://localhost:4000")
# Point MCP client to LiteLLM Proxy
async with sse_client("http://localhost:4000/mcp/") as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
# 1. List MCP tools on LiteLLM Proxy
mcp_tools = await session.list_tools()
print("List of MCP tools for MCP server:", mcp_tools.tools)
# Create message
messages = [
ChatCompletionUserMessageParam(
content="Send an email about LiteLLM supporting MCP", role="user"
)
]
# 2. Use `transform_mcp_tool_to_openai_tool` to convert MCP tools to OpenAI tools
# Since OpenAI only supports tools in the OpenAI format, we need to convert the MCP tools to the OpenAI format.
openai_tools = [
transform_mcp_tool_to_openai_tool(tool) for tool in mcp_tools.tools
]
# 3. Provide the MCP tools to `gpt-4o`
response = await client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=openai_tools,
tool_choice="auto",
)
# 4. Handle tool call from `gpt-4o`
if response.choices[0].message.tool_calls:
tool_call = response.choices[0].message.tool_calls[0]
if tool_call:
# 5. Convert OpenAI tool call to MCP tool call
# Since MCP servers expect tools in the MCP format, we need to convert the OpenAI tool call to the MCP format.
# This is done using litellm.experimental_mcp_client.tools.transform_openai_tool_call_request_to_mcp_tool_call_request
mcp_call = (
transform_openai_tool_call_request_to_mcp_tool_call_request(
openai_tool=tool_call.model_dump()
)
)
# 6. Execute tool call on MCP server
result = await session.call_tool(
name=mcp_call.name, arguments=mcp_call.arguments
)
print("Result:", result)
# Run it
asyncio.run(main())
```
## LiteLLM Python SDK MCP Bridge
LiteLLM Python SDK acts as a MCP bridge to utilize MCP tools with all LiteLLM supported models. LiteLLM offers the following features for using MCP
- **List** Available MCP Tools: OpenAI clients can view all available MCP tools
- `litellm.experimental_mcp_client.load_mcp_tools` to list all available MCP tools
- **Call** MCP Tools: OpenAI clients can call MCP tools
- `litellm.experimental_mcp_client.call_openai_tool` to call an OpenAI tool on an MCP server
### 1. List Available MCP Tools
In this example we'll use `litellm.experimental_mcp_client.load_mcp_tools` to list all available MCP tools on any MCP server. This method can be used in two ways:
- `format="mcp"` - (default) Return MCP tools
- Returns: `mcp.types.Tool`
- `format="openai"` - Return MCP tools converted to OpenAI API compatible tools. Allows using with OpenAI endpoints.
- Returns: `openai.types.chat.ChatCompletionToolParam`
<Tabs>
<TabItem value="sdk" label="LiteLLM Python SDK">
```python title="MCP Client List Tools" showLineNumbers
# Create server parameters for stdio connection
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import os
import litellm
from litellm import experimental_mcp_client
server_params = StdioServerParameters(
command="python3",
# Make sure to update to the full absolute path to your mcp_server.py file
args=["./mcp_server.py"],
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize the connection
await session.initialize()
# Get tools
tools = await experimental_mcp_client.load_mcp_tools(session=session, format="openai")
print("MCP TOOLS: ", tools)
messages = [{"role": "user", "content": "what's (3 + 5)"}]
llm_response = await litellm.acompletion(
model="gpt-4o",
api_key=os.getenv("OPENAI_API_KEY"),
messages=messages,
tools=tools,
)
print("LLM RESPONSE: ", json.dumps(llm_response, indent=4, default=str))
```
</TabItem>
<TabItem value="openai" label="OpenAI SDK + LiteLLM Proxy">
In this example we'll walk through how you can use the OpenAI SDK pointed to the LiteLLM proxy to call MCP tools. The key difference here is we use the OpenAI SDK to make the LLM API request
```python title="MCP Client List Tools" showLineNumbers
# Create server parameters for stdio connection
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import os
from openai import OpenAI
from litellm import experimental_mcp_client
server_params = StdioServerParameters(
command="python3",
# Make sure to update to the full absolute path to your mcp_server.py file
args=["./mcp_server.py"],
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize the connection
await session.initialize()
# Get tools using litellm mcp client
tools = await experimental_mcp_client.load_mcp_tools(session=session, format="openai")
print("MCP TOOLS: ", tools)
# Use OpenAI SDK pointed to LiteLLM proxy
client = OpenAI(
api_key="your-api-key", # Your LiteLLM proxy API key
base_url="http://localhost:4000" # Your LiteLLM proxy URL
)
messages = [{"role": "user", "content": "what's (3 + 5)"}]
llm_response = client.chat.completions.create(
model="gpt-4",
messages=messages,
tools=tools
)
print("LLM RESPONSE: ", llm_response)
```
</TabItem>
</Tabs>
### 2. List and Call MCP Tools
In this example we'll use
- `litellm.experimental_mcp_client.load_mcp_tools` to list all available MCP tools on any MCP server
- `litellm.experimental_mcp_client.call_openai_tool` to call an OpenAI tool on an MCP server
The first llm response returns a list of OpenAI tools. We take the first tool call from the LLM response and pass it to `litellm.experimental_mcp_client.call_openai_tool` to call the tool on the MCP server.
#### How `litellm.experimental_mcp_client.call_openai_tool` works
- Accepts an OpenAI Tool Call from the LLM response
- Converts the OpenAI Tool Call to an MCP Tool
- Calls the MCP Tool on the MCP server
- Returns the result of the MCP Tool call
<Tabs>
<TabItem value="sdk" label="LiteLLM Python SDK">
```python title="MCP Client List and Call Tools" showLineNumbers
# Create server parameters for stdio connection
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import os
import litellm
from litellm import experimental_mcp_client
server_params = StdioServerParameters(
command="python3",
# Make sure to update to the full absolute path to your mcp_server.py file
args=["./mcp_server.py"],
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize the connection
await session.initialize()
# Get tools
tools = await experimental_mcp_client.load_mcp_tools(session=session, format="openai")
print("MCP TOOLS: ", tools)
messages = [{"role": "user", "content": "what's (3 + 5)"}]
llm_response = await litellm.acompletion(
model="gpt-4o",
api_key=os.getenv("OPENAI_API_KEY"),
messages=messages,
tools=tools,
)
print("LLM RESPONSE: ", json.dumps(llm_response, indent=4, default=str))
openai_tool = llm_response["choices"][0]["message"]["tool_calls"][0]
# Call the tool using MCP client
call_result = await experimental_mcp_client.call_openai_tool(
session=session,
openai_tool=openai_tool,
)
print("MCP TOOL CALL RESULT: ", call_result)
# send the tool result to the LLM
messages.append(llm_response["choices"][0]["message"])
messages.append(
{
"role": "tool",
"content": str(call_result.content[0].text),
"tool_call_id": openai_tool["id"],
}
)
print("final messages with tool result: ", messages)
llm_response = await litellm.acompletion(
model="gpt-4o",
api_key=os.getenv("OPENAI_API_KEY"),
messages=messages,
tools=tools,
)
print(
"FINAL LLM RESPONSE: ", json.dumps(llm_response, indent=4, default=str)
)
```
</TabItem>
<TabItem value="proxy" label="OpenAI SDK + LiteLLM Proxy">
In this example we'll walk through how you can use the OpenAI SDK pointed to the LiteLLM proxy to call MCP tools. The key difference here is we use the OpenAI SDK to make the LLM API request
```python title="MCP Client with OpenAI SDK" showLineNumbers
# Create server parameters for stdio connection
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import os
from openai import OpenAI
from litellm import experimental_mcp_client
server_params = StdioServerParameters(
command="python3",
# Make sure to update to the full absolute path to your mcp_server.py file
args=["./mcp_server.py"],
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize the connection
await session.initialize()
# Get tools using litellm mcp client
tools = await experimental_mcp_client.load_mcp_tools(session=session, format="openai")
print("MCP TOOLS: ", tools)
# Use OpenAI SDK pointed to LiteLLM proxy
client = OpenAI(
api_key="your-api-key", # Your LiteLLM proxy API key
base_url="http://localhost:8000" # Your LiteLLM proxy URL
)
messages = [{"role": "user", "content": "what's (3 + 5)"}]
llm_response = client.chat.completions.create(
model="gpt-4",
messages=messages,
tools=tools
)
print("LLM RESPONSE: ", llm_response)
# Get the first tool call
tool_call = llm_response.choices[0].message.tool_calls[0]
# Call the tool using MCP client
call_result = await experimental_mcp_client.call_openai_tool(
session=session,
openai_tool=tool_call.model_dump(),
)
print("MCP TOOL CALL RESULT: ", call_result)
# Send the tool result back to the LLM
messages.append(llm_response.choices[0].message.model_dump())
messages.append({
"role": "tool",
"content": str(call_result.content[0].text),
"tool_call_id": tool_call.id,
})
final_response = client.chat.completions.create(
model="gpt-4",
messages=messages,
tools=tools
)
print("FINAL RESPONSE: ", final_response)
```
</TabItem>
</Tabs>

View file

@ -0,0 +1,83 @@
# 🖇️ AgentOps - LLM Observability Platform
:::tip
This is community maintained. Please make an issue if you run into a bug:
https://github.com/BerriAI/litellm
:::
[AgentOps](https://docs.agentops.ai) is an observability platform that enables tracing and monitoring of LLM calls, providing detailed insights into your AI operations.
## Using AgentOps with LiteLLM
LiteLLM provides `success_callbacks` and `failure_callbacks`, allowing you to easily integrate AgentOps for comprehensive tracing and monitoring of your LLM operations.
### Integration
Use just a few lines of code to instantly trace your responses **across all providers** with AgentOps:
Get your AgentOps API Keys from https://app.agentops.ai/
```python
import litellm
# Configure LiteLLM to use AgentOps
litellm.success_callback = ["agentops"]
# Make your LLM calls as usual
response = litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello, how are you?"}],
)
```
Complete Code:
```python
import os
from litellm import completion
# Set env variables
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["AGENTOPS_API_KEY"] = "your-agentops-api-key"
# Configure LiteLLM to use AgentOps
litellm.success_callback = ["agentops"]
# OpenAI call
response = completion(
model="gpt-4",
messages=[{"role": "user", "content": "Hi 👋 - I'm OpenAI"}],
)
print(response)
```
### Configuration Options
The AgentOps integration can be configured through environment variables:
- `AGENTOPS_API_KEY` (str, optional): Your AgentOps API key
- `AGENTOPS_ENVIRONMENT` (str, optional): Deployment environment (defaults to "production")
- `AGENTOPS_SERVICE_NAME` (str, optional): Service name for tracing (defaults to "agentops")
### Advanced Usage
You can configure additional settings through environment variables:
```python
import os
# Configure AgentOps settings
os.environ["AGENTOPS_API_KEY"] = "your-agentops-api-key"
os.environ["AGENTOPS_ENVIRONMENT"] = "staging"
os.environ["AGENTOPS_SERVICE_NAME"] = "my-service"
# Enable AgentOps tracing
litellm.success_callback = ["agentops"]
```
### Support
For issues or questions, please refer to:
- [AgentOps Documentation](https://docs.agentops.ai)
- [LiteLLM Documentation](https://docs.litellm.ai)

View file

@ -1,4 +1,7 @@
import Image from '@theme/IdealImage'; import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Arize AI # Arize AI
@ -11,6 +14,8 @@ https://github.com/BerriAI/litellm
::: :::
<Image img={require('../../img/arize.png')} />
## Pre-Requisites ## Pre-Requisites
@ -24,7 +29,9 @@ You can also use the instrumentor option instead of the callback, which you can
```python ```python
litellm.callbacks = ["arize"] litellm.callbacks = ["arize"]
``` ```
```python ```python
import litellm import litellm
import os import os
@ -48,7 +55,7 @@ response = litellm.completion(
### Using with LiteLLM Proxy ### Using with LiteLLM Proxy
1. Setup config.yaml
```yaml ```yaml
model_list: model_list:
- model_name: gpt-4 - model_name: gpt-4
@ -60,13 +67,134 @@ model_list:
litellm_settings: litellm_settings:
callbacks: ["arize"] callbacks: ["arize"]
general_settings:
master_key: "sk-1234" # can also be set as an environment variable
environment_variables: environment_variables:
ARIZE_SPACE_KEY: "d0*****" ARIZE_SPACE_KEY: "d0*****"
ARIZE_API_KEY: "141a****" ARIZE_API_KEY: "141a****"
ARIZE_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize GRPC api endpoint ARIZE_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize GRPC api endpoint
ARIZE_HTTP_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize HTTP api endpoint. Set either this or ARIZE_ENDPOINT ARIZE_HTTP_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize HTTP api endpoint. Set either this or ARIZE_ENDPOINT or Neither (defaults to https://otlp.arize.com/v1 on grpc)
``` ```
2. Start the proxy
```bash
litellm --config config.yaml
```
3. Test it!
```bash
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{ "model": "gpt-4", "messages": [{"role": "user", "content": "Hi 👋 - i'm openai"}]}'
```
## Pass Arize Space/Key per-request
Supported parameters:
- `arize_api_key`
- `arize_space_key`
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import litellm
import os
# LLM API Keys
os.environ['OPENAI_API_KEY']=""
# set arize as a callback, litellm will send the data to arize
litellm.callbacks = ["arize"]
# openai call
response = litellm.completion(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "Hi 👋 - i'm openai"}
],
arize_api_key=os.getenv("ARIZE_SPACE_2_API_KEY"),
arize_space_key=os.getenv("ARIZE_SPACE_2_KEY"),
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gpt-4
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
litellm_settings:
callbacks: ["arize"]
general_settings:
master_key: "sk-1234" # can also be set as an environment variable
```
2. Start the proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
<Tabs>
<TabItem value="curl" label="CURL">
```bash
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "Hi 👋 - i'm openai"}],
"arize_api_key": "ARIZE_SPACE_2_API_KEY",
"arize_space_key": "ARIZE_SPACE_2_KEY"
}'
```
</TabItem>
<TabItem value="openai_python" label="OpenAI Python">
```python
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"arize_api_key": "ARIZE_SPACE_2_API_KEY",
"arize_space_key": "ARIZE_SPACE_2_KEY"
}
)
print(response)
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Support & Talk to Founders ## Support & Talk to Founders
- [Schedule Demo 👋](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version) - [Schedule Demo 👋](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version)

View file

@ -4,7 +4,7 @@ Pass-through endpoints for Cohere - call provider-specific endpoint, in native f
| Feature | Supported | Notes | | Feature | Supported | Notes |
|-------|-------|-------| |-------|-------|-------|
| Cost Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) | | Cost Tracking | ✅ | Supported for `/v1/chat`, and `/v2/chat` |
| Logging | ✅ | works across all integrations | | Logging | ✅ | works across all integrations |
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) | | End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Streaming | ✅ | | | Streaming | ✅ | |

View file

@ -0,0 +1,217 @@
# Mistral
Pass-through endpoints for Mistral - call provider-specific endpoint, in native format (no translation).
| Feature | Supported | Notes |
|-------|-------|-------|
| Cost Tracking | ❌ | Not supported |
| Logging | ✅ | works across all integrations |
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Streaming | ✅ | |
Just replace `https://api.mistral.ai/v1` with `LITELLM_PROXY_BASE_URL/mistral` 🚀
#### **Example Usage**
```bash
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/ocr' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "mistral-ocr-latest",
"document": {
"type": "image_url",
"image_url": "https://raw.githubusercontent.com/mistralai/cookbook/refs/heads/main/mistral/ocr/receipt.png"
}
}'
```
Supports **ALL** Mistral Endpoints (including streaming).
## Quick Start
Let's call the Mistral [`/chat/completions` endpoint](https://docs.mistral.ai/api/#tag/chat/operation/chat_completion_v1_chat_completions_post)
1. Add MISTRAL_API_KEY to your environment
```bash
export MISTRAL_API_KEY="sk-1234"
```
2. Start LiteLLM Proxy
```bash
litellm
# RUNNING on http://0.0.0.0:4000
```
3. Test it!
Let's call the Mistral `/ocr` endpoint
```bash
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/ocr' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "mistral-ocr-latest",
"document": {
"type": "image_url",
"image_url": "https://raw.githubusercontent.com/mistralai/cookbook/refs/heads/main/mistral/ocr/receipt.png"
}
}'
```
## Examples
Anything after `http://0.0.0.0:4000/mistral` is treated as a provider-specific route, and handled accordingly.
Key Changes:
| **Original Endpoint** | **Replace With** |
|------------------------------------------------------|-----------------------------------|
| `https://api.mistral.ai/v1` | `http://0.0.0.0:4000/mistral` (LITELLM_PROXY_BASE_URL="http://0.0.0.0:4000") |
| `bearer $MISTRAL_API_KEY` | `bearer anything` (use `bearer LITELLM_VIRTUAL_KEY` if Virtual Keys are setup on proxy) |
### **Example 1: OCR endpoint**
#### LiteLLM Proxy Call
```bash
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/ocr' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer $LITELLM_API_KEY' \
-d '{
"model": "mistral-ocr-latest",
"document": {
"type": "image_url",
"image_url": "https://raw.githubusercontent.com/mistralai/cookbook/refs/heads/main/mistral/ocr/receipt.png"
}
}'
```
#### Direct Mistral API Call
```bash
curl https://api.mistral.ai/v1/ocr \
-H "Content-Type: application/json" \
-H "Authorization: Bearer ${MISTRAL_API_KEY}" \
-d '{
"model": "mistral-ocr-latest",
"document": {
"type": "document_url",
"document_url": "https://arxiv.org/pdf/2201.04234"
},
"include_image_base64": true
}'
```
### **Example 2: Chat API**
#### LiteLLM Proxy Call
```bash
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
-d '{
"messages": [
{
"role": "user",
"content": "I am going to Paris, what should I see?"
}
],
"max_tokens": 2048,
"temperature": 0.8,
"top_p": 0.1,
"model": "mistral-large-latest",
}'
```
#### Direct Mistral API Call
```bash
curl -L -X POST 'https://api.mistral.ai/v1/chat/completions' \
-H 'Content-Type: application/json' \
-d '{
"messages": [
{
"role": "user",
"content": "I am going to Paris, what should I see?"
}
],
"max_tokens": 2048,
"temperature": 0.8,
"top_p": 0.1,
"model": "mistral-large-latest",
}'
```
## Advanced - Use with Virtual Keys
Pre-requisites
- [Setup proxy with DB](../proxy/virtual_keys.md#setup)
Use this, to avoid giving developers the raw Mistral API key, but still letting them use Mistral endpoints.
### Usage
1. Setup environment
```bash
export DATABASE_URL=""
export LITELLM_MASTER_KEY=""
export MISTRAL_API_BASE=""
```
```bash
litellm
# RUNNING on http://0.0.0.0:4000
```
2. Generate virtual key
```bash
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{}'
```
Expected Response
```bash
{
...
"key": "sk-1234ewknldferwedojwojw"
}
```
3. Test it!
```bash
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234ewknldferwedojwojw' \
--data '{
"messages": [
{
"role": "user",
"content": "I am going to Paris, what should I see?"
}
],
"max_tokens": 2048,
"temperature": 0.8,
"top_p": 0.1,
"model": "qwen2.5-7b-instruct",
}'
```

View file

@ -13,8 +13,102 @@ Pass-through endpoints for Vertex AI - call provider-specific endpoint, in nativ
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) | | End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Streaming | ✅ | | | Streaming | ✅ | |
## Supported Endpoints
LiteLLM supports 2 vertex ai passthrough routes:
1. `/vertex_ai` → routes to `https://{vertex_location}-aiplatform.googleapis.com/`
2. `/vertex_ai/discovery` → routes to [`https://discoveryengine.googleapis.com`](https://discoveryengine.googleapis.com/)
## How to use
Just replace `https://REGION-aiplatform.googleapis.com` with `LITELLM_PROXY_BASE_URL/vertex_ai` Just replace `https://REGION-aiplatform.googleapis.com` with `LITELLM_PROXY_BASE_URL/vertex_ai`
LiteLLM supports 3 flows for calling Vertex AI endpoints via pass-through:
1. **Specific Credentials**: Admin sets passthrough credentials for a specific project/region.
2. **Default Credentials**: Admin sets default credentials.
3. **Client-Side Credentials**: User can send client-side credentials through to Vertex AI (default behavior - if no default or mapped credentials are found, the request is passed through directly).
## Example Usage
<Tabs>
<TabItem value="specific_credentials" label="Specific Project/Region">
```yaml
model_list:
- model_name: gemini-1.0-pro
litellm_params:
model: vertex_ai/gemini-1.0-pro
vertex_project: adroit-crow-413218
vertex_region: us-central1
vertex_credentials: /path/to/credentials.json
use_in_pass_through: true # 👈 KEY CHANGE
```
</TabItem>
<TabItem value="default_credentials" label="Default Credentials">
<Tabs>
<TabItem value="yaml" label="Set in config.yaml">
```yaml
default_vertex_config:
vertex_project: adroit-crow-413218
vertex_region: us-central1
vertex_credentials: /path/to/credentials.json
```
</TabItem>
<TabItem value="env_var" label="Set in environment variables">
```bash
export DEFAULT_VERTEXAI_PROJECT="adroit-crow-413218"
export DEFAULT_VERTEXAI_LOCATION="us-central1"
export DEFAULT_GOOGLE_APPLICATION_CREDENTIALS="/path/to/credentials.json"
```
</TabItem>
</Tabs>
</TabItem>
<TabItem value="client_credentials" label="Client Credentials">
Try Gemini 2.0 Flash (curl)
```
MODEL_ID="gemini-2.0-flash-001"
PROJECT_ID="YOUR_PROJECT_ID"
```
```bash
curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth application-default print-access-token)" \
-H "Content-Type: application/json" \
"${LITELLM_PROXY_BASE_URL}/vertex_ai/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/${MODEL_ID}:streamGenerateContent" -d \
$'{
"contents": {
"role": "user",
"parts": [
{
"fileData": {
"mimeType": "image/png",
"fileUri": "gs://generativeai-downloads/images/scones.jpg"
}
},
{
"text": "Describe this picture."
}
]
}
}'
```
</TabItem>
</Tabs>
#### **Example Usage** #### **Example Usage**
@ -22,7 +116,7 @@ Just replace `https://REGION-aiplatform.googleapis.com` with `LITELLM_PROXY_BASE
<TabItem value="curl" label="curl"> <TabItem value="curl" label="curl">
```bash ```bash
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.0-pro:generateContent \ curl http://localhost:4000/vertex_ai/vertex_ai/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/${MODEL_ID}:generateContent \
-H "Content-Type: application/json" \ -H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \ -H "x-litellm-api-key: Bearer sk-1234" \
-d '{ -d '{
@ -101,7 +195,7 @@ litellm
Let's call the Google AI Studio token counting endpoint Let's call the Google AI Studio token counting endpoint
```bash ```bash
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.0-pro:generateContent \ curl http://localhost:4000/vertex-ai/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \ -H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \ -H "Authorization: Bearer sk-1234" \
-d '{ -d '{
@ -140,7 +234,7 @@ LiteLLM Proxy Server supports two methods of authentication to Vertex AI:
```shell ```shell
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.5-flash-001:generateContent \ curl http://localhost:4000/vertex_ai/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/gemini-1.5-flash-001:generateContent \
-H "Content-Type: application/json" \ -H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \ -H "x-litellm-api-key: Bearer sk-1234" \
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}' -d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
@ -152,7 +246,7 @@ curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.5-flash-0
```shell ```shell
curl http://localhost:4000/vertex_ai/publishers/google/models/textembedding-gecko@001:predict \ curl http://localhost:4000/vertex_ai/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/textembedding-gecko@001:predict \
-H "Content-Type: application/json" \ -H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \ -H "x-litellm-api-key: Bearer sk-1234" \
-d '{"instances":[{"content": "gm"}]}' -d '{"instances":[{"content": "gm"}]}'
@ -162,7 +256,7 @@ curl http://localhost:4000/vertex_ai/publishers/google/models/textembedding-geck
### Imagen API ### Imagen API
```shell ```shell
curl http://localhost:4000/vertex_ai/publishers/google/models/imagen-3.0-generate-001:predict \ curl http://localhost:4000/vertex_ai/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/imagen-3.0-generate-001:predict \
-H "Content-Type: application/json" \ -H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \ -H "x-litellm-api-key: Bearer sk-1234" \
-d '{"instances":[{"prompt": "make an otter"}], "parameters": {"sampleCount": 1}}' -d '{"instances":[{"prompt": "make an otter"}], "parameters": {"sampleCount": 1}}'
@ -172,7 +266,7 @@ curl http://localhost:4000/vertex_ai/publishers/google/models/imagen-3.0-generat
### Count Tokens API ### Count Tokens API
```shell ```shell
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.5-flash-001:countTokens \ curl http://localhost:4000/vertex_ai/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/gemini-1.5-flash-001:countTokens \
-H "Content-Type: application/json" \ -H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \ -H "x-litellm-api-key: Bearer sk-1234" \
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}' -d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
@ -183,7 +277,7 @@ Create Fine Tuning Job
```shell ```shell
curl http://localhost:4000/vertex_ai/tuningJobs \ curl http://localhost:4000/vertex_ai/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/gemini-1.5-flash-001:tuningJobs \
-H "Content-Type: application/json" \ -H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \ -H "x-litellm-api-key: Bearer sk-1234" \
-d '{ -d '{
@ -243,7 +337,7 @@ Expected Response
```bash ```bash
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.0-pro:generateContent \ curl http://localhost:4000/vertex_ai/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \ -H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \ -H "x-litellm-api-key: Bearer sk-1234" \
-d '{ -d '{
@ -268,7 +362,7 @@ tags: ["vertex-js-sdk", "pass-through-endpoint"]
<TabItem value="curl" label="curl"> <TabItem value="curl" label="curl">
```bash ```bash
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.0-pro:generateContent \ curl http://localhost:4000/vertex_ai/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \ -H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \ -H "x-litellm-api-key: Bearer sk-1234" \
-H "tags: vertex-js-sdk,pass-through-endpoint" \ -H "tags: vertex-js-sdk,pass-through-endpoint" \

View file

@ -0,0 +1,185 @@
# VLLM
Pass-through endpoints for VLLM - call provider-specific endpoint, in native format (no translation).
| Feature | Supported | Notes |
|-------|-------|-------|
| Cost Tracking | ❌ | Not supported |
| Logging | ✅ | works across all integrations |
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
| Streaming | ✅ | |
Just replace `https://my-vllm-server.com` with `LITELLM_PROXY_BASE_URL/vllm` 🚀
#### **Example Usage**
```bash
curl -L -X GET 'http://0.0.0.0:4000/vllm/metrics' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
```
Supports **ALL** VLLM Endpoints (including streaming).
## Quick Start
Let's call the VLLM [`/metrics` endpoint](https://vllm.readthedocs.io/en/latest/api_reference/api_reference.html)
1. Add HOSTED VLLM API BASE to your environment
```bash
export HOSTED_VLLM_API_BASE="https://my-vllm-server.com"
```
2. Start LiteLLM Proxy
```bash
litellm
# RUNNING on http://0.0.0.0:4000
```
3. Test it!
Let's call the VLLM `/metrics` endpoint
```bash
curl -L -X GET 'http://0.0.0.0:4000/vllm/metrics' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
```
## Examples
Anything after `http://0.0.0.0:4000/vllm` is treated as a provider-specific route, and handled accordingly.
Key Changes:
| **Original Endpoint** | **Replace With** |
|------------------------------------------------------|-----------------------------------|
| `https://my-vllm-server.com` | `http://0.0.0.0:4000/vllm` (LITELLM_PROXY_BASE_URL="http://0.0.0.0:4000") |
| `bearer $VLLM_API_KEY` | `bearer anything` (use `bearer LITELLM_VIRTUAL_KEY` if Virtual Keys are setup on proxy) |
### **Example 1: Metrics endpoint**
#### LiteLLM Proxy Call
```bash
curl -L -X GET 'http://0.0.0.0:4000/vllm/metrics' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
```
#### Direct VLLM API Call
```bash
curl -L -X GET 'https://my-vllm-server.com/metrics' \
-H 'Content-Type: application/json' \
```
### **Example 2: Chat API**
#### LiteLLM Proxy Call
```bash
curl -L -X POST 'http://0.0.0.0:4000/vllm/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
-d '{
"messages": [
{
"role": "user",
"content": "I am going to Paris, what should I see?"
}
],
"max_tokens": 2048,
"temperature": 0.8,
"top_p": 0.1,
"model": "qwen2.5-7b-instruct",
}'
```
#### Direct VLLM API Call
```bash
curl -L -X POST 'https://my-vllm-server.com/chat/completions' \
-H 'Content-Type: application/json' \
-d '{
"messages": [
{
"role": "user",
"content": "I am going to Paris, what should I see?"
}
],
"max_tokens": 2048,
"temperature": 0.8,
"top_p": 0.1,
"model": "qwen2.5-7b-instruct",
}'
```
## Advanced - Use with Virtual Keys
Pre-requisites
- [Setup proxy with DB](../proxy/virtual_keys.md#setup)
Use this, to avoid giving developers the raw Cohere API key, but still letting them use Cohere endpoints.
### Usage
1. Setup environment
```bash
export DATABASE_URL=""
export LITELLM_MASTER_KEY=""
export HOSTED_VLLM_API_BASE=""
```
```bash
litellm
# RUNNING on http://0.0.0.0:4000
```
2. Generate virtual key
```bash
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{}'
```
Expected Response
```bash
{
...
"key": "sk-1234ewknldferwedojwojw"
}
```
3. Test it!
```bash
curl -L -X POST 'http://0.0.0.0:4000/vllm/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234ewknldferwedojwojw' \
--data '{
"messages": [
{
"role": "user",
"content": "I am going to Paris, what should I see?"
}
],
"max_tokens": 2048,
"temperature": 0.8,
"top_p": 0.1,
"model": "qwen2.5-7b-instruct",
}'
```

View file

@ -821,6 +821,14 @@ print(f"\nResponse: {resp}")
## Usage - Thinking / `reasoning_content` ## Usage - Thinking / `reasoning_content`
LiteLLM translates OpenAI's `reasoning_effort` to Anthropic's `thinking` parameter. [Code](https://github.com/BerriAI/litellm/blob/23051d89dd3611a81617d84277059cd88b2df511/litellm/llms/anthropic/chat/transformation.py#L298)
| reasoning_effort | thinking |
| ---------------- | -------- |
| "low" | "budget_tokens": 1024 |
| "medium" | "budget_tokens": 2048 |
| "high" | "budget_tokens": 4096 |
<Tabs> <Tabs>
<TabItem value="sdk" label="SDK"> <TabItem value="sdk" label="SDK">
@ -830,7 +838,7 @@ from litellm import completion
resp = completion( resp = completion(
model="anthropic/claude-3-7-sonnet-20250219", model="anthropic/claude-3-7-sonnet-20250219",
messages=[{"role": "user", "content": "What is the capital of France?"}], messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024}, reasoning_effort="low",
) )
``` ```
@ -863,7 +871,7 @@ curl http://0.0.0.0:4000/v1/chat/completions \
-d '{ -d '{
"model": "claude-3-7-sonnet-20250219", "model": "claude-3-7-sonnet-20250219",
"messages": [{"role": "user", "content": "What is the capital of France?"}], "messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024} "reasoning_effort": "low"
}' }'
``` ```
@ -927,6 +935,44 @@ ModelResponse(
) )
``` ```
### Pass `thinking` to Anthropic models
You can also pass the `thinking` parameter to Anthropic models.
You can also pass the `thinking` parameter to Anthropic models.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
response = litellm.completion(
model="anthropic/claude-3-7-sonnet-20250219",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "anthropic/claude-3-7-sonnet-20250219",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
```
</TabItem>
</Tabs>
## **Passing Extra Headers to Anthropic API** ## **Passing Extra Headers to Anthropic API**
Pass `extra_headers: dict` to `litellm.completion` Pass `extra_headers: dict` to `litellm.completion`
@ -1035,8 +1081,10 @@ response = completion(
"content": [ "content": [
{"type": "text", "text": "You are a very professional document summarization specialist. Please summarize the given document."}, {"type": "text", "text": "You are a very professional document summarization specialist. Please summarize the given document."},
{ {
"type": "image_url", "type": "file",
"image_url": f"data:application/pdf;base64,{encoded_file}", # 👈 PDF "file": {
"file_data": f"data:application/pdf;base64,{encoded_file}", # 👈 PDF
}
}, },
], ],
} }
@ -1081,8 +1129,10 @@ curl http://0.0.0.0:4000/v1/chat/completions \
"text": "You are a very professional document summarization specialist. Please summarize the given document" "text": "You are a very professional document summarization specialist. Please summarize the given document"
}, },
{ {
"type": "image_url", "type": "file",
"image_url": "data:application/pdf;base64,{encoded_file}" # 👈 PDF "file": {
"file_data": f"data:application/pdf;base64,{encoded_file}", # 👈 PDF
}
} }
} }
] ]

View file

@ -291,14 +291,15 @@ response = completion(
) )
``` ```
## Azure O1 Models ## O-Series Models
| Model Name | Function Call | Azure OpenAI O-Series models are supported on LiteLLM.
|---------------------|----------------------------------------------------|
| o1-mini | `response = completion(model="azure/<your deployment name>", messages=messages)` |
| o1-preview | `response = completion(model="azure/<your deployment name>", messages=messages)` |
Set `litellm.enable_preview_features = True` to use Azure O1 Models with streaming support. LiteLLM routes any deployment name with `o1` or `o3` in the model name, to the O-Series [transformation](https://github.com/BerriAI/litellm/blob/91ed05df2962b8eee8492374b048d27cc144d08c/litellm/llms/azure/chat/o1_transformation.py#L4) logic.
To set this explicitly, set `model` to `azure/o_series/<your-deployment-name>`.
**Automatic Routing**
<Tabs> <Tabs>
<TabItem value="sdk" label="SDK"> <TabItem value="sdk" label="SDK">
@ -306,32 +307,88 @@ Set `litellm.enable_preview_features = True` to use Azure O1 Models with streami
```python ```python
import litellm import litellm
litellm.enable_preview_features = True # 👈 KEY CHANGE litellm.completion(model="azure/my-o3-deployment", messages=[{"role": "user", "content": "Hello, world!"}]) # 👈 Note: 'o3' in the deployment name
response = litellm.completion(
model="azure/<your deployment name>",
messages=[{"role": "user", "content": "What is the weather like in Boston?"}],
stream=True
)
for chunk in response:
print(chunk)
``` ```
</TabItem> </TabItem>
<TabItem value="proxy" label="Proxy"> <TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml ```yaml
model_list: model_list:
- model_name: o1-mini - model_name: o3-mini
litellm_params: litellm_params:
model: azure/o1-mini model: azure/o3-model
api_base: "os.environ/AZURE_API_BASE" api_base: os.environ/AZURE_API_BASE
api_key: "os.environ/AZURE_API_KEY" api_key: os.environ/AZURE_API_KEY
api_version: "os.environ/AZURE_API_VERSION" ```
litellm_settings: </TabItem>
enable_preview_features: true # 👈 KEY CHANGE </Tabs>
**Explicit Routing**
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import litellm
litellm.completion(model="azure/o_series/my-random-deployment-name", messages=[{"role": "user", "content": "Hello, world!"}]) # 👈 Note: 'o_series/' in the deployment name
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```yaml
model_list:
- model_name: o3-mini
litellm_params:
model: azure/o_series/my-random-deployment-name
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
```
</TabItem>
</Tabs>
## Azure Audio Model
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
response = completion(
model="azure/azure-openai-4o-audio",
messages=[
{
"role": "user",
"content": "I want to try out speech to speech"
}
],
modalities=["text","audio"],
audio={"voice": "alloy", "format": "wav"}
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: azure-openai-4o-audio
litellm_params:
model: azure/azure-openai-4o-audio
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: os.environ/AZURE_API_VERSION
``` ```
2. Start proxy 2. Start proxy
@ -340,26 +397,22 @@ litellm_settings:
litellm --config /path/to/config.yaml litellm --config /path/to/config.yaml
``` ```
3. Test it 3. Test it!
```python
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(model="o1-mini", messages = [ ```bash
{ curl http://localhost:4000/v1/chat/completions \
"role": "user", -H "Authorization: Bearer $LITELLM_API_KEY" \
"content": "this is a test request, write a short poem" -H "Content-Type: application/json" \
} -d '{
], "model": "azure-openai-4o-audio",
stream=True) "messages": [{"role": "user", "content": "I want to try out speech to speech"}],
"modalities": ["text","audio"],
for chunk in response: "audio": {"voice": "alloy", "format": "wav"}
print(chunk) }'
``` ```
</TabItem> </TabItem>
</Tabs> </Tabs>
@ -425,7 +478,7 @@ response.stream_to_file(speech_file_path)
## **Authentication** ## **Authentication**
### Entrata ID - use `azure_ad_token` ### Entra ID - use `azure_ad_token`
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make `litellm.completion()` calls This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make `litellm.completion()` calls
@ -492,7 +545,7 @@ model_list:
</TabItem> </TabItem>
</Tabs> </Tabs>
### Entrata ID - use tenant_id, client_id, client_secret ### Entra ID - use tenant_id, client_id, client_secret
Here is an example of setting up `tenant_id`, `client_id`, `client_secret` in your litellm proxy `config.yaml` Here is an example of setting up `tenant_id`, `client_id`, `client_secret` in your litellm proxy `config.yaml`
```yaml ```yaml
@ -528,7 +581,7 @@ Example video of using `tenant_id`, `client_id`, `client_secret` with LiteLLM Pr
<iframe width="840" height="500" src="https://www.loom.com/embed/70d3f219ee7f4e5d84778b7f17bba506?sid=04b8ff29-485f-4cb8-929e-6b392722f36d" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe> <iframe width="840" height="500" src="https://www.loom.com/embed/70d3f219ee7f4e5d84778b7f17bba506?sid=04b8ff29-485f-4cb8-929e-6b392722f36d" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe>
### Entrata ID - use client_id, username, password ### Entra ID - use client_id, username, password
Here is an example of setting up `client_id`, `azure_username`, `azure_password` in your litellm proxy `config.yaml` Here is an example of setting up `client_id`, `azure_username`, `azure_password` in your litellm proxy `config.yaml`
```yaml ```yaml
@ -948,60 +1001,124 @@ Expected Response:
{"data":[{"id":"batch_R3V...} {"data":[{"id":"batch_R3V...}
``` ```
## O-Series Models
Azure OpenAI O-Series models are supported on LiteLLM. ## **Azure Responses API**
LiteLLM routes any deployment name with `o1` or `o3` in the model name, to the O-Series [transformation](https://github.com/BerriAI/litellm/blob/91ed05df2962b8eee8492374b048d27cc144d08c/litellm/llms/azure/chat/o1_transformation.py#L4) logic. | Property | Details |
|-------|-------|
| Description | Azure OpenAI Responses API |
| `custom_llm_provider` on LiteLLM | `azure/` |
| Supported Operations | `/v1/responses`|
| Azure OpenAI Responses API | [Azure OpenAI Responses API ↗](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/responses?tabs=python-secure) |
| Cost Tracking, Logging Support | ✅ LiteLLM will log, track cost for Responses API Requests |
| Supported OpenAI Params | ✅ All OpenAI params are supported, [See here](https://github.com/BerriAI/litellm/blob/0717369ae6969882d149933da48eeb8ab0e691bd/litellm/llms/openai/responses/transformation.py#L23) |
To set this explicitly, set `model` to `azure/o_series/<your-deployment-name>`. ## Usage
**Automatic Routing** ## Create a model response
<Tabs> <Tabs>
<TabItem value="sdk" label="SDK"> <TabItem value="litellm-sdk" label="LiteLLM SDK">
```python #### Non-streaming
```python showLineNumbers title="Azure Responses API"
import litellm import litellm
litellm.completion(model="azure/my-o3-deployment", messages=[{"role": "user", "content": "Hello, world!"}]) # 👈 Note: 'o3' in the deployment name # Non-streaming response
``` response = litellm.responses(
</TabItem> model="azure/o1-pro",
<TabItem value="proxy" label="PROXY"> input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100,
api_key=os.getenv("AZURE_RESPONSES_OPENAI_API_KEY"),
api_base="https://litellm8397336933.openai.azure.com/",
api_version="2023-03-15-preview",
)
```yaml print(response)
model_list:
- model_name: o3-mini
litellm_params:
model: azure/o3-model
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
``` ```
</TabItem> #### Streaming
</Tabs> ```python showLineNumbers title="Azure Responses API"
**Explicit Routing**
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import litellm import litellm
litellm.completion(model="azure/o_series/my-random-deployment-name", messages=[{"role": "user", "content": "Hello, world!"}]) # 👈 Note: 'o_series/' in the deployment name # Streaming response
``` response = litellm.responses(
</TabItem> model="azure/o1-pro",
<TabItem value="proxy" label="PROXY"> input="Tell me a three sentence bedtime story about a unicorn.",
stream=True,
api_key=os.getenv("AZURE_RESPONSES_OPENAI_API_KEY"),
api_base="https://litellm8397336933.openai.azure.com/",
api_version="2023-03-15-preview",
)
```yaml for event in response:
model_list: print(event)
- model_name: o3-mini
litellm_params:
model: azure/o_series/my-random-deployment-name
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
``` ```
</TabItem>
<TabItem value="proxy" label="OpenAI SDK with LiteLLM Proxy">
First, add this to your litellm proxy config.yaml:
```yaml showLineNumbers title="Azure Responses API"
model_list:
- model_name: o1-pro
litellm_params:
model: azure/o1-pro
api_key: os.environ/AZURE_RESPONSES_OPENAI_API_KEY
api_base: https://litellm8397336933.openai.azure.com/
api_version: 2023-03-15-preview
```
Start your LiteLLM proxy:
```bash
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
Then use the OpenAI SDK pointed to your proxy:
#### Non-streaming
```python showLineNumbers
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="o1-pro",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python showLineNumbers
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="o1-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem> </TabItem>
</Tabs> </Tabs>
@ -1076,32 +1193,24 @@ print(response)
``` ```
### Parallel Function calling ### Tool Calling / Function Calling
See a detailed walthrough of parallel function calling with litellm [here](https://docs.litellm.ai/docs/completion/function_call) See a detailed walthrough of parallel function calling with litellm [here](https://docs.litellm.ai/docs/completion/function_call)
<Tabs>
<TabItem value="sdk" label="SDK">
```python ```python
# set Azure env variables # set Azure env variables
import os import os
import litellm
import json
os.environ['AZURE_API_KEY'] = "" # litellm reads AZURE_API_KEY from .env and sends the request os.environ['AZURE_API_KEY'] = "" # litellm reads AZURE_API_KEY from .env and sends the request
os.environ['AZURE_API_BASE'] = "https://openai-gpt-4-test-v-1.openai.azure.com/" os.environ['AZURE_API_BASE'] = "https://openai-gpt-4-test-v-1.openai.azure.com/"
os.environ['AZURE_API_VERSION'] = "2023-07-01-preview" os.environ['AZURE_API_VERSION'] = "2023-07-01-preview"
import litellm
import json
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
## Step 1: send the conversation and available functions to the model
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [ tools = [
{ {
"type": "function", "type": "function",
@ -1125,7 +1234,7 @@ tools = [
response = litellm.completion( response = litellm.completion(
model="azure/chatgpt-functioncalling", # model = azure/<your-azure-deployment-name> model="azure/chatgpt-functioncalling", # model = azure/<your-azure-deployment-name>
messages=messages, messages=[{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}],
tools=tools, tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit tool_choice="auto", # auto is default, but we'll be explicit
) )
@ -1134,8 +1243,49 @@ response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls tool_calls = response.choices[0].message.tool_calls
print("\nTool Choice:\n", tool_calls) print("\nTool Choice:\n", tool_calls)
``` ```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: azure-gpt-3.5
litellm_params:
model: azure/chatgpt-functioncalling
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
```
2. Start proxy
```bash
litellm --config config.yaml
```
3. Test it
```bash
curl -L -X POST 'http://localhost:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "azure-gpt-3.5",
"messages": [
{
"role": "user",
"content": "Hey, how'\''s it going? Thinking long and hard before replying - what is the meaning of the world and life itself"
}
]
}'
```
</TabItem>
</Tabs>
### Spend Tracking for Azure OpenAI Models (PROXY) ### Spend Tracking for Azure OpenAI Models (PROXY)
Set base model for cost tracking azure image-gen call Set base model for cost tracking azure image-gen call

View file

@ -79,6 +79,7 @@ aws_session_name: Optional[str],
aws_profile_name: Optional[str], aws_profile_name: Optional[str],
aws_role_name: Optional[str], aws_role_name: Optional[str],
aws_web_identity_token: Optional[str], aws_web_identity_token: Optional[str],
aws_bedrock_runtime_endpoint: Optional[str],
``` ```
### 2. Start the proxy ### 2. Start the proxy
@ -475,7 +476,7 @@ os.environ["AWS_REGION_NAME"] = ""
resp = completion( resp = completion(
model="bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0", model="bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
messages=[{"role": "user", "content": "What is the capital of France?"}], messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024}, reasoning_effort="low",
) )
print(resp) print(resp)
@ -490,7 +491,7 @@ model_list:
- model_name: bedrock-claude-3-7 - model_name: bedrock-claude-3-7
litellm_params: litellm_params:
model: bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0 model: bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0
thinking: {"type": "enabled", "budget_tokens": 1024} # 👈 EITHER HERE OR ON REQUEST reasoning_effort: "low" # 👈 EITHER HERE OR ON REQUEST
``` ```
2. Start proxy 2. Start proxy
@ -508,7 +509,7 @@ curl http://0.0.0.0:4000/v1/chat/completions \
-d '{ -d '{
"model": "bedrock-claude-3-7", "model": "bedrock-claude-3-7",
"messages": [{"role": "user", "content": "What is the capital of France?"}], "messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024} # 👈 EITHER HERE OR ON CONFIG.YAML "reasoning_effort": "low" # 👈 EITHER HERE OR ON CONFIG.YAML
}' }'
``` ```
@ -557,6 +558,10 @@ Same as [Anthropic API response](../providers/anthropic#usage---thinking--reason
} }
``` ```
### Pass `thinking` to Anthropic models
Same as [Anthropic API response](../providers/anthropic#usage---thinking--reasoning_content).
## Usage - Structured Output / JSON mode ## Usage - Structured Output / JSON mode
@ -663,6 +668,58 @@ curl http://0.0.0.0:4000/v1/chat/completions \
</TabItem> </TabItem>
</Tabs> </Tabs>
## Usage - Latency Optimized Inference
Valid from v1.65.1+
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
response = completion(
model="bedrock/anthropic.claude-3-7-sonnet-20250219-v1:0",
messages=[{"role": "user", "content": "What is the capital of France?"}],
performanceConfig={"latency": "optimized"},
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: bedrock-claude-3-7
litellm_params:
model: bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0
performanceConfig: {"latency": "optimized"} # 👈 EITHER HERE OR ON REQUEST
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "bedrock-claude-3-7",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"performanceConfig": {"latency": "optimized"} # 👈 EITHER HERE OR ON CONFIG.YAML
}'
```
</TabItem>
</Tabs>
## Usage - Bedrock Guardrails ## Usage - Bedrock Guardrails
Example of using [Bedrock Guardrails with LiteLLM](https://docs.aws.amazon.com/bedrock/latest/userguide/guardrails-use-converse-api.html) Example of using [Bedrock Guardrails with LiteLLM](https://docs.aws.amazon.com/bedrock/latest/userguide/guardrails-use-converse-api.html)
@ -1115,14 +1172,22 @@ os.environ["AWS_REGION_NAME"] = ""
# pdf url # pdf url
image_url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf" image_url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf"
# Download the file
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
# model # model
model = "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0" model = "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0"
image_content = [ image_content = [
{"type": "text", "text": "What's this file about?"}, {"type": "text", "text": "What's this file about?"},
{ {
"type": "image_url", "type": "file",
"image_url": image_url, # OR {"url": image_url} "file": {
"file_data": f"data:application/pdf;base64,{encoded_file}", # 👈 PDF
}
}, },
] ]
@ -1168,8 +1233,10 @@ curl -X POST 'http://0.0.0.0:4000/chat/completions' \
"messages": [ "messages": [
{"role": "user", "content": {"type": "text", "text": "What's this file about?"}}, {"role": "user", "content": {"type": "text", "text": "What's this file about?"}},
{ {
"type": "image_url", "type": "file",
"image_url": "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf", "file": {
"file_data": f"data:application/pdf;base64,{encoded_file}", # 👈 PDF
}
} }
] ]
}' }'
@ -1427,10 +1494,14 @@ response = litellm.embedding(
## Supported AWS Bedrock Models ## Supported AWS Bedrock Models
LiteLLM supports ALL Bedrock models.
Here's an example of using a bedrock model with LiteLLM. For a complete list, refer to the [model cost map](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json) Here's an example of using a bedrock model with LiteLLM. For a complete list, refer to the [model cost map](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json)
| Model Name | Command | | Model Name | Command |
|----------------------------|------------------------------------------------------------------| |----------------------------|------------------------------------------------------------------|
| Deepseek R1 | `completion(model='bedrock/us.deepseek.r1-v1:0', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']` |
| Anthropic Claude-V3.5 Sonnet | `completion(model='bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']` | | Anthropic Claude-V3.5 Sonnet | `completion(model='bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']` |
| Anthropic Claude-V3 sonnet | `completion(model='bedrock/anthropic.claude-3-sonnet-20240229-v1:0', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']` | | Anthropic Claude-V3 sonnet | `completion(model='bedrock/anthropic.claude-3-sonnet-20240229-v1:0', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']` |
| Anthropic Claude-V3 Haiku | `completion(model='bedrock/anthropic.claude-3-haiku-20240307-v1:0', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']` | | Anthropic Claude-V3 Haiku | `completion(model='bedrock/anthropic.claude-3-haiku-20240307-v1:0', messages=messages)` | `os.environ['AWS_ACCESS_KEY_ID']`, `os.environ['AWS_SECRET_ACCESS_KEY']` |
@ -1771,6 +1842,7 @@ response = completion(
) )
``` ```
</TabItem> </TabItem>
<TabItem value="proxy" label="PROXY"> <TabItem value="proxy" label="PROXY">
1. Setup config.yaml 1. Setup config.yaml
@ -1815,11 +1887,13 @@ curl -X POST 'http://0.0.0.0:4000/chat/completions' \
``` ```
</TabItem> </TabItem>
</Tabs> </Tabs>
### SSO Login (AWS Profile) ### SSO Login (AWS Profile)
- Set `AWS_PROFILE` environment variable - Set `AWS_PROFILE` environment variable
- Make bedrock completion call - Make bedrock completion call
```python ```python
import os import os
from litellm import completion from litellm import completion
@ -1912,12 +1986,46 @@ model_list:
</Tabs> </Tabs>
Text to Image :
```bash
curl -L -X POST 'http://0.0.0.0:4000/v1/images/generations' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
-d '{
"model": "amazon.nova-canvas-v1:0",
"prompt": "A cute baby sea otter"
}'
```
Color Guided Generation:
```bash
curl -L -X POST 'http://0.0.0.0:4000/v1/images/generations' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
-d '{
"model": "amazon.nova-canvas-v1:0",
"prompt": "A cute baby sea otter",
"taskType": "COLOR_GUIDED_GENERATION",
"colorGuidedGenerationParams":{"colors":["#FFFFFF"]}
}'
```
| Model Name | Function Call |
|-------------------------|---------------------------------------------|
| Stable Diffusion 3 - v0 | `image_generation(model="bedrock/stability.stability.sd3-large-v1:0", prompt=prompt)` |
| Stable Diffusion - v0 | `image_generation(model="bedrock/stability.stable-diffusion-xl-v0", prompt=prompt)` |
| Stable Diffusion - v1 | `image_generation(model="bedrock/stability.stable-diffusion-xl-v1", prompt=prompt)` |
| Amazon Nova Canvas - v0 | `image_generation(model="bedrock/amazon.nova-canvas-v1:0", prompt=prompt)` |
### Passing an external BedrockRuntime.Client as a parameter - Completion() ### Passing an external BedrockRuntime.Client as a parameter - Completion()
This is a deprecated flow. Boto3 is not async. And boto3.client does not let us make the http call through httpx. Pass in your aws params through the method above 👆. [See Auth Code](https://github.com/BerriAI/litellm/blob/55a20c7cce99a93d36a82bf3ae90ba3baf9a7f89/litellm/llms/bedrock_httpx.py#L284) [Add new auth flow](https://github.com/BerriAI/litellm/issues)
:::warning :::warning
This is a deprecated flow. Boto3 is not async. And boto3.client does not let us make the http call through httpx. Pass in your aws params through the method above 👆. [See Auth Code](https://github.com/BerriAI/litellm/blob/55a20c7cce99a93d36a82bf3ae90ba3baf9a7f89/litellm/llms/bedrock_httpx.py#L284) [Add new auth flow](https://github.com/BerriAI/litellm/issues)
Experimental - 2024-Jun-23: Experimental - 2024-Jun-23:

View file

@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# 🆕 Databricks # Databricks
LiteLLM supports all models on Databricks LiteLLM supports all models on Databricks
@ -154,7 +154,205 @@ response = completion(
temperature: 0.5 temperature: 0.5
``` ```
## Passings Databricks specific params - 'instruction'
## Usage - Thinking / `reasoning_content`
LiteLLM translates OpenAI's `reasoning_effort` to Anthropic's `thinking` parameter. [Code](https://github.com/BerriAI/litellm/blob/23051d89dd3611a81617d84277059cd88b2df511/litellm/llms/anthropic/chat/transformation.py#L298)
| reasoning_effort | thinking |
| ---------------- | -------- |
| "low" | "budget_tokens": 1024 |
| "medium" | "budget_tokens": 2048 |
| "high" | "budget_tokens": 4096 |
Known Limitations:
- Support for passing thinking blocks back to Claude [Issue](https://github.com/BerriAI/litellm/issues/9790)
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
# set ENV variables (can also be passed in to .completion() - e.g. `api_base`, `api_key`)
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks base url"
resp = completion(
model="databricks/databricks-claude-3-7-sonnet",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="low",
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
- model_name: claude-3-7-sonnet
litellm_params:
model: databricks/databricks-claude-3-7-sonnet
api_key: os.environ/DATABRICKS_API_KEY
api_base: os.environ/DATABRICKS_API_BASE
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "claude-3-7-sonnet",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"reasoning_effort": "low"
}'
```
</TabItem>
</Tabs>
**Expected Response**
```python
ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
provider_specific_fields={
'citations': None,
'thinking_blocks': [
{
'type': 'thinking',
'thinking': 'The capital of France is Paris. This is a very straightforward factual question.',
'signature': 'EuYBCkQYAiJAy6...'
}
]
}
),
thinking_blocks=[
{
'type': 'thinking',
'thinking': 'The capital of France is Paris. This is a very straightforward factual question.',
'signature': 'EuYBCkQYAiJAy6AGB...'
}
],
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)
```
### Pass `thinking` to Anthropic models
You can also pass the `thinking` parameter to Anthropic models.
You can also pass the `thinking` parameter to Anthropic models.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
# set ENV variables (can also be passed in to .completion() - e.g. `api_base`, `api_key`)
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks base url"
response = litellm.completion(
model="databricks/databricks-claude-3-7-sonnet",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "databricks/databricks-claude-3-7-sonnet",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
```
</TabItem>
</Tabs>
## Supported Databricks Chat Completion Models
:::tip
**We support ALL Databricks models, just set `model=databricks/<any-model-on-databricks>` as a prefix when sending litellm requests**
:::
| Model Name | Command |
|----------------------------|------------------------------------------------------------------|
| databricks/databricks-claude-3-7-sonnet | `completion(model='databricks/databricks/databricks-claude-3-7-sonnet', messages=messages)` |
| databricks-meta-llama-3-1-70b-instruct | `completion(model='databricks/databricks-meta-llama-3-1-70b-instruct', messages=messages)` |
| databricks-meta-llama-3-1-405b-instruct | `completion(model='databricks/databricks-meta-llama-3-1-405b-instruct', messages=messages)` |
| databricks-dbrx-instruct | `completion(model='databricks/databricks-dbrx-instruct', messages=messages)` |
| databricks-meta-llama-3-70b-instruct | `completion(model='databricks/databricks-meta-llama-3-70b-instruct', messages=messages)` |
| databricks-llama-2-70b-chat | `completion(model='databricks/databricks-llama-2-70b-chat', messages=messages)` |
| databricks-mixtral-8x7b-instruct | `completion(model='databricks/databricks-mixtral-8x7b-instruct', messages=messages)` |
| databricks-mpt-30b-instruct | `completion(model='databricks/databricks-mpt-30b-instruct', messages=messages)` |
| databricks-mpt-7b-instruct | `completion(model='databricks/databricks-mpt-7b-instruct', messages=messages)` |
## Embedding Models
### Passing Databricks specific params - 'instruction'
For embedding models, databricks lets you pass in an additional param 'instruction'. [Full Spec](https://github.com/BerriAI/litellm/blob/43353c28b341df0d9992b45c6ce464222ebd7984/litellm/llms/databricks.py#L164) For embedding models, databricks lets you pass in an additional param 'instruction'. [Full Spec](https://github.com/BerriAI/litellm/blob/43353c28b341df0d9992b45c6ce464222ebd7984/litellm/llms/databricks.py#L164)
@ -187,27 +385,6 @@ response = litellm.embedding(
instruction: "Represent this sentence for searching relevant passages:" instruction: "Represent this sentence for searching relevant passages:"
``` ```
## Supported Databricks Chat Completion Models
:::tip
**We support ALL Databricks models, just set `model=databricks/<any-model-on-databricks>` as a prefix when sending litellm requests**
:::
| Model Name | Command |
|----------------------------|------------------------------------------------------------------|
| databricks-meta-llama-3-1-70b-instruct | `completion(model='databricks/databricks-meta-llama-3-1-70b-instruct', messages=messages)` |
| databricks-meta-llama-3-1-405b-instruct | `completion(model='databricks/databricks-meta-llama-3-1-405b-instruct', messages=messages)` |
| databricks-dbrx-instruct | `completion(model='databricks/databricks-dbrx-instruct', messages=messages)` |
| databricks-meta-llama-3-70b-instruct | `completion(model='databricks/databricks-meta-llama-3-70b-instruct', messages=messages)` |
| databricks-llama-2-70b-chat | `completion(model='databricks/databricks-llama-2-70b-chat', messages=messages)` |
| databricks-mixtral-8x7b-instruct | `completion(model='databricks/databricks-mixtral-8x7b-instruct', messages=messages)` |
| databricks-mpt-30b-instruct | `completion(model='databricks/databricks-mpt-30b-instruct', messages=messages)` |
| databricks-mpt-7b-instruct | `completion(model='databricks/databricks-mpt-7b-instruct', messages=messages)` |
## Supported Databricks Embedding Models ## Supported Databricks Embedding Models
:::tip :::tip

View file

@ -39,14 +39,164 @@ response = completion(
- temperature - temperature
- top_p - top_p
- max_tokens - max_tokens
- max_completion_tokens
- stream - stream
- tools - tools
- tool_choice - tool_choice
- functions
- response_format - response_format
- n - n
- stop - stop
- logprobs
- frequency_penalty
- modalities
- reasoning_content
**Anthropic Params**
- thinking (used to set max budget tokens across anthropic/gemini models)
[**See Updated List**](https://github.com/BerriAI/litellm/blob/main/litellm/llms/gemini/chat/transformation.py#L70)
## Usage - Thinking / `reasoning_content`
LiteLLM translates OpenAI's `reasoning_effort` to Gemini's `thinking` parameter. [Code](https://github.com/BerriAI/litellm/blob/620664921902d7a9bfb29897a7b27c1a7ef4ddfb/litellm/llms/vertex_ai/gemini/vertex_and_google_ai_studio_gemini.py#L362)
**Mapping**
| reasoning_effort | thinking |
| ---------------- | -------- |
| "low" | "budget_tokens": 1024 |
| "medium" | "budget_tokens": 2048 |
| "high" | "budget_tokens": 4096 |
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
resp = completion(
model="gemini/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="low",
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
- model_name: gemini-2.5-flash
litellm_params:
model: gemini/gemini-2.5-flash-preview-04-17
api_key: os.environ/GEMINI_API_KEY
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "gemini-2.5-flash",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"reasoning_effort": "low"
}'
```
</TabItem>
</Tabs>
**Expected Response**
```python
ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
),
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)
```
### Pass `thinking` to Gemini models
You can also pass the `thinking` parameter to Gemini models.
This is translated to Gemini's [`thinkingConfig` parameter](https://ai.google.dev/gemini-api/docs/thinking#set-budget).
<Tabs>
<TabItem value="sdk" label="SDK">
```python
response = litellm.completion(
model="gemini/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "gemini/gemini-2.5-flash-preview-04-17",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
```
</TabItem>
</Tabs>
[**See Updated List**](https://github.com/BerriAI/litellm/blob/1c747f3ad372399c5b95cc5696b06a5fbe53186b/litellm/llms/vertex_httpx.py#L122)
## Passing Gemini Specific Params ## Passing Gemini Specific Params
### Response schema ### Response schema
@ -365,7 +515,7 @@ curl -X POST 'http://0.0.0.0:4000/chat/completions' \
</Tabs> </Tabs>
## Specifying Safety Settings ## Specifying Safety Settings
In certain use-cases you may need to make calls to the models and pass [safety settigns](https://ai.google.dev/docs/safety_setting_gemini) different from the defaults. To do so, simple pass the `safety_settings` argument to `completion` or `acompletion`. For example: In certain use-cases you may need to make calls to the models and pass [safety settings](https://ai.google.dev/docs/safety_setting_gemini) different from the defaults. To do so, simple pass the `safety_settings` argument to `completion` or `acompletion`. For example:
```python ```python
response = completion( response = completion(
@ -438,6 +588,179 @@ assert isinstance(
``` ```
### Google Search Tool
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
```
2. Start Proxy
```bash
$ litellm --config /path/to/config.yaml
```
3. Make Request!
```bash
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
"tools": [{"googleSearch": {}}]
}
'
```
</TabItem>
</Tabs>
### Google Search Retrieval
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"googleSearchRetrieval": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
```
2. Start Proxy
```bash
$ litellm --config /path/to/config.yaml
```
3. Make Request!
```bash
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
"tools": [{"googleSearchRetrieval": {}}]
}
'
```
</TabItem>
</Tabs>
### Code Execution Tool
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"codeExecution": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
```
2. Start Proxy
```bash
$ litellm --config /path/to/config.yaml
```
3. Make Request!
```bash
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
"tools": [{"codeExecution": {}}]
}
'
```
</TabItem>
</Tabs>
## JSON Mode ## JSON Mode
<Tabs> <Tabs>
@ -589,8 +912,10 @@ response = litellm.completion(
"content": [ "content": [
{"type": "text", "text": "Please summarize the audio."}, {"type": "text", "text": "Please summarize the audio."},
{ {
"type": "image_url", "type": "file",
"image_url": "data:audio/mp3;base64,{}".format(encoded_data), # 👈 SET MIME_TYPE + DATA "file": {
"file_data": "data:audio/mp3;base64,{}".format(encoded_data), # 👈 SET MIME_TYPE + DATA
}
}, },
], ],
} }
@ -640,8 +965,11 @@ response = litellm.completion(
"content": [ "content": [
{"type": "text", "text": "Please summarize the file."}, {"type": "text", "text": "Please summarize the file."},
{ {
"type": "image_url", "type": "file",
"image_url": "https://storage..." # 👈 SET THE IMG URL "file": {
"file_id": "https://storage...", # 👈 SET THE IMG URL
"format": "application/pdf" # OPTIONAL
}
}, },
], ],
} }
@ -668,8 +996,11 @@ response = litellm.completion(
"content": [ "content": [
{"type": "text", "text": "Please summarize the file."}, {"type": "text", "text": "Please summarize the file."},
{ {
"type": "image_url", "type": "file",
"image_url": "gs://..." # 👈 SET THE cloud storage bucket url "file": {
"file_id": "gs://storage...", # 👈 SET THE IMG URL
"format": "application/pdf" # OPTIONAL
}
}, },
], ],
} }
@ -879,3 +1210,54 @@ response = await client.chat.completions.create(
</TabItem> </TabItem>
</Tabs> </Tabs>
## Image Generation
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
response = completion(
model="gemini/gemini-2.0-flash-exp-image-generation",
messages=[{"role": "user", "content": "Generate an image of a cat"}],
modalities=["image", "text"],
)
assert response.choices[0].message.content is not None # ".."
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gemini-2.0-flash-exp-image-generation
litellm_params:
model: gemini/gemini-2.0-flash-exp-image-generation
api_key: os.environ/GEMINI_API_KEY
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl -L -X POST 'http://localhost:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash-exp-image-generation",
"messages": [{"role": "user", "content": "Generate an image of a cat"}],
"modalities": ["image", "text"]
}'
```
</TabItem>
</Tabs>

View file

@ -0,0 +1,161 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# [BETA] Google AI Studio (Gemini) Files API
Use this to upload files to Google AI Studio (Gemini).
Useful to pass in large media files to Gemini's `/generateContent` endpoint.
| Action | Supported |
|----------|-----------|
| `create` | Yes |
| `delete` | No |
| `retrieve` | No |
| `list` | No |
## Usage
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import base64
import requests
from litellm import completion, create_file
import os
### UPLOAD FILE ###
# Fetch the audio file and convert it to a base64 encoded string
url = "https://cdn.openai.com/API/docs/audio/alloy.wav"
response = requests.get(url)
response.raise_for_status()
wav_data = response.content
encoded_string = base64.b64encode(wav_data).decode('utf-8')
file = create_file(
file=wav_data,
purpose="user_data",
extra_body={"custom_llm_provider": "gemini"},
api_key=os.getenv("GEMINI_API_KEY"),
)
print(f"file: {file}")
assert file is not None
### GENERATE CONTENT ###
completion = completion(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this recording?"
},
{
"type": "file",
"file": {
"file_id": file.id,
"filename": "my-test-name",
"format": "audio/wav"
}
}
]
},
]
)
print(completion.choices[0].message)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: "gemini-2.0-flash"
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
```
2. Start proxy
```bash
litellm --config config.yaml
```
3. Test it
```python
import base64
import requests
from openai import OpenAI
client = OpenAI(
base_url="http://0.0.0.0:4000",
api_key="sk-1234"
)
# Fetch the audio file and convert it to a base64 encoded string
url = "https://cdn.openai.com/API/docs/audio/alloy.wav"
response = requests.get(url)
response.raise_for_status()
wav_data = response.content
encoded_string = base64.b64encode(wav_data).decode('utf-8')
file = client.files.create(
file=wav_data,
purpose="user_data",
extra_body={"target_model_names": "gemini-2.0-flash"}
)
print(f"file: {file}")
assert file is not None
completion = client.chat.completions.create(
model="gemini-2.0-flash",
modalities=["text", "audio"],
audio={"voice": "alloy", "format": "wav"},
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this recording?"
},
{
"type": "file",
"file": {
"file_id": file.id,
"filename": "my-test-name",
"format": "audio/wav"
}
}
]
},
],
extra_body={"drop_params": True}
)
print(completion.choices[0].message)
```
</TabItem>
</Tabs>

View file

@ -2,466 +2,392 @@ import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# Huggingface # Hugging Face
LiteLLM supports running inference across multiple services for models hosted on the Hugging Face Hub.
LiteLLM supports the following types of Hugging Face models: - **Serverless Inference Providers** - Hugging Face offers an easy and unified access to serverless AI inference through multiple inference providers, like [Together AI](https://together.ai) and [Sambanova](https://sambanova.ai). This is the fastest way to integrate AI in your products with a maintenance-free and scalable solution. More details in the [Inference Providers documentation](https://huggingface.co/docs/inference-providers/index).
- **Dedicated Inference Endpoints** - which is a product to easily deploy models to production. Inference is run by Hugging Face in a dedicated, fully managed infrastructure on a cloud provider of your choice. You can deploy your model on Hugging Face Inference Endpoints by following [these steps](https://huggingface.co/docs/inference-endpoints/guides/create_endpoint).
- Serverless Inference API (free) - loaded and ready to use: https://huggingface.co/models?inference=warm&pipeline_tag=text-generation
- Dedicated Inference Endpoints (paid) - manual deployment: https://ui.endpoints.huggingface.co/ ## Supported Models
- All LLMs served via Hugging Face's Inference use [Text-generation-inference](https://huggingface.co/docs/text-generation-inference).
### Serverless Inference Providers
You can check available models for an inference provider by going to [huggingface.co/models](https://huggingface.co/models), clicking the "Other" filter tab, and selecting your desired provider:
![Filter models by Inference Provider](../../img/hf_filter_inference_providers.png)
For example, you can find all Fireworks supported models [here](https://huggingface.co/models?inference_provider=fireworks-ai&sort=trending).
### Dedicated Inference Endpoints
Refer to the [Inference Endpoints catalog](https://endpoints.huggingface.co/catalog) for a list of available models.
## Usage ## Usage
<a target="_blank" href="https://colab.research.google.com/github/BerriAI/litellm/blob/main/cookbook/LiteLLM_HuggingFace.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
You need to tell LiteLLM when you're calling Huggingface.
This is done by adding the "huggingface/" prefix to `model`, example `completion(model="huggingface/<model_name>",...)`.
<Tabs> <Tabs>
<TabItem value="serverless" label="Serverless Inference API"> <TabItem value="serverless" label="Serverless Inference Providers">
By default, LiteLLM will assume a Hugging Face call follows the [Messages API](https://huggingface.co/docs/text-generation-inference/messages_api), which is fully compatible with the OpenAI Chat Completion API. ### Authentication
With a single Hugging Face token, you can access inference through multiple providers. Your calls are routed through Hugging Face and the usage is billed directly to your Hugging Face account at the standard provider API rates.
<Tabs> Simply set the `HF_TOKEN` environment variable with your Hugging Face token, you can create one here: https://huggingface.co/settings/tokens.
<TabItem value="sdk" label="SDK">
```python
import os
from litellm import completion
# [OPTIONAL] set env var
os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
messages = [{ "content": "There's a llama in my garden 😱 What should I do?","role": "user"}]
# e.g. Call 'https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct' from Serverless Inference API
response = completion(
model="huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct",
messages=[{ "content": "Hello, how are you?","role": "user"}],
stream=True
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Add models to your config.yaml
```yaml
model_list:
- model_name: llama-3.1-8B-instruct
litellm_params:
model: huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct
api_key: os.environ/HUGGINGFACE_API_KEY
```
2. Start the proxy
```bash ```bash
$ litellm --config /path/to/config.yaml --debug export HF_TOKEN="hf_xxxxxx"
```
or alternatively, you can pass your Hugging Face token as a parameter:
```python
completion(..., api_key="hf_xxxxxx")
``` ```
3. Test it! ### Getting Started
```shell To use a Hugging Face model, specify both the provider and model you want to use in the following format:
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "llama-3.1-8B-instruct",
"messages": [
{
"role": "user",
"content": "I like you!"
}
],
}'
``` ```
huggingface/<provider>/<hf_org_or_user>/<hf_model>
```
Where `<hf_org_or_user>/<hf_model>` is the Hugging Face model ID and `<provider>` is the inference provider.
By default, if you don't specify a provider, LiteLLM will use the [HF Inference API](https://huggingface.co/docs/api-inference/en/index).
</TabItem> Examples:
</Tabs>
</TabItem>
<TabItem value="classification" label="Text Classification">
Append `text-classification` to the model name
e.g. `huggingface/text-classification/<model-name>`
<Tabs>
<TabItem value="sdk" label="SDK">
```python ```python
import os # Run DeepSeek-R1 inference through Together AI
from litellm import completion completion(model="huggingface/together/deepseek-ai/DeepSeek-R1",...)
# [OPTIONAL] set env var # Run Qwen2.5-72B-Instruct inference through Sambanova
os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key" completion(model="huggingface/sambanova/Qwen/Qwen2.5-72B-Instruct",...)
messages = [{ "content": "I like you, I love you!","role": "user"}] # Run Llama-3.3-70B-Instruct inference through HF Inference API
completion(model="huggingface/meta-llama/Llama-3.3-70B-Instruct",...)
# e.g. Call 'shahrukhx01/question-vs-statement-classifier' hosted on HF Inference endpoints
response = completion(
model="huggingface/text-classification/shahrukhx01/question-vs-statement-classifier",
messages=messages,
api_base="https://my-endpoint.endpoints.huggingface.cloud",
)
print(response)
``` ```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Add models to your config.yaml
```yaml
model_list:
- model_name: bert-classifier
litellm_params:
model: huggingface/text-classification/shahrukhx01/question-vs-statement-classifier
api_key: os.environ/HUGGINGFACE_API_KEY
api_base: "https://my-endpoint.endpoints.huggingface.cloud"
```
2. Start the proxy
```bash
$ litellm --config /path/to/config.yaml --debug
```
3. Test it!
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "bert-classifier",
"messages": [
{
"role": "user",
"content": "I like you!"
}
],
}'
```
</TabItem>
</Tabs>
</TabItem>
<TabItem value="dedicated" label="Dedicated Inference Endpoints">
Steps to use
* Create your own Hugging Face dedicated endpoint here: https://ui.endpoints.huggingface.co/
* Set `api_base` to your deployed api base
* Add the `huggingface/` prefix to your model so litellm knows it's a huggingface Deployed Inference Endpoint
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import os
from litellm import completion
os.environ["HUGGINGFACE_API_KEY"] = ""
# TGI model: Call https://huggingface.co/glaiveai/glaive-coder-7b
# add the 'huggingface/' prefix to the model to set huggingface as the provider
# set api base to your deployed api endpoint from hugging face
response = completion(
model="huggingface/glaiveai/glaive-coder-7b",
messages=[{ "content": "Hello, how are you?","role": "user"}],
api_base="https://wjiegasee9bmqke2.us-east-1.aws.endpoints.huggingface.cloud"
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Add models to your config.yaml
```yaml
model_list:
- model_name: glaive-coder
litellm_params:
model: huggingface/glaiveai/glaive-coder-7b
api_key: os.environ/HUGGINGFACE_API_KEY
api_base: "https://wjiegasee9bmqke2.us-east-1.aws.endpoints.huggingface.cloud"
```
2. Start the proxy
```bash
$ litellm --config /path/to/config.yaml --debug
```
3. Test it!
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "glaive-coder",
"messages": [
{
"role": "user",
"content": "I like you!"
}
],
}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Streaming
<a target="_blank" href="https://colab.research.google.com/github/BerriAI/litellm/blob/main/cookbook/LiteLLM_HuggingFace.ipynb"> <a target="_blank" href="https://colab.research.google.com/github/BerriAI/litellm/blob/main/cookbook/LiteLLM_HuggingFace.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a> </a>
You need to tell LiteLLM when you're calling Huggingface. ### Basic Completion
This is done by adding the "huggingface/" prefix to `model`, example `completion(model="huggingface/<model_name>",...)`. Here's an example of chat completion using the DeepSeek-R1 model through Together AI:
```python ```python
import os import os
from litellm import completion from litellm import completion
# [OPTIONAL] set env var os.environ["HF_TOKEN"] = "hf_xxxxxx"
os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
messages = [{ "content": "There's a llama in my garden 😱 What should I do?","role": "user"}]
# e.g. Call 'facebook/blenderbot-400M-distill' hosted on HF Inference endpoints
response = completion( response = completion(
model="huggingface/facebook/blenderbot-400M-distill", model="huggingface/together/deepseek-ai/DeepSeek-R1",
messages=messages, messages=[
api_base="https://my-endpoint.huggingface.cloud", {
stream=True "role": "user",
"content": "How many r's are in the word 'strawberry'?",
}
],
)
print(response)
```
### Streaming
Now, let's see what a streaming request looks like.
```python
import os
from litellm import completion
os.environ["HF_TOKEN"] = "hf_xxxxxx"
response = completion(
model="huggingface/together/deepseek-ai/DeepSeek-R1",
messages=[
{
"role": "user",
"content": "How many r's are in the word `strawberry`?",
}
],
stream=True,
) )
print(response)
for chunk in response: for chunk in response:
print(chunk) print(chunk)
``` ```
### Image Input
You can also pass images when the model supports it. Here is an example using [Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) model through Sambanova.
```python
from litellm import completion
# Set your Hugging Face Token
os.environ["HF_TOKEN"] = "hf_xxxxxx"
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
}
},
],
}
]
response = completion(
model="huggingface/sambanova/meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
)
print(response.choices[0])
```
### Function Calling
You can extend the model's capabilities by giving them access to tools. Here is an example with function calling using [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) model through Sambanova.
```python
import os
from litellm import completion
# Set your Hugging Face Token
os.environ["HF_TOKEN"] = "hf_xxxxxx"
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
messages = [
{
"role": "user",
"content": "What's the weather like in Boston today?",
}
]
response = completion(
model="huggingface/sambanova/meta-llama/Llama-3.3-70B-Instruct",
messages=messages,
tools=tools,
tool_choice="auto"
)
print(response)
```
</TabItem>
<TabItem value="endpoints" label="Inference Endpoints">
<a target="_blank" href="https://colab.research.google.com/github/BerriAI/litellm/blob/main/cookbook/LiteLLM_HuggingFace.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
### Basic Completion
After you have [deployed your Hugging Face Inference Endpoint](https://endpoints.huggingface.co/new) on dedicated infrastructure, you can run inference on it by providing the endpoint base URL in `api_base`, and indicating `huggingface/tgi` as the model name.
```python
import os
from litellm import completion
os.environ["HF_TOKEN"] = "hf_xxxxxx"
response = completion(
model="huggingface/tgi",
messages=[{"content": "Hello, how are you?", "role": "user"}],
api_base="https://my-endpoint.endpoints.huggingface.cloud/v1/"
)
print(response)
```
### Streaming
```python
import os
from litellm import completion
os.environ["HF_TOKEN"] = "hf_xxxxxx"
response = completion(
model="huggingface/tgi",
messages=[{"content": "Hello, how are you?", "role": "user"}],
api_base="https://my-endpoint.endpoints.huggingface.cloud/v1/",
stream=True
)
for chunk in response:
print(chunk)
```
### Image Input
```python
import os
from litellm import completion
os.environ["HF_TOKEN"] = "hf_xxxxxx"
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
}
},
],
}
]
response = completion(
model="huggingface/tgi",
messages=messages,
api_base="https://my-endpoint.endpoints.huggingface.cloud/v1/""
)
print(response.choices[0])
```
### Function Calling
```python
import os
from litellm import completion
os.environ["HF_TOKEN"] = "hf_xxxxxx"
functions = [{
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get weather for"
}
},
"required": ["location"]
}
}]
response = completion(
model="huggingface/tgi",
messages=[{"content": "What's the weather like in San Francisco?", "role": "user"}],
api_base="https://my-endpoint.endpoints.huggingface.cloud/v1/",
functions=functions
)
print(response)
```
</TabItem>
</Tabs>
## LiteLLM Proxy Server with Hugging Face models
You can set up a [LiteLLM Proxy Server](https://docs.litellm.ai/#litellm-proxy-server-llm-gateway) to serve Hugging Face models through any of the supported Inference Providers. Here's how to do it:
### Step 1. Setup the config file
In this case, we are configuring a proxy to serve `DeepSeek R1` from Hugging Face, using Together AI as the backend Inference Provider.
```yaml
model_list:
- model_name: my-r1-model
litellm_params:
model: huggingface/together/deepseek-ai/DeepSeek-R1
api_key: os.environ/HF_TOKEN # ensure you have `HF_TOKEN` in your .env
```
### Step 2. Start the server
```bash
litellm --config /path/to/config.yaml
```
### Step 3. Make a request to the server
<Tabs>
<TabItem value="curl" label="curl">
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "my-r1-model",
"messages": [
{
"role": "user",
"content": "Hello, how are you?"
}
]
}'
```
</TabItem>
<TabItem value="python" label="python">
```python
# pip install openai
from openai import OpenAI
client = OpenAI(
base_url="http://0.0.0.0:4000",
api_key="anything",
)
response = client.chat.completions.create(
model="my-r1-model",
messages=[
{"role": "user", "content": "Hello, how are you?"}
]
)
print(response)
```
</TabItem>
</Tabs>
## Embedding ## Embedding
LiteLLM supports Hugging Face's [text-embedding-inference](https://github.com/huggingface/text-embeddings-inference) format. LiteLLM supports Hugging Face's [text-embedding-inference](https://github.com/huggingface/text-embeddings-inference) models as well.
```python ```python
from litellm import embedding from litellm import embedding
import os import os
os.environ['HUGGINGFACE_API_KEY'] = "" os.environ['HF_TOKEN'] = "hf_xxxxxx"
response = embedding( response = embedding(
model='huggingface/microsoft/codebert-base', model='huggingface/microsoft/codebert-base',
input=["good morning from litellm"] input=["good morning from litellm"]
) )
``` ```
## Advanced
### Setting API KEYS + API BASE
If required, you can set the api key + api base, set it in your os environment. [Code for how it's sent](https://github.com/BerriAI/litellm/blob/0100ab2382a0e720c7978fbf662cc6e6920e7e03/litellm/llms/huggingface_restapi.py#L25)
```python
import os
os.environ["HUGGINGFACE_API_KEY"] = ""
os.environ["HUGGINGFACE_API_BASE"] = ""
```
### Viewing Log probs
#### Using `decoder_input_details` - OpenAI `echo`
The `echo` param is supported by OpenAI Completions - Use `litellm.text_completion()` for this
```python
from litellm import text_completion
response = text_completion(
model="huggingface/bigcode/starcoder",
prompt="good morning",
max_tokens=10, logprobs=10,
echo=True
)
```
#### Output
```json
{
"id": "chatcmpl-3fc71792-c442-4ba1-a611-19dd0ac371ad",
"object": "text_completion",
"created": 1698801125.936519,
"model": "bigcode/starcoder",
"choices": [
{
"text": ", I'm going to make you a sand",
"index": 0,
"logprobs": {
"tokens": [
"good",
" morning",
",",
" I",
"'m",
" going",
" to",
" make",
" you",
" a",
" s",
"and"
],
"token_logprobs": [
"None",
-14.96875,
-2.2285156,
-2.734375,
-2.0957031,
-2.0917969,
-0.09429932,
-3.1132812,
-1.3203125,
-1.2304688,
-1.6201172,
-0.010292053
]
},
"finish_reason": "length"
}
],
"usage": {
"completion_tokens": 9,
"prompt_tokens": 2,
"total_tokens": 11
}
}
```
### Models with Prompt Formatting
For models with special prompt templates (e.g. Llama2), we format the prompt to fit their template.
#### Models with natively Supported Prompt Templates
| Model Name | Works for Models | Function Call | Required OS Variables |
| ------------------------------------ | ---------------------------------- | ----------------------------------------------------------------------------------------------------------------------- | ----------------------------------- |
| mistralai/Mistral-7B-Instruct-v0.1 | mistralai/Mistral-7B-Instruct-v0.1 | `completion(model='huggingface/mistralai/Mistral-7B-Instruct-v0.1', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
| meta-llama/Llama-2-7b-chat | All meta-llama llama2 chat models | `completion(model='huggingface/meta-llama/Llama-2-7b', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
| tiiuae/falcon-7b-instruct | All falcon instruct models | `completion(model='huggingface/tiiuae/falcon-7b-instruct', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
| mosaicml/mpt-7b-chat | All mpt chat models | `completion(model='huggingface/mosaicml/mpt-7b-chat', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
| codellama/CodeLlama-34b-Instruct-hf | All codellama instruct models | `completion(model='huggingface/codellama/CodeLlama-34b-Instruct-hf', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
| WizardLM/WizardCoder-Python-34B-V1.0 | All wizardcoder models | `completion(model='huggingface/WizardLM/WizardCoder-Python-34B-V1.0', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
| Phind/Phind-CodeLlama-34B-v2 | All phind-codellama models | `completion(model='huggingface/Phind/Phind-CodeLlama-34B-v2', messages=messages, api_base="your_api_endpoint")` | `os.environ['HUGGINGFACE_API_KEY']` |
**What if we don't support a model you need?**
You can also specify you're own custom prompt formatting, in case we don't have your model covered yet.
**Does this mean you have to specify a prompt for all models?**
No. By default we'll concatenate your message content to make a prompt.
**Default Prompt Template**
```python
def default_pt(messages):
return " ".join(message["content"] for message in messages)
```
[Code for how prompt formats work in LiteLLM](https://github.com/BerriAI/litellm/blob/main/litellm/llms/prompt_templates/factory.py)
#### Custom prompt templates
```python
import litellm
# Create your own custom prompt template works
litellm.register_prompt_template(
model="togethercomputer/LLaMA-2-7B-32K",
roles={
"system": {
"pre_message": "[INST] <<SYS>>\n",
"post_message": "\n<</SYS>>\n [/INST]\n"
},
"user": {
"pre_message": "[INST] ",
"post_message": " [/INST]\n"
},
"assistant": {
"post_message": "\n"
}
}
)
def test_huggingface_custom_model():
model = "huggingface/togethercomputer/LLaMA-2-7B-32K"
response = completion(model=model, messages=messages, api_base="https://ecd4sb5n09bo4ei2.us-east-1.aws.endpoints.huggingface.cloud")
print(response['choices'][0]['message']['content'])
return response
test_huggingface_custom_model()
```
[Implementation Code](https://github.com/BerriAI/litellm/blob/c0b3da2c14c791a0b755f0b1e5a9ef065951ecbf/litellm/llms/huggingface_restapi.py#L52)
### Deploying a model on huggingface
You can use any chat/text model from Hugging Face with the following steps:
- Copy your model id/url from Huggingface Inference Endpoints
- [ ] Go to https://ui.endpoints.huggingface.co/
- [ ] Copy the url of the specific model you'd like to use
<Image img={require('../../img/hf_inference_endpoint.png')} alt="HF_Dashboard" style={{ maxWidth: '50%', height: 'auto' }}/>
- Set it as your model name
- Set your HUGGINGFACE_API_KEY as an environment variable
Need help deploying a model on huggingface? [Check out this guide.](https://huggingface.co/docs/inference-endpoints/guides/create_endpoint)
# output
Same as the OpenAI format, but also includes logprobs. [See the code](https://github.com/BerriAI/litellm/blob/b4b2dbf005142e0a483d46a07a88a19814899403/litellm/llms/huggingface_restapi.py#L115)
```json
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "\ud83d\ude31\n\nComment: @SarahSzabo I'm",
"role": "assistant",
"logprobs": -22.697942825499993
}
}
],
"created": 1693436637.38206,
"model": "https://ji16r2iys9a8rjk2.us-east-1.aws.endpoints.huggingface.cloud",
"usage": {
"prompt_tokens": 14,
"completion_tokens": 11,
"total_tokens": 25
}
}
```
# FAQ # FAQ
**Does this support stop sequences?** **How does billing work with Hugging Face Inference Providers?**
Yes, we support stop sequences - and you can pass as many as allowed by Hugging Face (or any provider!) > Billing is centralized on your Hugging Face account, no matter which providers you are using. You are billed the standard provider API rates with no additional markup - Hugging Face simply passes through the provider costs. Note that [Hugging Face PRO](https://huggingface.co/subscribe/pro) users get $2 worth of Inference credits every month that can be used across providers.
**How do you deal with repetition penalty?** **Do I need to create an account for each Inference Provider?**
We map the presence penalty parameter in openai to the repetition penalty parameter on Hugging Face. [See code](https://github.com/BerriAI/litellm/blob/b4b2dbf005142e0a483d46a07a88a19814899403/litellm/utils.py#L757). > No, you don't need to create separate accounts. All requests are routed through Hugging Face, so you only need your HF token. This allows you to easily benchmark different providers and choose the one that best fits your needs.
**Will more inference providers be supported by Hugging Face in the future?**
> Yes! New inference providers (and models) are being added gradually.
We welcome any suggestions for improving our Hugging Face integration - Create an [issue](https://github.com/BerriAI/litellm/issues/new/choose)/[Join the Discord](https://discord.com/invite/wuPM9dRgDw)! We welcome any suggestions for improving our Hugging Face integration - Create an [issue](https://github.com/BerriAI/litellm/issues/new/choose)/[Join the Discord](https://discord.com/invite/wuPM9dRgDw)!

View file

@ -4,17 +4,16 @@ import TabItem from '@theme/TabItem';
# Infinity # Infinity
| Property | Details | | Property | Details |
|-------|-------| | ------------------------- | ---------------------------------------------------------------------------------------------------------- |
| Description | Infinity is a high-throughput, low-latency REST API for serving text-embeddings, reranking models and clip| | Description | Infinity is a high-throughput, low-latency REST API for serving text-embeddings, reranking models and clip |
| Provider Route on LiteLLM | `infinity/` | | Provider Route on LiteLLM | `infinity/` |
| Supported Operations | `/rerank` | | Supported Operations | `/rerank`, `/embeddings` |
| Link to Provider Doc | [Infinity ↗](https://github.com/michaelfeil/infinity) | | Link to Provider Doc | [Infinity ↗](https://github.com/michaelfeil/infinity) |
## **Usage - LiteLLM Python SDK** ## **Usage - LiteLLM Python SDK**
```python ```python
from litellm import rerank from litellm import rerank, embedding
import os import os
os.environ["INFINITY_API_BASE"] = "http://localhost:8080" os.environ["INFINITY_API_BASE"] = "http://localhost:8080"
@ -39,8 +38,8 @@ model_list:
- model_name: custom-infinity-rerank - model_name: custom-infinity-rerank
litellm_params: litellm_params:
model: infinity/rerank model: infinity/rerank
api_key: os.environ/INFINITY_API_KEY
api_base: https://localhost:8080 api_base: https://localhost:8080
api_key: os.environ/INFINITY_API_KEY
``` ```
Start litellm Start litellm
@ -51,7 +50,9 @@ litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000 # RUNNING on http://0.0.0.0:4000
``` ```
Test request ## Test request:
### Rerank
```bash ```bash
curl http://0.0.0.0:4000/rerank \ curl http://0.0.0.0:4000/rerank \
@ -70,11 +71,10 @@ curl http://0.0.0.0:4000/rerank \
}' }'
``` ```
#### Supported Cohere Rerank API Params
## Supported Cohere Rerank API Params
| Param | Type | Description | | Param | Type | Description |
|-------|-------|-------| | ------------------ | ----------- | ----------------------------------------------- |
| `query` | `str` | The query to rerank the documents against | | `query` | `str` | The query to rerank the documents against |
| `documents` | `list[str]` | The documents to rerank | | `documents` | `list[str]` | The documents to rerank |
| `top_n` | `int` | The number of documents to return | | `top_n` | `int` | The number of documents to return |
@ -138,6 +138,7 @@ response = rerank(
raw_scores=True, # 👈 PROVIDER-SPECIFIC PARAM raw_scores=True, # 👈 PROVIDER-SPECIFIC PARAM
) )
``` ```
</TabItem> </TabItem>
<TabItem value="proxy" label="PROXY"> <TabItem value="proxy" label="PROXY">
@ -179,6 +180,121 @@ curl http://0.0.0.0:4000/rerank \
"raw_scores": True # 👈 PROVIDER-SPECIFIC PARAM "raw_scores": True # 👈 PROVIDER-SPECIFIC PARAM
}' }'
``` ```
</TabItem> </TabItem>
</Tabs> </Tabs>
## Embeddings
LiteLLM provides an OpenAI api compatible `/embeddings` endpoint for embedding calls.
**Setup**
Add this to your litellm proxy config.yaml
```yaml
model_list:
- model_name: custom-infinity-embedding
litellm_params:
model: infinity/provider/custom-embedding-v1
api_base: http://localhost:8080
api_key: os.environ/INFINITY_API_KEY
```
### Test request:
```bash
curl http://0.0.0.0:4000/embeddings \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "custom-infinity-embedding",
"input": ["hello"]
}'
```
#### Supported Embedding API Params
| Param | Type | Description |
| ----------------- | ----------- | ----------------------------------------------------------- |
| `model` | `str` | The embedding model to use |
| `input` | `list[str]` | The text inputs to generate embeddings for |
| `encoding_format` | `str` | The format to return embeddings in (e.g. "float", "base64") |
| `modality` | `str` | The type of input (e.g. "text", "image", "audio") |
### Usage - Basic Examples
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import embedding
import os
os.environ["INFINITY_API_BASE"] = "http://localhost:8080"
response = embedding(
model="infinity/bge-small",
input=["good morning from litellm"]
)
print(response.data[0]['embedding'])
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/embeddings \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "custom-infinity-embedding",
"input": ["hello"]
}'
```
</TabItem>
</Tabs>
### Usage - OpenAI Client
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from openai import OpenAI
client = OpenAI(
api_key="<LITELLM_MASTER_KEY>",
base_url="<LITELLM_URL>"
)
response = client.embeddings.create(
model="bge-small",
input=["The food was delicious and the waiter..."],
encoding_format="float"
)
print(response.data[0].embedding)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/embeddings \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "bge-small",
"input": ["The food was delicious and the waiter..."],
"encoding_format": "float"
}'
```
</TabItem>
</Tabs>

View file

@ -57,7 +57,7 @@ messages = [{ "content": "Hello, how are you?","role": "user"}]
# litellm proxy call # litellm proxy call
response = completion( response = completion(
model="litellm_proxy/your-model-name", model="litellm_proxy/your-model-name",
messages, messages=messages,
api_base = "your-litellm-proxy-url", api_base = "your-litellm-proxy-url",
api_key = "your-litellm-proxy-api-key" api_key = "your-litellm-proxy-api-key"
) )
@ -76,7 +76,7 @@ messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call # openai call
response = completion( response = completion(
model="litellm_proxy/your-model-name", model="litellm_proxy/your-model-name",
messages, messages=messages,
api_base = "your-litellm-proxy-url", api_base = "your-litellm-proxy-url",
stream=True stream=True
) )

View file

@ -202,6 +202,67 @@ curl -X POST 'http://0.0.0.0:4000/chat/completions' \
</TabItem> </TabItem>
</Tabs> </Tabs>
## Using Ollama FIM on `/v1/completions`
LiteLLM supports calling Ollama's `/api/generate` endpoint on `/v1/completions` requests.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import litellm
litellm._turn_on_debug() # turn on debug to see the request
from litellm import completion
response = completion(
model="ollama/llama3.1",
prompt="Hello, world!",
api_base="http://localhost:11434"
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: "llama3.1"
litellm_params:
model: "ollama/llama3.1"
api_base: "http://localhost:11434"
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml --detailed_debug
# RUNNING ON http://0.0.0.0:4000
```
3. Test it!
```python
from openai import OpenAI
client = OpenAI(
api_key="anything", # 👈 PROXY KEY (can be anything, if master_key not set)
base_url="http://0.0.0.0:4000" # 👈 PROXY BASE URL
)
response = client.completions.create(
model="ollama/llama3.1",
prompt="Hello, world!",
api_base="http://localhost:11434"
)
print(response)
```
</TabItem>
</Tabs>
## Using ollama `api/chat` ## Using ollama `api/chat`
In order to send ollama requests to `POST /api/chat` on your ollama server, set the model prefix to `ollama_chat` In order to send ollama requests to `POST /api/chat` on your ollama server, set the model prefix to `ollama_chat`

View file

@ -163,6 +163,12 @@ os.environ["OPENAI_API_BASE"] = "openaiai-api-base" # OPTIONAL
| Model Name | Function Call | | Model Name | Function Call |
|-----------------------|-----------------------------------------------------------------| |-----------------------|-----------------------------------------------------------------|
| gpt-4.1 | `response = completion(model="gpt-4.1", messages=messages)` |
| gpt-4.1-mini | `response = completion(model="gpt-4.1-mini", messages=messages)` |
| gpt-4.1-nano | `response = completion(model="gpt-4.1-nano", messages=messages)` |
| o4-mini | `response = completion(model="o4-mini", messages=messages)` |
| o3-mini | `response = completion(model="o3-mini", messages=messages)` |
| o3 | `response = completion(model="o3", messages=messages)` |
| o1-mini | `response = completion(model="o1-mini", messages=messages)` | | o1-mini | `response = completion(model="o1-mini", messages=messages)` |
| o1-preview | `response = completion(model="o1-preview", messages=messages)` | | o1-preview | `response = completion(model="o1-preview", messages=messages)` |
| gpt-4o-mini | `response = completion(model="gpt-4o-mini", messages=messages)` | | gpt-4o-mini | `response = completion(model="gpt-4o-mini", messages=messages)` |
@ -228,6 +234,92 @@ response = completion(
``` ```
## PDF File Parsing
OpenAI has a new `file` message type that allows you to pass in a PDF file and have it parsed into a structured output. [Read more](https://platform.openai.com/docs/guides/pdf-files?api-mode=chat&lang=python)
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import base64
from litellm import completion
with open("draconomicon.pdf", "rb") as f:
data = f.read()
base64_string = base64.b64encode(data).decode("utf-8")
completion = completion(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{
"type": "file",
"file": {
"filename": "draconomicon.pdf",
"file_data": f"data:application/pdf;base64,{base64_string}",
}
},
{
"type": "text",
"text": "What is the first dragon in the book?",
}
],
},
],
)
print(completion.choices[0].message.content)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: openai-model
litellm_params:
model: gpt-4o
api_key: os.environ/OPENAI_API_KEY
```
2. Start the proxy
```bash
litellm --config config.yaml
```
3. Test it!
```bash
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "openai-model",
"messages": [
{"role": "user", "content": [
{
"type": "file",
"file": {
"filename": "draconomicon.pdf",
"file_data": f"data:application/pdf;base64,{base64_string}",
}
}
]}
]
}'
```
</TabItem>
</Tabs>
## OpenAI Fine Tuned Models ## OpenAI Fine Tuned Models
| Model Name | Function Call | | Model Name | Function Call |
@ -239,6 +331,74 @@ response = completion(
| fine tuned `gpt-3.5-turbo-0613` | `response = completion(model="ft:gpt-3.5-turbo-0613", messages=messages)` | | fine tuned `gpt-3.5-turbo-0613` | `response = completion(model="ft:gpt-3.5-turbo-0613", messages=messages)` |
## OpenAI Audio Transcription
LiteLLM supports OpenAI Audio Transcription endpoint.
Supported models:
| Model Name | Function Call |
|---------------------------|-----------------------------------------------------------------|
| `whisper-1` | `response = completion(model="whisper-1", file=audio_file)` |
| `gpt-4o-transcribe` | `response = completion(model="gpt-4o-transcribe", file=audio_file)` |
| `gpt-4o-mini-transcribe` | `response = completion(model="gpt-4o-mini-transcribe", file=audio_file)` |
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import transcription
import os
# set api keys
os.environ["OPENAI_API_KEY"] = ""
audio_file = open("/path/to/audio.mp3", "rb")
response = transcription(model="gpt-4o-transcribe", file=audio_file)
print(f"response: {response}")
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gpt-4o-transcribe
litellm_params:
model: gpt-4o-transcribe
api_key: os.environ/OPENAI_API_KEY
model_info:
mode: audio_transcription
general_settings:
master_key: sk-1234
```
2. Start the proxy
```bash
litellm --config config.yaml
```
3. Test it!
```bash
curl --location 'http://0.0.0.0:8000/v1/audio/transcriptions' \
--header 'Authorization: Bearer sk-1234' \
--form 'file=@"/Users/krrishdholakia/Downloads/gettysburg.wav"' \
--form 'model="gpt-4o-transcribe"'
```
</TabItem>
</Tabs>
## Advanced ## Advanced
### Getting OpenAI API Response Headers ### Getting OpenAI API Response Headers
@ -449,26 +609,6 @@ response = litellm.acompletion(
) )
``` ```
### Using Helicone Proxy with LiteLLM
```python
import os
import litellm
from litellm import completion
os.environ["OPENAI_API_KEY"] = ""
# os.environ["OPENAI_API_BASE"] = ""
litellm.api_base = "https://oai.hconeai.com/v1"
litellm.headers = {
"Helicone-Auth": f"Bearer {os.getenv('HELICONE_API_KEY')}",
"Helicone-Cache-Enabled": "true",
}
messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call
response = completion("gpt-3.5-turbo", messages)
```
### Using OpenAI Proxy with LiteLLM ### Using OpenAI Proxy with LiteLLM
```python ```python

View file

@ -10,9 +10,11 @@ LiteLLM supports all the text / chat / vision models from [OpenRouter](https://o
import os import os
from litellm import completion from litellm import completion
os.environ["OPENROUTER_API_KEY"] = "" os.environ["OPENROUTER_API_KEY"] = ""
os.environ["OPENROUTER_API_BASE"] = "" # [OPTIONAL] defaults to https://openrouter.ai/api/v1
os.environ["OR_SITE_URL"] = "" # optional
os.environ["OR_APP_NAME"] = "" # optional os.environ["OR_SITE_URL"] = "" # [OPTIONAL]
os.environ["OR_APP_NAME"] = "" # [OPTIONAL]
response = completion( response = completion(
model="openrouter/google/palm-2-chat-bison", model="openrouter/google/palm-2-chat-bison",

View file

@ -17,7 +17,7 @@ import os
os.environ['PERPLEXITYAI_API_KEY'] = "" os.environ['PERPLEXITYAI_API_KEY'] = ""
response = completion( response = completion(
model="perplexity/mistral-7b-instruct", model="perplexity/sonar-pro",
messages=messages messages=messages
) )
print(response) print(response)
@ -30,7 +30,7 @@ import os
os.environ['PERPLEXITYAI_API_KEY'] = "" os.environ['PERPLEXITYAI_API_KEY'] = ""
response = completion( response = completion(
model="perplexity/mistral-7b-instruct", model="perplexity/sonar-pro",
messages=messages, messages=messages,
stream=True stream=True
) )
@ -45,19 +45,12 @@ All models listed here https://docs.perplexity.ai/docs/model-cards are supported
| Model Name | Function Call | | Model Name | Function Call |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| |--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pplx-7b-chat | `completion(model="perplexity/pplx-7b-chat", messages)` | | sonar-deep-research | `completion(model="perplexity/sonar-deep-research", messages)` |
| pplx-70b-chat | `completion(model="perplexity/pplx-70b-chat", messages)` | | sonar-reasoning-pro | `completion(model="perplexity/sonar-reasoning-pro", messages)` |
| pplx-7b-online | `completion(model="perplexity/pplx-7b-online", messages)` | | sonar-reasoning | `completion(model="perplexity/sonar-reasoning", messages)` |
| pplx-70b-online | `completion(model="perplexity/pplx-70b-online", messages)` | | sonar-pro | `completion(model="perplexity/sonar-pro", messages)` |
| codellama-34b-instruct | `completion(model="perplexity/codellama-34b-instruct", messages)` | | sonar | `completion(model="perplexity/sonar", messages)` |
| llama-2-13b-chat | `completion(model="perplexity/llama-2-13b-chat", messages)` | | r1-1776 | `completion(model="perplexity/r1-1776", messages)` |
| llama-2-70b-chat | `completion(model="perplexity/llama-2-70b-chat", messages)` |
| mistral-7b-instruct | `completion(model="perplexity/mistral-7b-instruct", messages)` |
| openhermes-2-mistral-7b | `completion(model="perplexity/openhermes-2-mistral-7b", messages)` |
| openhermes-2.5-mistral-7b | `completion(model="perplexity/openhermes-2.5-mistral-7b", messages)` |
| pplx-7b-chat-alpha | `completion(model="perplexity/pplx-7b-chat-alpha", messages)` |
| pplx-70b-chat-alpha | `completion(model="perplexity/pplx-70b-chat-alpha", messages)` |

View file

@ -230,7 +230,7 @@ response = completion(
model="predibase/llama-3-8b-instruct", model="predibase/llama-3-8b-instruct",
messages = [{ "content": "Hello, how are you?","role": "user"}], messages = [{ "content": "Hello, how are you?","role": "user"}],
adapter_id="my_repo/3", adapter_id="my_repo/3",
adapter_soruce="pbase", adapter_source="pbase",
) )
``` ```

View file

@ -347,7 +347,7 @@ Return a `list[Recipe]`
completion(model="vertex_ai/gemini-1.5-flash-preview-0514", messages=messages, response_format={ "type": "json_object" }) completion(model="vertex_ai/gemini-1.5-flash-preview-0514", messages=messages, response_format={ "type": "json_object" })
``` ```
### **Grounding** ### **Grounding - Web Search**
Add Google Search Result grounding to vertex ai calls. Add Google Search Result grounding to vertex ai calls.
@ -358,7 +358,7 @@ See the grounding metadata with `response_obj._hidden_params["vertex_ai_groundin
<Tabs> <Tabs>
<TabItem value="sdk" label="SDK"> <TabItem value="sdk" label="SDK">
```python ```python showLineNumbers
from litellm import completion from litellm import completion
## SETUP ENVIRONMENT ## SETUP ENVIRONMENT
@ -377,14 +377,36 @@ print(resp)
</TabItem> </TabItem>
<TabItem value="proxy" label="PROXY"> <TabItem value="proxy" label="PROXY">
```bash <Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python showLineNumbers
from openai import OpenAI
client = OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
base_url="http://0.0.0.0:4000/v1/" # point to litellm proxy
)
response = client.chat.completions.create(
model="gemini-pro",
messages=[{"role": "user", "content": "Who won the world cup?"}],
tools=[{"googleSearchRetrieval": {}}],
)
print(response)
```
</TabItem>
<TabItem value="curl" label="cURL">
```bash showLineNumbers
curl http://localhost:4000/v1/chat/completions \ curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \ -H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \ -H "Authorization: Bearer sk-1234" \
-d '{ -d '{
"model": "gemini-pro", "model": "gemini-pro",
"messages": [ "messages": [
{"role": "user", "content": "Hello, Claude!"} {"role": "user", "content": "Who won the world cup?"}
], ],
"tools": [ "tools": [
{ {
@ -394,10 +416,82 @@ curl http://localhost:4000/v1/chat/completions \
}' }'
``` ```
</TabItem>
</Tabs>
</TabItem> </TabItem>
</Tabs> </Tabs>
You can also use the `enterpriseWebSearch` tool for an [enterprise compliant search](https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/web-grounding-enterprise).
<Tabs>
<TabItem value="sdk" label="SDK">
```python showLineNumbers
from litellm import completion
## SETUP ENVIRONMENT
# !gcloud auth application-default login - run this to add vertex credentials to your env
tools = [{"enterpriseWebSearch": {}}] # 👈 ADD GOOGLE ENTERPRISE SEARCH
resp = litellm.completion(
model="vertex_ai/gemini-1.0-pro-001",
messages=[{"role": "user", "content": "Who won the world cup?"}],
tools=tools,
)
print(resp)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python showLineNumbers
from openai import OpenAI
client = OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
base_url="http://0.0.0.0:4000/v1/" # point to litellm proxy
)
response = client.chat.completions.create(
model="gemini-pro",
messages=[{"role": "user", "content": "Who won the world cup?"}],
tools=[{"enterpriseWebSearch": {}}],
)
print(response)
```
</TabItem>
<TabItem value="curl" label="cURL">
```bash showLineNumbers
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "Who won the world cup?"}
],
"tools": [
{
"enterpriseWebSearch": {}
}
]
}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
#### **Moving from Vertex AI SDK to LiteLLM (GROUNDING)** #### **Moving from Vertex AI SDK to LiteLLM (GROUNDING)**
@ -448,6 +542,154 @@ print(resp)
``` ```
### **Thinking / `reasoning_content`**
LiteLLM translates OpenAI's `reasoning_effort` to Gemini's `thinking` parameter. [Code](https://github.com/BerriAI/litellm/blob/620664921902d7a9bfb29897a7b27c1a7ef4ddfb/litellm/llms/vertex_ai/gemini/vertex_and_google_ai_studio_gemini.py#L362)
**Mapping**
| reasoning_effort | thinking |
| ---------------- | -------- |
| "low" | "budget_tokens": 1024 |
| "medium" | "budget_tokens": 2048 |
| "high" | "budget_tokens": 4096 |
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
# !gcloud auth application-default login - run this to add vertex credentials to your env
resp = completion(
model="vertex_ai/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="low",
vertex_project="project-id",
vertex_location="us-central1"
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
- model_name: gemini-2.5-flash
litellm_params:
model: vertex_ai/gemini-2.5-flash-preview-04-17
vertex_credentials: {"project_id": "project-id", "location": "us-central1", "project_key": "project-key"}
vertex_project: "project-id"
vertex_location: "us-central1"
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "gemini-2.5-flash",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"reasoning_effort": "low"
}'
```
</TabItem>
</Tabs>
**Expected Response**
```python
ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
),
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)
```
#### Pass `thinking` to Gemini models
You can also pass the `thinking` parameter to Gemini models.
This is translated to Gemini's [`thinkingConfig` parameter](https://ai.google.dev/gemini-api/docs/thinking#set-budget).
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
# !gcloud auth application-default login - run this to add vertex credentials to your env
response = litellm.completion(
model="vertex_ai/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
vertex_project="project-id",
vertex_location="us-central1"
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "vertex_ai/gemini-2.5-flash-preview-04-17",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
```
</TabItem>
</Tabs>
### **Context Caching** ### **Context Caching**
Use Vertex AI context caching is supported by calling provider api directly. (Unified Endpoint support comin soon.). Use Vertex AI context caching is supported by calling provider api directly. (Unified Endpoint support comin soon.).
@ -1369,6 +1611,103 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
</Tabs> </Tabs>
## Gemini Pro
| Model Name | Function Call |
|------------------|--------------------------------------|
| gemini-pro | `completion('gemini-pro', messages)`, `completion('vertex_ai/gemini-pro', messages)` |
## Fine-tuned Models
You can call fine-tuned Vertex AI Gemini models through LiteLLM
| Property | Details |
|----------|---------|
| Provider Route | `vertex_ai/gemini/{MODEL_ID}` |
| Vertex Documentation | [Vertex AI - Fine-tuned Gemini Models](https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini-use-supervised-tuning#test_the_tuned_model_with_a_prompt)|
| Supported Operations | `/chat/completions`, `/completions`, `/embeddings`, `/images` |
To use a model that follows the `/gemini` request/response format, simply set the model parameter as
```python title="Model parameter for calling fine-tuned gemini models"
model="vertex_ai/gemini/<your-finetuned-model>"
```
<Tabs>
<TabItem value="sdk" label="LiteLLM Python SDK">
```python showLineNumbers title="Example"
import litellm
import os
## set ENV variables
os.environ["VERTEXAI_PROJECT"] = "hardy-device-38811"
os.environ["VERTEXAI_LOCATION"] = "us-central1"
response = litellm.completion(
model="vertex_ai/gemini/<your-finetuned-model>", # e.g. vertex_ai/gemini/4965075652664360960
messages=[{ "content": "Hello, how are you?","role": "user"}],
)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM Proxy">
1. Add Vertex Credentials to your env
```bash title="Authenticate to Vertex AI"
!gcloud auth application-default login
```
2. Setup config.yaml
```yaml showLineNumbers title="Add to litellm config"
- model_name: finetuned-gemini
litellm_params:
model: vertex_ai/gemini/<ENDPOINT_ID>
vertex_project: <PROJECT_ID>
vertex_location: <LOCATION>
```
3. Test it!
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python showLineNumbers title="Example request"
from openai import OpenAI
client = OpenAI(
api_key="your-litellm-key",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(
model="finetuned-gemini",
messages=[
{"role": "user", "content": "hi"}
]
)
print(response)
```
</TabItem>
<TabItem value="curl" label="curl">
```bash showLineNumbers title="Example request"
curl --location 'https://0.0.0.0:4000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: <LITELLM_KEY>' \
--data '{"model": "finetuned-gemini" ,"messages":[{"role": "user", "content":[{"type": "text", "text": "hi"}]}]}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Model Garden ## Model Garden
:::tip :::tip
@ -1479,67 +1818,6 @@ response = completion(
</Tabs> </Tabs>
## Gemini Pro
| Model Name | Function Call |
|------------------|--------------------------------------|
| gemini-pro | `completion('gemini-pro', messages)`, `completion('vertex_ai/gemini-pro', messages)` |
## Fine-tuned Models
Fine tuned models on vertex have a numerical model/endpoint id.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
## set ENV variables
os.environ["VERTEXAI_PROJECT"] = "hardy-device-38811"
os.environ["VERTEXAI_LOCATION"] = "us-central1"
response = completion(
model="vertex_ai/<your-finetuned-model>", # e.g. vertex_ai/4965075652664360960
messages=[{ "content": "Hello, how are you?","role": "user"}],
base_model="vertex_ai/gemini-1.5-pro" # the base model - used for routing
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Add Vertex Credentials to your env
```bash
!gcloud auth application-default login
```
2. Setup config.yaml
```yaml
- model_name: finetuned-gemini
litellm_params:
model: vertex_ai/<ENDPOINT_ID>
vertex_project: <PROJECT_ID>
vertex_location: <LOCATION>
model_info:
base_model: vertex_ai/gemini-1.5-pro # IMPORTANT
```
3. Test it!
```bash
curl --location 'https://0.0.0.0:4000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: <LITELLM_KEY>' \
--data '{"model": "finetuned-gemini" ,"messages":[{"role": "user", "content":[{"type": "text", "text": "hi"}]}]}'
```
</TabItem>
</Tabs>
## Gemini Pro Vision ## Gemini Pro Vision
| Model Name | Function Call | | Model Name | Function Call |
@ -1684,23 +1962,25 @@ assert isinstance(
``` ```
## Usage - PDF / Videos / etc. Files ## Usage - PDF / Videos / Audio etc. Files
Pass any file supported by Vertex AI, through LiteLLM. Pass any file supported by Vertex AI, through LiteLLM.
LiteLLM Supports the following image types passed in url LiteLLM Supports the following file types passed in url.
Using `file` message type for VertexAI is live from v1.65.1+
``` ```
Images with Cloud Storage URIs - gs://cloud-samples-data/generative-ai/image/boats.jpeg Files with Cloud Storage URIs - gs://cloud-samples-data/generative-ai/image/boats.jpeg
Images with direct links - https://storage.googleapis.com/github-repo/img/gemini/intro/landmark3.jpg Files with direct links - https://storage.googleapis.com/github-repo/img/gemini/intro/landmark3.jpg
Videos with Cloud Storage URIs - https://storage.googleapis.com/github-repo/img/gemini/multimodality_usecases_overview/pixel8.mp4 Videos with Cloud Storage URIs - https://storage.googleapis.com/github-repo/img/gemini/multimodality_usecases_overview/pixel8.mp4
Base64 Encoded Local Images Base64 Encoded Local Files
``` ```
<Tabs> <Tabs>
<TabItem value="sdk" label="SDK"> <TabItem value="sdk" label="SDK">
### **Using `gs://`** ### **Using `gs://` or any URL**
```python ```python
from litellm import completion from litellm import completion
@ -1712,8 +1992,11 @@ response = completion(
"content": [ "content": [
{"type": "text", "text": "You are a very professional document summarization specialist. Please summarize the given document."}, {"type": "text", "text": "You are a very professional document summarization specialist. Please summarize the given document."},
{ {
"type": "image_url", "type": "file",
"image_url": "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf", # 👈 PDF "file": {
"file_id": "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
"format": "application/pdf" # OPTIONAL - specify mime-type
}
}, },
], ],
} }
@ -1747,8 +2030,16 @@ response = completion(
"content": [ "content": [
{"type": "text", "text": "You are a very professional document summarization specialist. Please summarize the given document."}, {"type": "text", "text": "You are a very professional document summarization specialist. Please summarize the given document."},
{ {
"type": "image_url", "type": "file",
"image_url": f"data:application/pdf;base64,{encoded_file}", # 👈 PDF "file": {
"file_data": f"data:application/pdf;base64,{encoded_file}", # 👈 PDF
}
},
{
"type": "audio_input",
"audio_input {
"audio_input": f"data:audio/mp3;base64,{encoded_file}", # 👈 AUDIO File ('file' message works as too)
}
}, },
], ],
} }
@ -1794,8 +2085,11 @@ curl http://0.0.0.0:4000/v1/chat/completions \
"text": "You are a very professional document summarization specialist. Please summarize the given document" "text": "You are a very professional document summarization specialist. Please summarize the given document"
}, },
{ {
"type": "image_url", "type": "file",
"image_url": "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf" # 👈 PDF "file": {
"file_id": "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
"format": "application/pdf" # OPTIONAL
}
} }
} }
] ]
@ -1822,10 +2116,17 @@ curl http://0.0.0.0:4000/v1/chat/completions \
"text": "You are a very professional document summarization specialist. Please summarize the given document" "text": "You are a very professional document summarization specialist. Please summarize the given document"
}, },
{ {
"type": "image_url", "type": "file",
"image_url": "data:application/pdf;base64,{encoded_file}" # 👈 PDF "file": {
} "file_data": f"data:application/pdf;base64,{encoded_file}", # 👈 PDF
},
},
{
"type": "audio_input",
"audio_input {
"audio_input": f"data:audio/mp3;base64,{encoded_file}", # 👈 AUDIO File ('file' message works as too)
} }
},
] ]
} }
], ],
@ -1836,6 +2137,7 @@ curl http://0.0.0.0:4000/v1/chat/completions \
</TabItem> </TabItem>
</Tabs> </Tabs>
## Chat Models ## Chat Models
| Model Name | Function Call | | Model Name | Function Call |
|------------------|--------------------------------------| |------------------|--------------------------------------|
@ -2044,7 +2346,12 @@ print(response)
## **Multi-Modal Embeddings** ## **Multi-Modal Embeddings**
Usage
Known Limitations:
- Only supports 1 image / video / image per request
- Only supports GCS or base64 encoded images / videos
### Usage
<Tabs> <Tabs>
<TabItem value="sdk" label="SDK"> <TabItem value="sdk" label="SDK">
@ -2260,6 +2567,115 @@ print(f"Text Embedding: {embeddings.text_embedding}")
</Tabs> </Tabs>
### Text + Image + Video Embeddings
<Tabs>
<TabItem value="sdk" label="SDK">
Text + Image
```python
response = await litellm.aembedding(
model="vertex_ai/multimodalembedding@001",
input=["hey", "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png"] # will be sent as a gcs image
)
```
Text + Video
```python
response = await litellm.aembedding(
model="vertex_ai/multimodalembedding@001",
input=["hey", "gs://my-bucket/embeddings/supermarket-video.mp4"] # will be sent as a gcs image
)
```
Image + Video
```python
response = await litellm.aembedding(
model="vertex_ai/multimodalembedding@001",
input=["gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png", "gs://my-bucket/embeddings/supermarket-video.mp4"] # will be sent as a gcs image
)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM PROXY (Unified Endpoint)">
1. Add model to config.yaml
```yaml
model_list:
- model_name: multimodalembedding@001
litellm_params:
model: vertex_ai/multimodalembedding@001
vertex_project: "adroit-crow-413218"
vertex_location: "us-central1"
vertex_credentials: adroit-crow-413218-a956eef1a2a8.json
litellm_settings:
drop_params: True
```
2. Start Proxy
```
$ litellm --config /path/to/config.yaml
```
3. Make Request use OpenAI Python SDK, Langchain Python SDK
Text + Image
```python
import openai
client = openai.OpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
# # request sent to model set on litellm proxy, `litellm --model`
response = client.embeddings.create(
model="multimodalembedding@001",
input = ["hey", "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png"],
)
print(response)
```
Text + Video
```python
import openai
client = openai.OpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
# # request sent to model set on litellm proxy, `litellm --model`
response = client.embeddings.create(
model="multimodalembedding@001",
input = ["hey", "gs://my-bucket/embeddings/supermarket-video.mp4"],
)
print(response)
```
Image + Video
```python
import openai
client = openai.OpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
# # request sent to model set on litellm proxy, `litellm --model`
response = client.embeddings.create(
model="multimodalembedding@001",
input = ["gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png", "gs://my-bucket/embeddings/supermarket-video.mp4"],
)
print(response)
```
</TabItem>
</Tabs>
## **Image Generation Models** ## **Image Generation Models**
Usage Usage

View file

@ -161,6 +161,120 @@ curl -L -X POST 'http://0.0.0.0:4000/embeddings' \
Example Implementation from VLLM [here](https://github.com/vllm-project/vllm/pull/10020) Example Implementation from VLLM [here](https://github.com/vllm-project/vllm/pull/10020)
<Tabs>
<TabItem value="files_message" label="(Unified) Files Message">
Use this to send a video url to VLLM + Gemini in the same format, using OpenAI's `files` message type.
There are two ways to send a video url to VLLM:
1. Pass the video url directly
```
{"type": "file", "file": {"file_id": video_url}},
```
2. Pass the video data as base64
```
{"type": "file", "file": {"file_data": f"data:video/mp4;base64,{video_data_base64}"}}
```
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Summarize the following video"
},
{
"type": "file",
"file": {
"file_id": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"
}
}
]
}
]
# call vllm
os.environ["HOSTED_VLLM_API_BASE"] = "https://hosted-vllm-api.co"
os.environ["HOSTED_VLLM_API_KEY"] = "" # [optional], if your VLLM server requires an API key
response = completion(
model="hosted_vllm/qwen", # pass the vllm model name
messages=messages,
)
# call gemini
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"
response = completion(
model="gemini/gemini-1.5-flash", # pass the gemini model name
messages=messages,
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: my-model
litellm_params:
model: hosted_vllm/qwen # add hosted_vllm/ prefix to route as OpenAI provider
api_base: https://hosted-vllm-api.co # add api base for OpenAI compatible provider
- model_name: my-gemini-model
litellm_params:
model: gemini/gemini-1.5-flash # add gemini/ prefix to route as Google AI Studio provider
api_key: os.environ/GEMINI_API_KEY
```
2. Start the proxy
```bash
$ litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
3. Test it!
```bash
curl -X POST http://0.0.0.0:4000/chat/completions \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "my-model",
"messages": [
{"role": "user", "content":
[
{"type": "text", "text": "Summarize the following video"},
{"type": "file", "file": {"file_id": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"}}
]
}
]
}'
```
</TabItem>
</Tabs>
</TabItem>
<TabItem value="video_url" label="(VLLM-specific) Video Message">
Use this to send a video url to VLLM in it's native message format (`video_url`).
There are two ways to send a video url to VLLM: There are two ways to send a video url to VLLM:
1. Pass the video url directly 1. Pass the video url directly
@ -249,6 +363,10 @@ curl -X POST http://0.0.0.0:4000/chat/completions \
</Tabs> </Tabs>
</TabItem>
</Tabs>
## (Deprecated) for `vllm pip package` ## (Deprecated) for `vllm pip package`
### Using - `litellm.completion` ### Using - `litellm.completion`

View file

@ -18,13 +18,14 @@ os.environ['XAI_API_KEY']
``` ```
## Sample Usage ## Sample Usage
```python
```python showLineNumbers title="LiteLLM python sdk usage - Non-streaming"
from litellm import completion from litellm import completion
import os import os
os.environ['XAI_API_KEY'] = "" os.environ['XAI_API_KEY'] = ""
response = completion( response = completion(
model="xai/grok-2-latest", model="xai/grok-3-mini-beta",
messages=[ messages=[
{ {
"role": "user", "role": "user",
@ -45,13 +46,14 @@ print(response)
``` ```
## Sample Usage - Streaming ## Sample Usage - Streaming
```python
```python showLineNumbers title="LiteLLM python sdk usage - Streaming"
from litellm import completion from litellm import completion
import os import os
os.environ['XAI_API_KEY'] = "" os.environ['XAI_API_KEY'] = ""
response = completion( response = completion(
model="xai/grok-2-latest", model="xai/grok-3-mini-beta",
messages=[ messages=[
{ {
"role": "user", "role": "user",
@ -75,14 +77,15 @@ for chunk in response:
``` ```
## Sample Usage - Vision ## Sample Usage - Vision
```python
```python showLineNumbers title="LiteLLM python sdk usage - Vision"
import os import os
from litellm import completion from litellm import completion
os.environ["XAI_API_KEY"] = "your-api-key" os.environ["XAI_API_KEY"] = "your-api-key"
response = completion( response = completion(
model="xai/grok-2-latest", model="xai/grok-2-vision-latest",
messages=[ messages=[
{ {
"role": "user", "role": "user",
@ -110,7 +113,7 @@ Here's how to call a XAI model with the LiteLLM Proxy Server
1. Modify the config.yaml 1. Modify the config.yaml
```yaml ```yaml showLineNumbers
model_list: model_list:
- model_name: my-model - model_name: my-model
litellm_params: litellm_params:
@ -131,7 +134,7 @@ Here's how to call a XAI model with the LiteLLM Proxy Server
<TabItem value="openai" label="OpenAI Python v1.0.0+"> <TabItem value="openai" label="OpenAI Python v1.0.0+">
```python ```python showLineNumbers
import openai import openai
client = openai.OpenAI( client = openai.OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
@ -173,3 +176,81 @@ Here's how to call a XAI model with the LiteLLM Proxy Server
</Tabs> </Tabs>
## Reasoning Usage
LiteLLM supports reasoning usage for xAI models.
<Tabs>
<TabItem value="python" label="LiteLLM Python SDK">
```python showLineNumbers title="reasoning with xai/grok-3-mini-beta"
import litellm
response = litellm.completion(
model="xai/grok-3-mini-beta",
messages=[{"role": "user", "content": "What is 101*3?"}],
reasoning_effort="low",
)
print("Reasoning Content:")
print(response.choices[0].message.reasoning_content)
print("\nFinal Response:")
print(completion.choices[0].message.content)
print("\nNumber of completion tokens (input):")
print(completion.usage.completion_tokens)
print("\nNumber of reasoning tokens (input):")
print(completion.usage.completion_tokens_details.reasoning_tokens)
```
</TabItem>
<TabItem value="curl" label="LiteLLM Proxy - OpenAI SDK Usage">
```python showLineNumbers title="reasoning with xai/grok-3-mini-beta"
import openai
client = openai.OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
base_url="http://0.0.0.0:4000" # litellm-proxy-base url
)
response = client.chat.completions.create(
model="xai/grok-3-mini-beta",
messages=[{"role": "user", "content": "What is 101*3?"}],
reasoning_effort="low",
)
print("Reasoning Content:")
print(response.choices[0].message.reasoning_content)
print("\nFinal Response:")
print(completion.choices[0].message.content)
print("\nNumber of completion tokens (input):")
print(completion.usage.completion_tokens)
print("\nNumber of reasoning tokens (input):")
print(completion.usage.completion_tokens_details.reasoning_tokens)
```
</TabItem>
</Tabs>
**Example Response:**
```shell
Reasoning Content:
Let me calculate 101 multiplied by 3:
101 * 3 = 303.
I can double-check that: 100 * 3 is 300, and 1 * 3 is 3, so 300 + 3 = 303. Yes, that's correct.
Final Response:
The result of 101 multiplied by 3 is 303.
Number of completion tokens (input):
14
Number of reasoning tokens (input):
310
```

View file

@ -147,11 +147,16 @@ Some SSO providers require a specific redirect url for login and logout. You can
- Login: `<your-proxy-base-url>/sso/key/generate` - Login: `<your-proxy-base-url>/sso/key/generate`
- Logout: `<your-proxy-base-url>` - Logout: `<your-proxy-base-url>`
Here's the env var to set the logout url on the proxy
```bash
PROXY_LOGOUT_URL="https://www.google.com"
```
#### Step 3. Set `PROXY_BASE_URL` in your .env #### Step 3. Set `PROXY_BASE_URL` in your .env
Set this in your .env (so the proxy can set the correct redirect url) Set this in your .env (so the proxy can set the correct redirect url)
```shell ```shell
PROXY_BASE_URL=https://litellm-api.up.railway.app/ PROXY_BASE_URL=https://litellm-api.up.railway.app
``` ```
#### Step 4. Test flow #### Step 4. Test flow

View file

@ -70,6 +70,21 @@ class MyCustomHandler(CustomLogger): # https://docs.litellm.ai/docs/observabilit
response: str, response: str,
): ):
pass pass
aasync def async_post_call_streaming_iterator_hook(
self,
user_api_key_dict: UserAPIKeyAuth,
response: Any,
request_data: dict,
) -> AsyncGenerator[ModelResponseStream, None]:
"""
Passes the entire stream to the guardrail
This is useful for plugins that need to see the entire stream.
"""
async for item in response:
yield item
proxy_handler_instance = MyCustomHandler() proxy_handler_instance = MyCustomHandler()
``` ```

View file

@ -147,6 +147,7 @@ general_settings:
|------|------|-------------| |------|------|-------------|
| completion_model | string | The default model to use for completions when `model` is not specified in the request | | completion_model | string | The default model to use for completions when `model` is not specified in the request |
| disable_spend_logs | boolean | If true, turns off writing each transaction to the database | | disable_spend_logs | boolean | If true, turns off writing each transaction to the database |
| disable_spend_updates | boolean | If true, turns off all spend updates to the DB. Including key/user/team spend updates. |
| disable_master_key_return | boolean | If true, turns off returning master key on UI. (checked on '/user/info' endpoint) | | disable_master_key_return | boolean | If true, turns off returning master key on UI. (checked on '/user/info' endpoint) |
| disable_retry_on_max_parallel_request_limit_error | boolean | If true, turns off retries when max parallel request limit is reached | | disable_retry_on_max_parallel_request_limit_error | boolean | If true, turns off retries when max parallel request limit is reached |
| disable_reset_budget | boolean | If true, turns off reset budget scheduled task | | disable_reset_budget | boolean | If true, turns off reset budget scheduled task |
@ -159,7 +160,7 @@ general_settings:
| database_url | string | The URL for the database connection [Set up Virtual Keys](virtual_keys) | | database_url | string | The URL for the database connection [Set up Virtual Keys](virtual_keys) |
| database_connection_pool_limit | integer | The limit for database connection pool [Setting DB Connection Pool limit](#configure-db-pool-limits--connection-timeouts) | | database_connection_pool_limit | integer | The limit for database connection pool [Setting DB Connection Pool limit](#configure-db-pool-limits--connection-timeouts) |
| database_connection_timeout | integer | The timeout for database connections in seconds [Setting DB Connection Pool limit, timeout](#configure-db-pool-limits--connection-timeouts) | | database_connection_timeout | integer | The timeout for database connections in seconds [Setting DB Connection Pool limit, timeout](#configure-db-pool-limits--connection-timeouts) |
| allow_requests_on_db_unavailable | boolean | If true, allows requests to succeed even if DB is unreachable. **Only use this if running LiteLLM in your VPC** This will allow requests to work even when LiteLLM cannot connect to the DB to verify a Virtual Key | | allow_requests_on_db_unavailable | boolean | If true, allows requests to succeed even if DB is unreachable. **Only use this if running LiteLLM in your VPC** This will allow requests to work even when LiteLLM cannot connect to the DB to verify a Virtual Key [Doc on graceful db unavailability](prod#5-if-running-litellm-on-vpc-gracefully-handle-db-unavailability) |
| custom_auth | string | Write your own custom authentication logic [Doc Custom Auth](virtual_keys#custom-auth) | | custom_auth | string | Write your own custom authentication logic [Doc Custom Auth](virtual_keys#custom-auth) |
| max_parallel_requests | integer | The max parallel requests allowed per deployment | | max_parallel_requests | integer | The max parallel requests allowed per deployment |
| global_max_parallel_requests | integer | The max parallel requests allowed on the proxy overall | | global_max_parallel_requests | integer | The max parallel requests allowed on the proxy overall |
@ -177,7 +178,7 @@ general_settings:
| use_x_forwarded_for | str | If true, uses the X-Forwarded-For header to get the client IP address | | use_x_forwarded_for | str | If true, uses the X-Forwarded-For header to get the client IP address |
| service_account_settings | List[Dict[str, Any]] | Set `service_account_settings` if you want to create settings that only apply to service account keys (Doc on service accounts)[./service_accounts.md] | | service_account_settings | List[Dict[str, Any]] | Set `service_account_settings` if you want to create settings that only apply to service account keys (Doc on service accounts)[./service_accounts.md] |
| image_generation_model | str | The default model to use for image generation - ignores model set in request | | image_generation_model | str | The default model to use for image generation - ignores model set in request |
| store_model_in_db | boolean | If true, allows `/model/new` endpoint to store model information in db. Endpoint disabled by default. [Doc on `/model/new` endpoint](./model_management.md#create-a-new-model) | | store_model_in_db | boolean | If true, enables storing model + credential information in the DB. |
| store_prompts_in_spend_logs | boolean | If true, allows prompts and responses to be stored in the spend logs table. | | store_prompts_in_spend_logs | boolean | If true, allows prompts and responses to be stored in the spend logs table. |
| max_request_size_mb | int | The maximum size for requests in MB. Requests above this size will be rejected. | | max_request_size_mb | int | The maximum size for requests in MB. Requests above this size will be rejected. |
| max_response_size_mb | int | The maximum size for responses in MB. LLM Responses above this size will not be sent. | | max_response_size_mb | int | The maximum size for responses in MB. LLM Responses above this size will not be sent. |
@ -298,6 +299,9 @@ router_settings:
|------|-------------| |------|-------------|
| ACTIONS_ID_TOKEN_REQUEST_TOKEN | Token for requesting ID in GitHub Actions | ACTIONS_ID_TOKEN_REQUEST_TOKEN | Token for requesting ID in GitHub Actions
| ACTIONS_ID_TOKEN_REQUEST_URL | URL for requesting ID token in GitHub Actions | ACTIONS_ID_TOKEN_REQUEST_URL | URL for requesting ID token in GitHub Actions
| AGENTOPS_ENVIRONMENT | Environment for AgentOps logging integration
| AGENTOPS_API_KEY | API Key for AgentOps logging integration
| AGENTOPS_SERVICE_NAME | Service Name for AgentOps logging integration
| AISPEND_ACCOUNT_ID | Account ID for AI Spend | AISPEND_ACCOUNT_ID | Account ID for AI Spend
| AISPEND_API_KEY | API Key for AI Spend | AISPEND_API_KEY | API Key for AI Spend
| ALLOWED_EMAIL_DOMAINS | List of email domains allowed for access | ALLOWED_EMAIL_DOMAINS | List of email domains allowed for access
@ -322,6 +326,9 @@ router_settings:
| AZURE_AUTHORITY_HOST | Azure authority host URL | AZURE_AUTHORITY_HOST | Azure authority host URL
| AZURE_CLIENT_ID | Client ID for Azure services | AZURE_CLIENT_ID | Client ID for Azure services
| AZURE_CLIENT_SECRET | Client secret for Azure services | AZURE_CLIENT_SECRET | Client secret for Azure services
| AZURE_TENANT_ID | Tenant ID for Azure Active Directory
| AZURE_USERNAME | Username for Azure services, use in conjunction with AZURE_PASSWORD for azure ad token with basic username/password workflow
| AZURE_PASSWORD | Password for Azure services, use in conjunction with AZURE_USERNAME for azure ad token with basic username/password workflow
| AZURE_FEDERATED_TOKEN_FILE | File path to Azure federated token | AZURE_FEDERATED_TOKEN_FILE | File path to Azure federated token
| AZURE_KEY_VAULT_URI | URI for Azure Key Vault | AZURE_KEY_VAULT_URI | URI for Azure Key Vault
| AZURE_STORAGE_ACCOUNT_KEY | The Azure Storage Account Key to use for Authentication to Azure Blob Storage logging | AZURE_STORAGE_ACCOUNT_KEY | The Azure Storage Account Key to use for Authentication to Azure Blob Storage logging
@ -330,7 +337,6 @@ router_settings:
| AZURE_STORAGE_TENANT_ID | The Application Tenant ID to use for Authentication to Azure Blob Storage logging | AZURE_STORAGE_TENANT_ID | The Application Tenant ID to use for Authentication to Azure Blob Storage logging
| AZURE_STORAGE_CLIENT_ID | The Application Client ID to use for Authentication to Azure Blob Storage logging | AZURE_STORAGE_CLIENT_ID | The Application Client ID to use for Authentication to Azure Blob Storage logging
| AZURE_STORAGE_CLIENT_SECRET | The Application Client Secret to use for Authentication to Azure Blob Storage logging | AZURE_STORAGE_CLIENT_SECRET | The Application Client Secret to use for Authentication to Azure Blob Storage logging
| AZURE_TENANT_ID | Tenant ID for Azure Active Directory
| BERRISPEND_ACCOUNT_ID | Account ID for BerriSpend service | BERRISPEND_ACCOUNT_ID | Account ID for BerriSpend service
| BRAINTRUST_API_KEY | API key for Braintrust integration | BRAINTRUST_API_KEY | API key for Braintrust integration
| CIRCLE_OIDC_TOKEN | OpenID Connect token for CircleCI | CIRCLE_OIDC_TOKEN | OpenID Connect token for CircleCI
@ -405,6 +411,7 @@ router_settings:
| HELICONE_API_KEY | API key for Helicone service | HELICONE_API_KEY | API key for Helicone service
| HOSTNAME | Hostname for the server, this will be [emitted to `datadog` logs](https://docs.litellm.ai/docs/proxy/logging#datadog) | HOSTNAME | Hostname for the server, this will be [emitted to `datadog` logs](https://docs.litellm.ai/docs/proxy/logging#datadog)
| HUGGINGFACE_API_BASE | Base URL for Hugging Face API | HUGGINGFACE_API_BASE | Base URL for Hugging Face API
| HUGGINGFACE_API_KEY | API key for Hugging Face API
| IAM_TOKEN_DB_AUTH | IAM token for database authentication | IAM_TOKEN_DB_AUTH | IAM token for database authentication
| JSON_LOGS | Enable JSON formatted logging | JSON_LOGS | Enable JSON formatted logging
| JWT_AUDIENCE | Expected audience for JWT tokens | JWT_AUDIENCE | Expected audience for JWT tokens
@ -431,6 +438,7 @@ router_settings:
| LITERAL_BATCH_SIZE | Batch size for Literal operations | LITERAL_BATCH_SIZE | Batch size for Literal operations
| LITELLM_DONT_SHOW_FEEDBACK_BOX | Flag to hide feedback box in LiteLLM UI | LITELLM_DONT_SHOW_FEEDBACK_BOX | Flag to hide feedback box in LiteLLM UI
| LITELLM_DROP_PARAMS | Parameters to drop in LiteLLM requests | LITELLM_DROP_PARAMS | Parameters to drop in LiteLLM requests
| LITELLM_MODIFY_PARAMS | Parameters to modify in LiteLLM requests
| LITELLM_EMAIL | Email associated with LiteLLM account | LITELLM_EMAIL | Email associated with LiteLLM account
| LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRIES | Maximum retries for parallel requests in LiteLLM | LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRIES | Maximum retries for parallel requests in LiteLLM
| LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRY_TIMEOUT | Timeout for retries of parallel requests in LiteLLM | LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRY_TIMEOUT | Timeout for retries of parallel requests in LiteLLM
@ -444,9 +452,12 @@ router_settings:
| LITELLM_TOKEN | Access token for LiteLLM integration | LITELLM_TOKEN | Access token for LiteLLM integration
| LITELLM_PRINT_STANDARD_LOGGING_PAYLOAD | If true, prints the standard logging payload to the console - useful for debugging | LITELLM_PRINT_STANDARD_LOGGING_PAYLOAD | If true, prints the standard logging payload to the console - useful for debugging
| LOGFIRE_TOKEN | Token for Logfire logging service | LOGFIRE_TOKEN | Token for Logfire logging service
| MISTRAL_API_BASE | Base URL for Mistral API
| MISTRAL_API_KEY | API key for Mistral API
| MICROSOFT_CLIENT_ID | Client ID for Microsoft services | MICROSOFT_CLIENT_ID | Client ID for Microsoft services
| MICROSOFT_CLIENT_SECRET | Client secret for Microsoft services | MICROSOFT_CLIENT_SECRET | Client secret for Microsoft services
| MICROSOFT_TENANT | Tenant ID for Microsoft Azure | MICROSOFT_TENANT | Tenant ID for Microsoft Azure
| MICROSOFT_SERVICE_PRINCIPAL_ID | Service Principal ID for Microsoft Enterprise Application. (This is an advanced feature if you want litellm to auto-assign members to Litellm Teams based on their Microsoft Entra ID Groups)
| NO_DOCS | Flag to disable documentation generation | NO_DOCS | Flag to disable documentation generation
| NO_PROXY | List of addresses to bypass proxy | NO_PROXY | List of addresses to bypass proxy
| OAUTH_TOKEN_INFO_ENDPOINT | Endpoint for OAuth token info retrieval | OAUTH_TOKEN_INFO_ENDPOINT | Endpoint for OAuth token info retrieval
@ -478,7 +489,7 @@ router_settings:
| PROXY_ADMIN_ID | Admin identifier for proxy server | PROXY_ADMIN_ID | Admin identifier for proxy server
| PROXY_BASE_URL | Base URL for proxy service | PROXY_BASE_URL | Base URL for proxy service
| PROXY_LOGOUT_URL | URL for logging out of the proxy service | PROXY_LOGOUT_URL | URL for logging out of the proxy service
| PROXY_MASTER_KEY | Master key for proxy authentication | LITELLM_MASTER_KEY | Master key for proxy authentication
| QDRANT_API_BASE | Base URL for Qdrant API | QDRANT_API_BASE | Base URL for Qdrant API
| QDRANT_API_KEY | API key for Qdrant service | QDRANT_API_KEY | API key for Qdrant service
| QDRANT_URL | Connection URL for Qdrant database | QDRANT_URL | Connection URL for Qdrant database
@ -499,9 +510,11 @@ router_settings:
| SMTP_USERNAME | Username for SMTP authentication (do not set if SMTP does not require auth) | SMTP_USERNAME | Username for SMTP authentication (do not set if SMTP does not require auth)
| SPEND_LOGS_URL | URL for retrieving spend logs | SPEND_LOGS_URL | URL for retrieving spend logs
| SSL_CERTIFICATE | Path to the SSL certificate file | SSL_CERTIFICATE | Path to the SSL certificate file
| SSL_SECURITY_LEVEL | [BETA] Security level for SSL/TLS connections. E.g. `DEFAULT@SECLEVEL=1`
| SSL_VERIFY | Flag to enable or disable SSL certificate verification | SSL_VERIFY | Flag to enable or disable SSL certificate verification
| SUPABASE_KEY | API key for Supabase service | SUPABASE_KEY | API key for Supabase service
| SUPABASE_URL | Base URL for Supabase instance | SUPABASE_URL | Base URL for Supabase instance
| STORE_MODEL_IN_DB | If true, enables storing model + credential information in the DB.
| TEST_EMAIL_ADDRESS | Email address used for testing purposes | TEST_EMAIL_ADDRESS | Email address used for testing purposes
| UI_LOGO_PATH | Path to the logo image used in the UI | UI_LOGO_PATH | Path to the logo image used in the UI
| UI_PASSWORD | Password for accessing the UI | UI_PASSWORD | Password for accessing the UI
@ -512,5 +525,5 @@ router_settings:
| UPSTREAM_LANGFUSE_RELEASE | Release version identifier for upstream Langfuse | UPSTREAM_LANGFUSE_RELEASE | Release version identifier for upstream Langfuse
| UPSTREAM_LANGFUSE_SECRET_KEY | Secret key for upstream Langfuse authentication | UPSTREAM_LANGFUSE_SECRET_KEY | Secret key for upstream Langfuse authentication
| USE_AWS_KMS | Flag to enable AWS Key Management Service for encryption | USE_AWS_KMS | Flag to enable AWS Key Management Service for encryption
| USE_PRISMA_MIGRATE | Flag to use prisma migrate instead of prisma db push. Recommended for production environments.
| WEBHOOK_URL | URL for receiving webhooks from external services | WEBHOOK_URL | URL for receiving webhooks from external services

View file

@ -6,6 +6,8 @@ import Image from '@theme/IdealImage';
Track spend for keys, users, and teams across 100+ LLMs. Track spend for keys, users, and teams across 100+ LLMs.
LiteLLM automatically tracks spend for all known models. See our [model cost map](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json)
### How to Track Spend with LiteLLM ### How to Track Spend with LiteLLM
**Step 1** **Step 1**
@ -35,10 +37,10 @@ response = client.chat.completions.create(
"content": "this is a test request, write a short poem" "content": "this is a test request, write a short poem"
} }
], ],
user="palantir", user="palantir", # OPTIONAL: pass user to track spend by user
extra_body={ extra_body={
"metadata": { "metadata": {
"tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"] "tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"] # ENTERPRISE: pass tags to track spend by tags
} }
} }
) )
@ -63,9 +65,9 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
"content": "what llm are you" "content": "what llm are you"
} }
], ],
"user": "palantir", "user": "palantir", # OPTIONAL: pass user to track spend by user
"metadata": { "metadata": {
"tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"] "tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"] # ENTERPRISE: pass tags to track spend by tags
} }
}' }'
``` ```
@ -90,7 +92,7 @@ chat = ChatOpenAI(
user="palantir", user="palantir",
extra_body={ extra_body={
"metadata": { "metadata": {
"tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"] "tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"] # ENTERPRISE: pass tags to track spend by tags
} }
} }
) )
@ -150,8 +152,112 @@ Navigate to the Usage Tab on the LiteLLM UI (found on https://your-proxy-endpoin
</TabItem> </TabItem>
</Tabs> </Tabs>
## ✨ (Enterprise) API Endpoints to get Spend ### Allowing Non-Proxy Admins to access `/spend` endpoints
### Getting Spend Reports - To Charge Other Teams, Customers, Users
Use this when you want non-proxy admins to access `/spend` endpoints
:::info
Schedule a [meeting with us to get your Enterprise License](https://calendly.com/d/4mp-gd3-k5k/litellm-1-1-onboarding-chat)
:::
##### Create Key
Create Key with with `permissions={"get_spend_routes": true}`
```shell
curl --location 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"permissions": {"get_spend_routes": true}
}'
```
##### Use generated key on `/spend` endpoints
Access spend Routes with newly generate keys
```shell
curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30' \
-H 'Authorization: Bearer sk-H16BKvrSNConSsBYLGc_7A'
```
#### Reset Team, API Key Spend - MASTER KEY ONLY
Use `/global/spend/reset` if you want to:
- Reset the Spend for all API Keys, Teams. The `spend` for ALL Teams and Keys in `LiteLLM_TeamTable` and `LiteLLM_VerificationToken` will be set to `spend=0`
- LiteLLM will maintain all the logs in `LiteLLMSpendLogs` for Auditing Purposes
##### Request
Only the `LITELLM_MASTER_KEY` you set can access this route
```shell
curl -X POST \
'http://localhost:4000/global/spend/reset' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json'
```
##### Expected Responses
```shell
{"message":"Spend for all API Keys and Teams reset successfully","status":"success"}
```
## Daily Spend Breakdown API
Retrieve granular daily usage data for a user (by model, provider, and API key) with a single endpoint.
Example Request:
```shell title="Daily Spend Breakdown API" showLineNumbers
curl -L -X GET 'http://localhost:4000/user/daily/activity?start_date=2025-03-20&end_date=2025-03-27' \
-H 'Authorization: Bearer sk-...'
```
```json title="Daily Spend Breakdown API Response" showLineNumbers
{
"results": [
{
"date": "2025-03-27",
"metrics": {
"spend": 0.0177072,
"prompt_tokens": 111,
"completion_tokens": 1711,
"total_tokens": 1822,
"api_requests": 11
},
"breakdown": {
"models": {
"gpt-4o-mini": {
"spend": 1.095e-05,
"prompt_tokens": 37,
"completion_tokens": 9,
"total_tokens": 46,
"api_requests": 1
},
"providers": { "openai": { ... }, "azure_ai": { ... } },
"api_keys": { "3126b6eaf1...": { ... } }
}
}
],
"metadata": {
"total_spend": 0.7274667,
"total_prompt_tokens": 280990,
"total_completion_tokens": 376674,
"total_api_requests": 14
}
}
```
### API Reference
See our [Swagger API](https://litellm-api.up.railway.app/#/Budget%20%26%20Spend%20Tracking/get_user_daily_activity_user_daily_activity_get) for more details on the `/user/daily/activity` endpoint
## ✨ (Enterprise) Generate Spend Reports
Use this to charge other teams, customers, users
Use the `/global/spend/report` endpoint to get spend reports Use the `/global/spend/report` endpoint to get spend reports
@ -470,105 +576,6 @@ curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end
</Tabs> </Tabs>
### Allowing Non-Proxy Admins to access `/spend` endpoints
Use this when you want non-proxy admins to access `/spend` endpoints
:::info
Schedule a [meeting with us to get your Enterprise License](https://calendly.com/d/4mp-gd3-k5k/litellm-1-1-onboarding-chat)
:::
##### Create Key
Create Key with with `permissions={"get_spend_routes": true}`
```shell
curl --location 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"permissions": {"get_spend_routes": true}
}'
```
##### Use generated key on `/spend` endpoints
Access spend Routes with newly generate keys
```shell
curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30' \
-H 'Authorization: Bearer sk-H16BKvrSNConSsBYLGc_7A'
```
#### Reset Team, API Key Spend - MASTER KEY ONLY
Use `/global/spend/reset` if you want to:
- Reset the Spend for all API Keys, Teams. The `spend` for ALL Teams and Keys in `LiteLLM_TeamTable` and `LiteLLM_VerificationToken` will be set to `spend=0`
- LiteLLM will maintain all the logs in `LiteLLMSpendLogs` for Auditing Purposes
##### Request
Only the `LITELLM_MASTER_KEY` you set can access this route
```shell
curl -X POST \
'http://localhost:4000/global/spend/reset' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json'
```
##### Expected Responses
```shell
{"message":"Spend for all API Keys and Teams reset successfully","status":"success"}
```
## Spend Tracking for Azure OpenAI Models
Set base model for cost tracking azure image-gen call
#### Image Generation
```yaml
model_list:
- model_name: dall-e-3
litellm_params:
model: azure/dall-e-3-test
api_version: 2023-06-01-preview
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_key: os.environ/AZURE_API_KEY
base_model: dall-e-3 # 👈 set dall-e-3 as base model
model_info:
mode: image_generation
```
#### Chat Completions / Embeddings
**Problem**: Azure returns `gpt-4` in the response when `azure/gpt-4-1106-preview` is used. This leads to inaccurate cost tracking
**Solution** ✅ : Set `base_model` on your config so litellm uses the correct model for calculating azure cost
Get the base model name from [here](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json)
Example config with `base_model`
```yaml
model_list:
- model_name: azure-gpt-3.5
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
model_info:
base_model: azure/gpt-4-1106-preview
```
## Custom Input/Output Pricing
👉 Head to [Custom Input/Output Pricing](https://docs.litellm.ai/docs/proxy/custom_pricing) to setup custom pricing or your models
## ✨ Custom Spend Log metadata ## ✨ Custom Spend Log metadata
@ -588,3 +595,4 @@ Logging specific key,value pairs in spend logs metadata is an enterprise feature
Tracking spend with Custom tags is an enterprise feature. [See here](./enterprise.md#tracking-spend-for-custom-tags) Tracking spend with Custom tags is an enterprise feature. [See here](./enterprise.md#tracking-spend-for-custom-tags)
::: :::

View file

@ -26,10 +26,12 @@ model_list:
- model_name: sagemaker-completion-model - model_name: sagemaker-completion-model
litellm_params: litellm_params:
model: sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4 model: sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4
model_info:
input_cost_per_second: 0.000420 input_cost_per_second: 0.000420
- model_name: sagemaker-embedding-model - model_name: sagemaker-embedding-model
litellm_params: litellm_params:
model: sagemaker/berri-benchmarking-gpt-j-6b-fp16 model: sagemaker/berri-benchmarking-gpt-j-6b-fp16
model_info:
input_cost_per_second: 0.000420 input_cost_per_second: 0.000420
``` ```
@ -55,11 +57,55 @@ model_list:
api_key: os.environ/AZURE_API_KEY api_key: os.environ/AZURE_API_KEY
api_base: os.environ/AZURE_API_BASE api_base: os.environ/AZURE_API_BASE
api_version: os.envrion/AZURE_API_VERSION api_version: os.envrion/AZURE_API_VERSION
model_info:
input_cost_per_token: 0.000421 # 👈 ONLY to track cost per token input_cost_per_token: 0.000421 # 👈 ONLY to track cost per token
output_cost_per_token: 0.000520 # 👈 ONLY to track cost per token output_cost_per_token: 0.000520 # 👈 ONLY to track cost per token
``` ```
### Debugging ## Override Model Cost Map
You can override [our model cost map](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json) with your own custom pricing for a mapped model.
Just add a `model_info` key to your model in the config, and override the desired keys.
Example: Override Anthropic's model cost map for the `prod/claude-3-5-sonnet-20241022` model.
```yaml
model_list:
- model_name: "prod/claude-3-5-sonnet-20241022"
litellm_params:
model: "anthropic/claude-3-5-sonnet-20241022"
api_key: os.environ/ANTHROPIC_PROD_API_KEY
model_info:
input_cost_per_token: 0.000006
output_cost_per_token: 0.00003
cache_creation_input_token_cost: 0.0000075
cache_read_input_token_cost: 0.0000006
```
## Set 'base_model' for Cost Tracking (e.g. Azure deployments)
**Problem**: Azure returns `gpt-4` in the response when `azure/gpt-4-1106-preview` is used. This leads to inaccurate cost tracking
**Solution** ✅ : Set `base_model` on your config so litellm uses the correct model for calculating azure cost
Get the base model name from [here](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json)
Example config with `base_model`
```yaml
model_list:
- model_name: azure-gpt-3.5
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
model_info:
base_model: azure/gpt-4-1106-preview
```
## Debugging
If you're custom pricing is not being used or you're seeing errors, please check the following: If you're custom pricing is not being used or you're seeing errors, please check the following:

View file

@ -0,0 +1,194 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Custom Prompt Management
Connect LiteLLM to your prompt management system with custom hooks.
## Overview
<Image
img={require('../../img/custom_prompt_management.png')}
style={{width: '100%', display: 'block', margin: '2rem auto'}}
/>
## How it works
## Quick Start
### 1. Create Your Custom Prompt Manager
Create a class that inherits from `CustomPromptManagement` to handle prompt retrieval and formatting:
**Example Implementation**
Create a new file called `custom_prompt.py` and add this code. The key method here is `get_chat_completion_prompt` you can implement custom logic to retrieve and format prompts based on the `prompt_id` and `prompt_variables`.
```python
from typing import List, Tuple, Optional
from litellm.integrations.custom_prompt_management import CustomPromptManagement
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import StandardCallbackDynamicParams
class MyCustomPromptManagement(CustomPromptManagement):
def get_chat_completion_prompt(
self,
model: str,
messages: List[AllMessageValues],
non_default_params: dict,
prompt_id: str,
prompt_variables: Optional[dict],
dynamic_callback_params: StandardCallbackDynamicParams,
) -> Tuple[str, List[AllMessageValues], dict]:
"""
Retrieve and format prompts based on prompt_id.
Returns:
- model: The model to use
- messages: The formatted messages
- non_default_params: Optional parameters like temperature
"""
# Example matching the diagram: Add system message for prompt_id "1234"
if prompt_id == "1234":
# Prepend system message while preserving existing messages
new_messages = [
{"role": "system", "content": "Be a good Bot!"},
] + messages
return model, new_messages, non_default_params
# Default: Return original messages if no prompt_id match
return model, messages, non_default_params
prompt_management = MyCustomPromptManagement()
```
### 2. Configure Your Prompt Manager in LiteLLM `config.yaml`
```yaml
model_list:
- model_name: gpt-4
litellm_params:
model: openai/gpt-4
api_key: os.environ/OPENAI_API_KEY
litellm_settings:
callbacks: custom_prompt.prompt_management # sets litellm.callbacks = [prompt_management]
```
### 3. Start LiteLLM Gateway
<Tabs>
<TabItem value="docker" label="Docker Run">
Mount your `custom_logger.py` on the LiteLLM Docker container.
```shell
docker run -d \
-p 4000:4000 \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
--name my-app \
-v $(pwd)/my_config.yaml:/app/config.yaml \
-v $(pwd)/custom_logger.py:/app/custom_logger.py \
my-app:latest \
--config /app/config.yaml \
--port 4000 \
--detailed_debug \
```
</TabItem>
<TabItem value="py" label="litellm pip">
```shell
litellm --config config.yaml --detailed_debug
```
</TabItem>
</Tabs>
### 4. Test Your Custom Prompt Manager
When you pass `prompt_id="1234"`, the custom prompt manager will add a system message "Be a good Bot!" to your conversation:
<Tabs>
<TabItem value="openai" label="OpenAI Python v1.0.0+">
```python
from openai import OpenAI
client = OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(
model="gemini-1.5-pro",
messages=[{"role": "user", "content": "hi"}],
prompt_id="1234"
)
print(response.choices[0].message.content)
```
</TabItem>
<TabItem value="langchain" label="Langchain">
```python
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
chat = ChatOpenAI(
model="gpt-4",
openai_api_key="sk-1234",
openai_api_base="http://0.0.0.0:4000",
extra_body={
"prompt_id": "1234"
}
)
messages = []
response = chat(messages)
print(response.content)
```
</TabItem>
<TabItem value="curl" label="Curl">
```shell
curl -X POST http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gemini-1.5-pro",
"messages": [{"role": "user", "content": "hi"}],
"prompt_id": "1234"
}'
```
</TabItem>
</Tabs>
The request will be transformed from:
```json
{
"model": "gemini-1.5-pro",
"messages": [{"role": "user", "content": "hi"}],
"prompt_id": "1234"
}
```
To:
```json
{
"model": "gemini-1.5-pro",
"messages": [
{"role": "system", "content": "Be a good Bot!"},
{"role": "user", "content": "hi"}
]
}
```

View file

@ -0,0 +1,86 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# High Availability Setup (Resolve DB Deadlocks)
Resolve any Database Deadlocks you see in high traffic by using this setup
## What causes the problem?
LiteLLM writes `UPDATE` and `UPSERT` queries to the DB. When using 10+ instances of LiteLLM, these queries can cause deadlocks since each instance could simultaneously attempt to update the same `user_id`, `team_id`, `key` etc.
## How the high availability setup fixes the problem
- All instances will write to a Redis queue instead of the DB.
- A single instance will acquire a lock on the DB and flush the redis queue to the DB.
## How it works
### Stage 1. Each instance writes updates to redis
Each instance will accumlate the spend updates for a key, user, team, etc and write the updates to a redis queue.
<Image img={require('../../img/deadlock_fix_1.png')} style={{ width: '900px', height: 'auto' }} />
<p style={{textAlign: 'left', color: '#666'}}>
Each instance writes updates to redis
</p>
### Stage 2. A single instance flushes the redis queue to the DB
A single instance will acquire a lock on the DB and flush all elements in the redis queue to the DB.
- 1 instance will attempt to acquire the lock for the DB update job
- The status of the lock is stored in redis
- If the instance acquires the lock to write to DB
- It will read all updates from redis
- Aggregate all updates into 1 transaction
- Write updates to DB
- Release the lock
- Note: Only 1 instance can acquire the lock at a time, this limits the number of instances that can write to the DB at once
<Image img={require('../../img/deadlock_fix_2.png')} style={{ width: '900px', height: 'auto' }} />
<p style={{textAlign: 'left', color: '#666'}}>
A single instance flushes the redis queue to the DB
</p>
## Usage
### Required components
- Redis
- Postgres
### Setup on LiteLLM config
You can enable using the redis buffer by setting `use_redis_transaction_buffer: true` in the `general_settings` section of your `proxy_config.yaml` file.
Note: This setup requires litellm to be connected to a redis instance.
```yaml showLineNumbers title="litellm proxy_config.yaml"
general_settings:
use_redis_transaction_buffer: true
litellm_settings:
cache: True
cache_params:
type: redis
supported_call_types: [] # Optional: Set cache for proxy, but not on the actual llm api call
```
## Monitoring
LiteLLM emits the following prometheus metrics to monitor the health/status of the in memory buffer and redis buffer.
| Metric Name | Description | Storage Type |
|-----------------------------------------------------|-----------------------------------------------------------------------------|--------------|
| `litellm_pod_lock_manager_size` | Indicates which pod has the lock to write updates to the database. | Redis |
| `litellm_in_memory_daily_spend_update_queue_size` | Number of items in the in-memory daily spend update queue. These are the aggregate spend logs for each user. | In-Memory |
| `litellm_redis_daily_spend_update_queue_size` | Number of items in the Redis daily spend update queue. These are the aggregate spend logs for each user. | Redis |
| `litellm_in_memory_spend_update_queue_size` | In-memory aggregate spend values for keys, users, teams, team members, etc.| In-Memory |
| `litellm_redis_spend_update_queue_size` | Redis aggregate spend values for keys, users, teams, etc. | Redis |

View file

@ -23,6 +23,12 @@ In the newly created guard's page, you can find a reference to the prompt policy
You can decide which detections will be enabled, and set the threshold for each detection. You can decide which detections will be enabled, and set the threshold for each detection.
:::info
When using LiteLLM with virtual keys, key-specific policies can be set directly in Aim's guards page by specifying the virtual key alias when creating the guard.
Only the aliases of your virtual keys (and not the actual key secrets) will be sent to Aim.
:::
### 3. Add Aim Guardrail on your LiteLLM config.yaml ### 3. Add Aim Guardrail on your LiteLLM config.yaml
Define your guardrails under the `guardrails` section Define your guardrails under the `guardrails` section
@ -134,7 +140,7 @@ The above request should not be blocked, and you should receive a regular LLM re
</Tabs> </Tabs>
# Advanced ## Advanced
Aim Guard provides user-specific Guardrail policies, enabling you to apply tailored policies to individual users. Aim Guard provides user-specific Guardrail policies, enabling you to apply tailored policies to individual users.
To utilize this feature, include the end-user's email in the request payload by setting the `x-aim-user-email` header of your request. To utilize this feature, include the end-user's email in the request payload by setting the `x-aim-user-email` header of your request.

View file

@ -10,10 +10,12 @@ Use this is you want to write code to run a custom guardrail
### 1. Write a `CustomGuardrail` Class ### 1. Write a `CustomGuardrail` Class
A CustomGuardrail has 3 methods to enforce guardrails A CustomGuardrail has 4 methods to enforce guardrails
- `async_pre_call_hook` - (Optional) modify input or reject request before making LLM API call - `async_pre_call_hook` - (Optional) modify input or reject request before making LLM API call
- `async_moderation_hook` - (Optional) reject request, runs while making LLM API call (help to lower latency) - `async_moderation_hook` - (Optional) reject request, runs while making LLM API call (help to lower latency)
- `async_post_call_success_hook`- (Optional) apply guardrail on input/output, runs after making LLM API call - `async_post_call_success_hook`- (Optional) apply guardrail on input/output, runs after making LLM API call
- `async_post_call_streaming_iterator_hook` - (Optional) pass the entire stream to the guardrail
**[See detailed spec of methods here](#customguardrail-methods)** **[See detailed spec of methods here](#customguardrail-methods)**
@ -128,6 +130,23 @@ class myCustomGuardrail(CustomGuardrail):
): ):
raise ValueError("Guardrail failed Coffee Detected") raise ValueError("Guardrail failed Coffee Detected")
async def async_post_call_streaming_iterator_hook(
self,
user_api_key_dict: UserAPIKeyAuth,
response: Any,
request_data: dict,
) -> AsyncGenerator[ModelResponseStream, None]:
"""
Passes the entire stream to the guardrail
This is useful for guardrails that need to see the entire response, such as PII masking.
See Aim guardrail implementation for an example - https://github.com/BerriAI/litellm/blob/d0e022cfacb8e9ebc5409bb652059b6fd97b45c0/litellm/proxy/guardrails/guardrail_hooks/aim.py#L168
Triggered by mode: 'post_call'
"""
async for item in response:
yield item
``` ```

View file

@ -17,6 +17,14 @@ model_list:
api_key: os.environ/OPENAI_API_KEY api_key: os.environ/OPENAI_API_KEY
guardrails: guardrails:
- guardrail_name: general-guard
litellm_params:
guardrail: aim
mode: [pre_call, post_call]
api_key: os.environ/AIM_API_KEY
api_base: os.environ/AIM_API_BASE
default_on: true # Optional
- guardrail_name: "aporia-pre-guard" - guardrail_name: "aporia-pre-guard"
litellm_params: litellm_params:
guardrail: aporia # supported values: "aporia", "lakera" guardrail: aporia # supported values: "aporia", "lakera"
@ -45,6 +53,7 @@ guardrails:
- `pre_call` Run **before** LLM call, on **input** - `pre_call` Run **before** LLM call, on **input**
- `post_call` Run **after** LLM call, on **input & output** - `post_call` Run **after** LLM call, on **input & output**
- `during_call` Run **during** LLM call, on **input** Same as `pre_call` but runs in parallel as LLM call. Response not returned until guardrail check completes - `during_call` Run **during** LLM call, on **input** Same as `pre_call` but runs in parallel as LLM call. Response not returned until guardrail check completes
- A list of the above values to run multiple modes, e.g. `mode: [pre_call, post_call]`
## 2. Start LiteLLM Gateway ## 2. Start LiteLLM Gateway

View file

@ -0,0 +1,21 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Image URL Handling
<Image img={require('../../img/image_handling.png')} style={{ width: '900px', height: 'auto' }} />
Some LLM API's don't support url's for images, but do support base-64 strings.
For those, LiteLLM will:
1. Detect a URL being passed
2. Check if the LLM API supports a URL
3. Else, will download the base64
4. Send the provider a base64 string.
LiteLLM also caches this result, in-memory to reduce latency for subsequent calls.
The limit for an in-memory cache is 1MB.

View file

@ -0,0 +1,279 @@
import TabItem from '@theme/TabItem';
import Tabs from '@theme/Tabs';
import Image from '@theme/IdealImage';
# [BETA] Unified File ID
Reuse the same 'file id' across different providers.
| Feature | Description | Comments |
| --- | --- | --- |
| Proxy | ✅ | |
| SDK | ❌ | Requires postgres DB for storing file ids |
| Available across all providers | ✅ | |
Limitations of LiteLLM Managed Files:
- Only works for `/chat/completions` requests.
- Assumes just 1 model configured per model_name.
Follow [here](https://github.com/BerriAI/litellm/discussions/9632) for multiple models, batches support.
### 1. Setup config.yaml
```
model_list:
- model_name: "gemini-2.0-flash"
litellm_params:
model: vertex_ai/gemini-2.0-flash
vertex_project: my-project-id
vertex_location: us-central1
- model_name: "gpt-4o-mini-openai"
litellm_params:
model: gpt-4o-mini
api_key: os.environ/OPENAI_API_KEY
```
### 2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
### 3. Test it!
Specify `target_model_names` to use the same file id across different providers. This is the list of model_names set via config.yaml (or 'public_model_names' on UI).
```python
target_model_names="gpt-4o-mini-openai, gemini-2.0-flash" # 👈 Specify model_names
```
Check `/v1/models` to see the list of available model names for a key.
#### **Store a PDF file**
```python
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
# Download and save the PDF locally
url = (
"https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
)
response = requests.get(url)
response.raise_for_status()
# Save the PDF locally
with open("2403.05530.pdf", "wb") as f:
f.write(response.content)
file = client.files.create(
file=open("2403.05530.pdf", "rb"),
purpose="user_data", # can be any openai 'purpose' value
extra_body={"target_model_names": "gpt-4o-mini-openai, gemini-2.0-flash"}, # 👈 Specify model_names
)
print(f"file id={file.id}")
```
#### **Use the same file id across different providers**
<Tabs>
<TabItem value="openai" label="OpenAI">
```python
completion = client.chat.completions.create(
model="gpt-4o-mini-openai",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "file",
"file": {
"file_id": file.id,
},
},
],
},
]
)
print(completion.choices[0].message)
```
</TabItem>
<TabItem value="vertex" label="Vertex AI">
```python
completion = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "file",
"file": {
"file_id": file.id,
},
},
],
},
]
)
print(completion.choices[0].message)
```
</TabItem>
</Tabs>
### Complete Example
```python
import base64
import requests
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
# Download and save the PDF locally
url = (
"https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
)
response = requests.get(url)
response.raise_for_status()
# Save the PDF locally
with open("2403.05530.pdf", "wb") as f:
f.write(response.content)
# Read the local PDF file
file = client.files.create(
file=open("2403.05530.pdf", "rb"),
purpose="user_data", # can be any openai 'purpose' value
extra_body={"target_model_names": "gpt-4o-mini-openai, vertex_ai/gemini-2.0-flash"},
)
print(f"file.id: {file.id}") # 👈 Unified file id
## GEMINI CALL ###
completion = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "file",
"file": {
"file_id": file.id,
},
},
],
},
]
)
print(completion.choices[0].message)
### OPENAI CALL ###
completion = client.chat.completions.create(
model="gpt-4o-mini-openai",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this recording?"},
{
"type": "file",
"file": {
"file_id": file.id,
},
},
],
},
],
)
print(completion.choices[0].message)
```
### Supported Endpoints
#### Create a file - `/files`
```python
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
# Download and save the PDF locally
url = (
"https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
)
response = requests.get(url)
response.raise_for_status()
# Save the PDF locally
with open("2403.05530.pdf", "wb") as f:
f.write(response.content)
# Read the local PDF file
file = client.files.create(
file=open("2403.05530.pdf", "rb"),
purpose="user_data", # can be any openai 'purpose' value
extra_body={"target_model_names": "gpt-4o-mini-openai, vertex_ai/gemini-2.0-flash"},
)
```
#### Retrieve a file - `/files/{file_id}`
```python
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
file = client.files.retrieve(file_id=file.id)
```
#### Delete a file - `/files/{file_id}/delete`
```python
client = OpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234", max_retries=0)
file = client.files.delete(file_id=file.id)
```
### FAQ
**1. Does LiteLLM store the file?**
No, LiteLLM does not store the file. It only stores the file id's in the postgres DB.
**2. How does LiteLLM know which file to use for a given file id?**
LiteLLM stores a mapping of the litellm file id to the model-specific file id in the postgres DB. When a request comes in, LiteLLM looks up the model-specific file id and uses it in the request to the provider.
**3. How do file deletions work?**
When a file is deleted, LiteLLM deletes the mapping from the postgres DB, and the files on each provider.
### Architecture
<Image img={require('../../img/managed_files_arch.png')} style={{ width: '800px', height: 'auto' }} />

View file

@ -862,7 +862,7 @@ Add the following to your env
```shell ```shell
OTEL_EXPORTER="otlp_http" OTEL_EXPORTER="otlp_http"
OTEL_ENDPOINT="http:/0.0.0.0:4317" OTEL_ENDPOINT="http://0.0.0.0:4317"
OTEL_HEADERS="x-honeycomb-team=<your-api-key>" # Optional OTEL_HEADERS="x-honeycomb-team=<your-api-key>" # Optional
``` ```

View file

@ -79,6 +79,7 @@ Inherits from `StandardLoggingUserAPIKeyMetadata` and adds:
| `response_cost` | `Optional[str]` | Optional response cost | | `response_cost` | `Optional[str]` | Optional response cost |
| `additional_headers` | `Optional[StandardLoggingAdditionalHeaders]` | Additional headers | | `additional_headers` | `Optional[StandardLoggingAdditionalHeaders]` | Additional headers |
| `batch_models` | `Optional[List[str]]` | Only set for Batches API. Lists the models used for cost calculation | | `batch_models` | `Optional[List[str]]` | Only set for Batches API. Lists the models used for cost calculation |
| `litellm_model_name` | `Optional[str]` | Model name sent in request |
## StandardLoggingModelInformation ## StandardLoggingModelInformation

View file

@ -0,0 +1,108 @@
# Model Discovery
Use this to give users an accurate list of models available behind provider endpoint, when calling `/v1/models` for wildcard models.
## Supported Models
- Fireworks AI
- OpenAI
- Gemini
- LiteLLM Proxy
- Topaz
- Anthropic
- XAI
- VLLM
- Vertex AI
### Usage
**1. Setup config.yaml**
```yaml
model_list:
- model_name: xai/*
litellm_params:
model: xai/*
api_key: os.environ/XAI_API_KEY
litellm_settings:
check_provider_endpoint: true # 👈 Enable checking provider endpoint for wildcard models
```
**2. Start proxy**
```bash
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
**3. Call `/v1/models`**
```bash
curl -X GET "http://localhost:4000/v1/models" -H "Authorization: Bearer $LITELLM_KEY"
```
Expected response
```json
{
"data": [
{
"id": "xai/grok-2-1212",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-2-vision-1212",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-3-beta",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-3-fast-beta",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-3-mini-beta",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-3-mini-fast-beta",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-beta",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-vision-beta",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
},
{
"id": "xai/grok-2-image-1212",
"object": "model",
"created": 1677610602,
"owned_by": "openai"
}
],
"object": "list"
}
```

View file

@ -94,15 +94,31 @@ This disables the load_dotenv() functionality, which will automatically load you
## 5. If running LiteLLM on VPC, gracefully handle DB unavailability ## 5. If running LiteLLM on VPC, gracefully handle DB unavailability
This will allow LiteLLM to continue to process requests even if the DB is unavailable. This is better handling for DB unavailability. When running LiteLLM on a VPC (and inaccessible from the public internet), you can enable graceful degradation so that request processing continues even if the database is temporarily unavailable.
**WARNING: Only do this if you're running LiteLLM on VPC, that cannot be accessed from the public internet.** **WARNING: Only do this if you're running LiteLLM on VPC, that cannot be accessed from the public internet.**
```yaml #### Configuration
```yaml showLineNumbers title="litellm config.yaml"
general_settings: general_settings:
allow_requests_on_db_unavailable: True allow_requests_on_db_unavailable: True
``` ```
#### Expected Behavior
When `allow_requests_on_db_unavailable` is set to `true`, LiteLLM will handle errors as follows:
| Type of Error | Expected Behavior | Details |
|---------------|-------------------|----------------|
| Prisma Errors | ✅ Request will be allowed | Covers issues like DB connection resets or rejections from the DB via Prisma, the ORM used by LiteLLM. |
| Httpx Errors | ✅ Request will be allowed | Occurs when the database is unreachable, allowing the request to proceed despite the DB outage. |
| Pod Startup Behavior | ✅ Pods start regardless | LiteLLM Pods will start even if the database is down or unreachable, ensuring higher uptime guarantees for deployments. |
| Health/Readiness Check | ✅ Always returns 200 OK | The /health/readiness endpoint returns a 200 OK status to ensure that pods remain operational even when the database is unavailable.
| LiteLLM Budget Errors or Model Errors | ❌ Request will be blocked | Triggered when the DB is reachable but the authentication token is invalid, lacks access, or exceeds budget limits. |
## 6. Disable spend_logs & error_logs if not using the LiteLLM UI ## 6. Disable spend_logs & error_logs if not using the LiteLLM UI
By default, LiteLLM writes several types of logs to the database: By default, LiteLLM writes several types of logs to the database:
@ -161,6 +177,50 @@ export LITELLM_SALT_KEY="sk-1234"
[**See Code**](https://github.com/BerriAI/litellm/blob/036a6821d588bd36d170713dcf5a72791a694178/litellm/proxy/common_utils/encrypt_decrypt_utils.py#L15) [**See Code**](https://github.com/BerriAI/litellm/blob/036a6821d588bd36d170713dcf5a72791a694178/litellm/proxy/common_utils/encrypt_decrypt_utils.py#L15)
## 9. Use `prisma migrate deploy`
Use this to handle db migrations across LiteLLM versions in production
<Tabs>
<TabItem value="env" label="ENV">
```bash
USE_PRISMA_MIGRATE="True"
```
</TabItem>
<TabItem value="cli" label="CLI">
```bash
litellm --use_prisma_migrate
```
</TabItem>
</Tabs>
Benefits:
The migrate deploy command:
- **Does not** issue a warning if an already applied migration is missing from migration history
- **Does not** detect drift (production database schema differs from migration history end state - for example, due to a hotfix)
- **Does not** reset the database or generate artifacts (such as Prisma Client)
- **Does not** rely on a shadow database
### How does LiteLLM handle DB migrations in production?
1. A new migration file is written to our `litellm-proxy-extras` package. [See all](https://github.com/BerriAI/litellm/tree/main/litellm-proxy-extras/litellm_proxy_extras/migrations)
2. The core litellm pip package is bumped to point to the new `litellm-proxy-extras` package. This ensures, older versions of LiteLLM will continue to use the old migrations. [See code](https://github.com/BerriAI/litellm/blob/52b35cd8093b9ad833987b24f494586a1e923209/pyproject.toml#L58)
3. When you upgrade to a new version of LiteLLM, the migration file is applied to the database. [See code](https://github.com/BerriAI/litellm/blob/52b35cd8093b9ad833987b24f494586a1e923209/litellm-proxy-extras/litellm_proxy_extras/utils.py#L42)
## Extras ## Extras
### Expected Performance in Production ### Expected Performance in Production
@ -183,93 +243,3 @@ You should only see the following level of details in logs on the proxy server
# INFO: 192.168.2.205:34717 - "POST /chat/completions HTTP/1.1" 200 OK # INFO: 192.168.2.205:34717 - "POST /chat/completions HTTP/1.1" 200 OK
# INFO: 192.168.2.205:29734 - "POST /chat/completions HTTP/1.1" 200 OK # INFO: 192.168.2.205:29734 - "POST /chat/completions HTTP/1.1" 200 OK
``` ```
### Machine Specifications to Deploy LiteLLM
| Service | Spec | CPUs | Memory | Architecture | Version|
| --- | --- | --- | --- | --- | --- |
| Server | `t2.small`. | `1vCPUs` | `8GB` | `x86` |
| Redis Cache | - | - | - | - | 7.0+ Redis Engine|
### Reference Kubernetes Deployment YAML
Reference Kubernetes `deployment.yaml` that was load tested by us
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: litellm-deployment
spec:
replicas: 3
selector:
matchLabels:
app: litellm
template:
metadata:
labels:
app: litellm
spec:
containers:
- name: litellm-container
image: ghcr.io/berriai/litellm:main-latest
imagePullPolicy: Always
env:
- name: AZURE_API_KEY
value: "d6******"
- name: AZURE_API_BASE
value: "https://ope******"
- name: LITELLM_MASTER_KEY
value: "sk-1234"
- name: DATABASE_URL
value: "po**********"
args:
- "--config"
- "/app/proxy_config.yaml" # Update the path to mount the config file
volumeMounts: # Define volume mount for proxy_config.yaml
- name: config-volume
mountPath: /app
readOnly: true
livenessProbe:
httpGet:
path: /health/liveliness
port: 4000
initialDelaySeconds: 120
periodSeconds: 15
successThreshold: 1
failureThreshold: 3
timeoutSeconds: 10
readinessProbe:
httpGet:
path: /health/readiness
port: 4000
initialDelaySeconds: 120
periodSeconds: 15
successThreshold: 1
failureThreshold: 3
timeoutSeconds: 10
volumes: # Define volume to mount proxy_config.yaml
- name: config-volume
configMap:
name: litellm-config
```
Reference Kubernetes `service.yaml` that was load tested by us
```yaml
apiVersion: v1
kind: Service
metadata:
name: litellm-service
spec:
selector:
app: litellm
ports:
- protocol: TCP
port: 4000
targetPort: 4000
type: LoadBalancer
```

View file

@ -95,7 +95,14 @@ Use this for for tracking per [user, key, team, etc.](virtual_keys)
### Initialize Budget Metrics on Startup ### Initialize Budget Metrics on Startup
If you want to initialize the key/team budget metrics on startup, you can set the `prometheus_initialize_budget_metrics` to `true` in the `config.yaml` If you want litellm to emit the budget metrics for all keys, teams irrespective of whether they are getting requests or not, set `prometheus_initialize_budget_metrics` to `true` in the `config.yaml`
**How this works:**
- If the `prometheus_initialize_budget_metrics` is set to `true`
- Every 5 minutes litellm runs a cron job to read all keys, teams from the database
- It then emits the budget metrics for each key, team
- This is used to populate the budget metrics on the `/metrics` endpoint
```yaml ```yaml
litellm_settings: litellm_settings:
@ -242,6 +249,19 @@ litellm_settings:
| `litellm_redis_fails` | Number of failed redis calls | | `litellm_redis_fails` | Number of failed redis calls |
| `litellm_self_latency` | Histogram latency for successful litellm api call | | `litellm_self_latency` | Histogram latency for successful litellm api call |
#### DB Transaction Queue Health Metrics
Use these metrics to monitor the health of the DB Transaction Queue. Eg. Monitoring the size of the in-memory and redis buffers.
| Metric Name | Description | Storage Type |
|-----------------------------------------------------|-----------------------------------------------------------------------------|--------------|
| `litellm_pod_lock_manager_size` | Indicates which pod has the lock to write updates to the database. | Redis |
| `litellm_in_memory_daily_spend_update_queue_size` | Number of items in the in-memory daily spend update queue. These are the aggregate spend logs for each user. | In-Memory |
| `litellm_redis_daily_spend_update_queue_size` | Number of items in the Redis daily spend update queue. These are the aggregate spend logs for each user. | Redis |
| `litellm_in_memory_spend_update_queue_size` | In-memory aggregate spend values for keys, users, teams, team members, etc.| In-Memory |
| `litellm_redis_spend_update_queue_size` | Redis aggregate spend values for keys, users, teams, etc. | Redis |
## **🔥 LiteLLM Maintained Grafana Dashboards ** ## **🔥 LiteLLM Maintained Grafana Dashboards **
@ -268,6 +288,17 @@ Here is a screenshot of the metrics you can monitor with the LiteLLM Grafana Das
## Add authentication on /metrics endpoint
**By default /metrics endpoint is unauthenticated.**
You can opt into running litellm authentication on the /metrics endpoint by setting the following on the config
```yaml
litellm_settings:
require_auth_for_metrics_endpoint: true
```
## FAQ ## FAQ
### What are `_created` vs. `_total` metrics? ### What are `_created` vs. `_total` metrics?

View file

@ -2,7 +2,7 @@ import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# [BETA] Prompt Management # Prompt Management
:::info :::info
@ -12,9 +12,10 @@ This feature is currently in beta, and might change unexpectedly. We expect this
Run experiments or change the specific model (e.g. from gpt-4o to gpt4o-mini finetune) from your prompt management tool (e.g. Langfuse) instead of making changes in the application. Run experiments or change the specific model (e.g. from gpt-4o to gpt4o-mini finetune) from your prompt management tool (e.g. Langfuse) instead of making changes in the application.
Supported Integrations: | Supported Integrations | Link |
- [Langfuse](https://langfuse.com/docs/prompts/get-started) |------------------------|------|
- [Humanloop](../observability/humanloop) | Langfuse | [Get Started](https://langfuse.com/docs/prompts/get-started) |
| Humanloop | [Get Started](../observability/humanloop) |
## Quick Start ## Quick Start

View file

@ -4,9 +4,17 @@ Litellm Proxy has the following release cycle:
- `v1.x.x-nightly`: These are releases which pass ci/cd. - `v1.x.x-nightly`: These are releases which pass ci/cd.
- `v1.x.x.rc`: These are releases which pass ci/cd + [manual review](https://github.com/BerriAI/litellm/discussions/8495#discussioncomment-12180711). - `v1.x.x.rc`: These are releases which pass ci/cd + [manual review](https://github.com/BerriAI/litellm/discussions/8495#discussioncomment-12180711).
- `v1.x.x` OR `v1.x.x-stable`: These are releases which pass ci/cd + manual review + 3 days of production testing. - `v1.x.x:main-stable`: These are releases which pass ci/cd + manual review + 3 days of production testing.
In production, we recommend using the latest `v1.x.x` release. In production, we recommend using the latest `v1.x.x:main-stable` release.
Follow our release notes [here](https://github.com/BerriAI/litellm/releases). Follow our release notes [here](https://github.com/BerriAI/litellm/releases).
## FAQ
### Is there a release schedule for LiteLLM stable release?
Stable releases come out every week (typically Sunday)

View file

@ -43,19 +43,19 @@ These headers are useful for clients to understand the current rate limit status
| `x-litellm-max-fallbacks` | int | Maximum number of fallback attempts allowed | | `x-litellm-max-fallbacks` | int | Maximum number of fallback attempts allowed |
## Cost Tracking Headers ## Cost Tracking Headers
| Header | Type | Description | | Header | Type | Description | Available on Pass-Through Endpoints |
|--------|------|-------------| |--------|------|-------------|-------------|
| `x-litellm-response-cost` | float | Cost of the API call | | `x-litellm-response-cost` | float | Cost of the API call | |
| `x-litellm-key-spend` | float | Total spend for the API key | | `x-litellm-key-spend` | float | Total spend for the API key | ✅ |
## LiteLLM Specific Headers ## LiteLLM Specific Headers
| Header | Type | Description | | Header | Type | Description | Available on Pass-Through Endpoints |
|--------|------|-------------| |--------|------|-------------|-------------|
| `x-litellm-call-id` | string | Unique identifier for the API call | | `x-litellm-call-id` | string | Unique identifier for the API call | ✅ |
| `x-litellm-model-id` | string | Unique identifier for the model used | | `x-litellm-model-id` | string | Unique identifier for the model used | |
| `x-litellm-model-api-base` | string | Base URL of the API endpoint | | `x-litellm-model-api-base` | string | Base URL of the API endpoint | ✅ |
| `x-litellm-version` | string | Version of LiteLLM being used | | `x-litellm-version` | string | Version of LiteLLM being used | |
| `x-litellm-model-group` | string | Model group identifier | | `x-litellm-model-group` | string | Model group identifier | |
## Response headers from LLM providers ## Response headers from LLM providers

View file

@ -161,6 +161,83 @@ Here's the available UI roles for a LiteLLM Internal User:
- `internal_user`: can login, view/create/delete their own keys, view their spend. **Cannot** add new users. - `internal_user`: can login, view/create/delete their own keys, view their spend. **Cannot** add new users.
- `internal_user_viewer`: can login, view their own keys, view their own spend. **Cannot** create/delete keys, add new users. - `internal_user_viewer`: can login, view their own keys, view their own spend. **Cannot** create/delete keys, add new users.
## Auto-add SSO users to teams
This walks through setting up sso auto-add for **Okta, Google SSO**
### Okta, Google SSO
1. Specify the JWT field that contains the team ids, that the user belongs to.
```yaml
general_settings:
master_key: sk-1234
litellm_jwtauth:
team_ids_jwt_field: "groups" # 👈 CAN BE ANY FIELD
```
This is assuming your SSO token looks like this. **If you need to inspect the JWT fields received from your SSO provider by LiteLLM, follow these instructions [here](#debugging-sso-jwt-fields)**
```
{
...,
"groups": ["team_id_1", "team_id_2"]
}
```
2. Create the teams on LiteLLM
```bash
curl -X POST '<PROXY_BASE_URL>/team/new' \
-H 'Authorization: Bearer <PROXY_MASTER_KEY>' \
-H 'Content-Type: application/json' \
-D '{
"team_alias": "team_1",
"team_id": "team_id_1" # 👈 MUST BE THE SAME AS THE SSO GROUP ID
}'
```
3. Test the SSO flow
Here's a walkthrough of [how it works](https://www.loom.com/share/8959be458edf41fd85937452c29a33f3?sid=7ebd6d37-569a-4023-866e-e0cde67cb23e)
### Microsoft Entra ID SSO group assignment
Follow this [tutorial for auto-adding sso users to teams with Microsoft Entra ID](https://docs.litellm.ai/docs/tutorials/msft_sso)
### Debugging SSO JWT fields
If you need to inspect the JWT fields received from your SSO provider by LiteLLM, follow these instructions. This guide walks you through setting up a debug callback to view the JWT data during the SSO process.
<Image img={require('../../img/debug_sso.png')} style={{ width: '500px', height: 'auto' }} />
<br />
1. Add `/sso/debug/callback` as a redirect URL in your SSO provider
In your SSO provider's settings, add the following URL as a new redirect (callback) URL:
```bash showLineNumbers title="Redirect URL"
http://<proxy_base_url>/sso/debug/callback
```
2. Navigate to the debug login page on your browser
Navigate to the following URL on your browser:
```bash showLineNumbers title="URL to navigate to"
https://<proxy_base_url>/sso/debug/login
```
This will initiate the standard SSO flow. You will be redirected to your SSO provider's login screen, and after successful authentication, you will be redirected back to LiteLLM's debug callback route.
3. View the JWT fields
Once redirected, you should see a page called "SSO Debug Information". This page displays the JWT fields received from your SSO provider (as shown in the image above)
## Advanced ## Advanced
### Setting custom logout URLs ### Setting custom logout URLs
@ -196,40 +273,26 @@ This budget does not apply to keys created under non-default teams.
[**Go Here**](./team_budgets.md) [**Go Here**](./team_budgets.md)
### Auto-add SSO users to teams ### Set default params for new teams
1. Specify the JWT field that contains the team ids, that the user belongs to. When you connect litellm to your SSO provider, litellm can auto-create teams. Use this to set the default `models`, `max_budget`, `budget_duration` for these auto-created teams.
```yaml **How it works**
general_settings:
master_key: sk-1234 1. When litellm fetches `groups` from your SSO provider, it will check if the corresponding group_id exists as a `team_id` in litellm.
litellm_jwtauth: 2. If the team_id does not exist, litellm will auto-create a team with the default params you've set.
team_ids_jwt_field: "groups" # 👈 CAN BE ANY FIELD 3. If the team_id already exist, litellm will not apply any settings on the team.
**Usage**
```yaml showLineNumbers title="Default Params for new teams"
litellm_settings:
default_team_params: # Default Params to apply when litellm auto creates a team from SSO IDP provider
max_budget: 100 # Optional[float], optional): $100 budget for the team
budget_duration: 30d # Optional[str], optional): 30 days budget_duration for the team
models: ["gpt-3.5-turbo"] # Optional[List[str]], optional): models to be used by the team
``` ```
This is assuming your SSO token looks like this:
```
{
...,
"groups": ["team_id_1", "team_id_2"]
}
```
2. Create the teams on LiteLLM
```bash
curl -X POST '<PROXY_BASE_URL>/team/new' \
-H 'Authorization: Bearer <PROXY_MASTER_KEY>' \
-H 'Content-Type: application/json' \
-D '{
"team_alias": "team_1",
"team_id": "team_id_1" # 👈 MUST BE THE SAME AS THE SSO GROUP ID
}'
```
3. Test the SSO flow
Here's a walkthrough of [how it works](https://www.loom.com/share/8959be458edf41fd85937452c29a33f3?sid=7ebd6d37-569a-4023-866e-e0cde67cb23e)
### Restrict Users from creating personal keys ### Restrict Users from creating personal keys
@ -241,7 +304,7 @@ This will also prevent users from using their session tokens on the test keys ch
## **All Settings for Self Serve / SSO Flow** ## **All Settings for Self Serve / SSO Flow**
```yaml ```yaml showLineNumbers title="All Settings for Self Serve / SSO Flow"
litellm_settings: litellm_settings:
max_internal_user_budget: 10 # max budget for internal users max_internal_user_budget: 10 # max budget for internal users
internal_user_budget_duration: "1mo" # reset every month internal_user_budget_duration: "1mo" # reset every month
@ -252,6 +315,11 @@ litellm_settings:
budget_duration: 30d # Optional[str], optional): 30 days budget_duration for a new SSO sign in user budget_duration: 30d # Optional[str], optional): 30 days budget_duration for a new SSO sign in user
models: ["gpt-3.5-turbo"] # Optional[List[str]], optional): models to be used by a new SSO sign in user models: ["gpt-3.5-turbo"] # Optional[List[str]], optional): models to be used by a new SSO sign in user
default_team_params: # Default Params to apply when litellm auto creates a team from SSO IDP provider
max_budget: 100 # Optional[float], optional): $100 budget for the team
budget_duration: 30d # Optional[str], optional): 30 days budget_duration for the team
models: ["gpt-3.5-turbo"] # Optional[List[str]], optional): models to be used by the team
upperbound_key_generate_params: # Upperbound for /key/generate requests when self-serve flow is on upperbound_key_generate_params: # Upperbound for /key/generate requests when self-serve flow is on
max_budget: 100 # Optional[float], optional): upperbound of $100, for all /key/generate requests max_budget: 100 # Optional[float], optional): upperbound of $100, for all /key/generate requests

View file

@ -15,14 +15,17 @@ Supported Providers:
- Bedrock (Anthropic + Deepseek) (`bedrock/`) - Bedrock (Anthropic + Deepseek) (`bedrock/`)
- Vertex AI (Anthropic) (`vertexai/`) - Vertex AI (Anthropic) (`vertexai/`)
- OpenRouter (`openrouter/`) - OpenRouter (`openrouter/`)
- XAI (`xai/`)
- Google AI Studio (`google/`)
- Vertex AI (`vertex_ai/`)
LiteLLM will standardize the `reasoning_content` in the response and `thinking_blocks` in the assistant message. LiteLLM will standardize the `reasoning_content` in the response and `thinking_blocks` in the assistant message.
```python ```python title="Example response from litellm"
"message": { "message": {
... ...
"reasoning_content": "The capital of France is Paris.", "reasoning_content": "The capital of France is Paris.",
"thinking_blocks": [ "thinking_blocks": [ # only returned for Anthropic models
{ {
"type": "thinking", "type": "thinking",
"thinking": "The capital of France is Paris.", "thinking": "The capital of France is Paris.",
@ -37,7 +40,7 @@ LiteLLM will standardize the `reasoning_content` in the response and `thinking_b
<Tabs> <Tabs>
<TabItem value="sdk" label="SDK"> <TabItem value="sdk" label="SDK">
```python ```python showLineNumbers
from litellm import completion from litellm import completion
import os import os
@ -48,7 +51,7 @@ response = completion(
messages=[ messages=[
{"role": "user", "content": "What is the capital of France?"}, {"role": "user", "content": "What is the capital of France?"},
], ],
thinking={"type": "enabled", "budget_tokens": 1024} # 👈 REQUIRED FOR ANTHROPIC models (on `anthropic/`, `bedrock/`, `vertexai/`) reasoning_effort="low",
) )
print(response.choices[0].message.content) print(response.choices[0].message.content)
``` ```
@ -68,7 +71,7 @@ curl http://0.0.0.0:4000/v1/chat/completions \
"content": "What is the capital of France?" "content": "What is the capital of France?"
} }
], ],
"thinking": {"type": "enabled", "budget_tokens": 1024} "reasoning_effort": "low"
}' }'
``` ```
</TabItem> </TabItem>
@ -111,7 +114,7 @@ Here's how to use `thinking` blocks by Anthropic with tool calling.
<Tabs> <Tabs>
<TabItem value="sdk" label="SDK"> <TabItem value="sdk" label="SDK">
```python ```python showLineNumbers
litellm._turn_on_debug() litellm._turn_on_debug()
litellm.modify_params = True litellm.modify_params = True
model = "anthropic/claude-3-7-sonnet-20250219" # works across Anthropic, Bedrock, Vertex AI model = "anthropic/claude-3-7-sonnet-20250219" # works across Anthropic, Bedrock, Vertex AI
@ -150,7 +153,7 @@ response = litellm.completion(
messages=messages, messages=messages,
tools=tools, tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit tool_choice="auto", # auto is default, but we'll be explicit
thinking={"type": "enabled", "budget_tokens": 1024}, reasoning_effort="low",
) )
print("Response\n", response) print("Response\n", response)
response_message = response.choices[0].message response_message = response.choices[0].message
@ -198,9 +201,9 @@ if tool_calls:
model=model, model=model,
messages=messages, messages=messages,
seed=22, seed=22,
reasoning_effort="low",
# tools=tools, # tools=tools,
drop_params=True, drop_params=True,
thinking={"type": "enabled", "budget_tokens": 1024},
) # get a new response from the model where it can see the function response ) # get a new response from the model where it can see the function response
print("second response\n", second_response) print("second response\n", second_response)
``` ```
@ -210,7 +213,7 @@ if tool_calls:
1. Setup config.yaml 1. Setup config.yaml
```yaml ```yaml showLineNumbers
model_list: model_list:
- model_name: claude-3-7-sonnet-thinking - model_name: claude-3-7-sonnet-thinking
litellm_params: litellm_params:
@ -224,7 +227,7 @@ model_list:
2. Run proxy 2. Run proxy
```bash ```bash showLineNumbers
litellm --config config.yaml litellm --config config.yaml
# RUNNING on http://0.0.0.0:4000 # RUNNING on http://0.0.0.0:4000
@ -332,7 +335,7 @@ curl http://0.0.0.0:4000/v1/chat/completions \
Set `drop_params=True` to drop the 'thinking' blocks when swapping from Anthropic to Deepseek models. Suggest improvements to this approach [here](https://github.com/BerriAI/litellm/discussions/8927). Set `drop_params=True` to drop the 'thinking' blocks when swapping from Anthropic to Deepseek models. Suggest improvements to this approach [here](https://github.com/BerriAI/litellm/discussions/8927).
```python ```python showLineNumbers
litellm.drop_params = True # 👈 EITHER GLOBALLY or per request litellm.drop_params = True # 👈 EITHER GLOBALLY or per request
# or per request # or per request
@ -340,7 +343,7 @@ litellm.drop_params = True # 👈 EITHER GLOBALLY or per request
response = litellm.completion( response = litellm.completion(
model="anthropic/claude-3-7-sonnet-20250219", model="anthropic/claude-3-7-sonnet-20250219",
messages=[{"role": "user", "content": "What is the capital of France?"}], messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024}, reasoning_effort="low",
drop_params=True, drop_params=True,
) )
@ -348,7 +351,7 @@ response = litellm.completion(
response = litellm.completion( response = litellm.completion(
model="deepseek/deepseek-chat", model="deepseek/deepseek-chat",
messages=[{"role": "user", "content": "What is the capital of France?"}], messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024}, reasoning_effort="low",
drop_params=True, drop_params=True,
) )
``` ```
@ -364,3 +367,123 @@ These fields can be accessed via `response.choices[0].message.reasoning_content`
- `thinking` - str: The thinking from the model. - `thinking` - str: The thinking from the model.
- `signature` - str: The signature delta from the model. - `signature` - str: The signature delta from the model.
## Pass `thinking` to Anthropic models
You can also pass the `thinking` parameter to Anthropic models.
<Tabs>
<TabItem value="sdk" label="SDK">
```python showLineNumbers
response = litellm.completion(
model="anthropic/claude-3-7-sonnet-20250219",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "anthropic/claude-3-7-sonnet-20250219",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
```
</TabItem>
</Tabs>
## Checking if a model supports reasoning
<Tabs>
<TabItem label="LiteLLM Python SDK" value="Python">
Use `litellm.supports_reasoning(model="")` -> returns `True` if model supports reasoning and `False` if not.
```python showLineNumbers title="litellm.supports_reasoning() usage"
import litellm
# Example models that support reasoning
assert litellm.supports_reasoning(model="anthropic/claude-3-7-sonnet-20250219") == True
assert litellm.supports_reasoning(model="deepseek/deepseek-chat") == True
# Example models that do not support reasoning
assert litellm.supports_reasoning(model="openai/gpt-3.5-turbo") == False
```
</TabItem>
<TabItem label="LiteLLM Proxy Server" value="proxy">
1. Define models that support reasoning in your `config.yaml`. You can optionally add `supports_reasoning: True` to the `model_info` if LiteLLM does not automatically detect it for your custom model.
```yaml showLineNumbers title="litellm proxy config.yaml"
model_list:
- model_name: claude-3-sonnet-reasoning
litellm_params:
model: anthropic/claude-3-7-sonnet-20250219
api_key: os.environ/ANTHROPIC_API_KEY
- model_name: deepseek-reasoning
litellm_params:
model: deepseek/deepseek-chat
api_key: os.environ/DEEPSEEK_API_KEY
# Example for a custom model where detection might be needed
- model_name: my-custom-reasoning-model
litellm_params:
model: openai/my-custom-model # Assuming it's OpenAI compatible
api_base: http://localhost:8000
api_key: fake-key
model_info:
supports_reasoning: True # Explicitly mark as supporting reasoning
```
2. Run the proxy server:
```bash showLineNumbers title="litellm --config config.yaml"
litellm --config config.yaml
```
3. Call `/model_group/info` to check if your model supports `reasoning`
```shell showLineNumbers title="curl /model_group/info"
curl -X 'GET' \
'http://localhost:4000/model_group/info' \
-H 'accept: application/json' \
-H 'x-api-key: sk-1234'
```
Expected Response
```json showLineNumbers title="response from /model_group/info"
{
"data": [
{
"model_group": "claude-3-sonnet-reasoning",
"providers": ["anthropic"],
"mode": "chat",
"supports_reasoning": true,
},
{
"model_group": "deepseek-reasoning",
"providers": ["deepseek"],
"supports_reasoning": true,
},
{
"model_group": "my-custom-reasoning-model",
"providers": ["openai"],
"supports_reasoning": true,
}
]
}
````
</TabItem>
</Tabs>

View file

@ -14,22 +14,22 @@ LiteLLM provides a BETA endpoint in the spec of [OpenAI's `/responses` API](http
| Fallbacks | ✅ | Works between supported models | | Fallbacks | ✅ | Works between supported models |
| Loadbalancing | ✅ | Works between supported models | | Loadbalancing | ✅ | Works between supported models |
| Supported LiteLLM Versions | 1.63.8+ | | | Supported LiteLLM Versions | 1.63.8+ | |
| Supported LLM providers | `openai` | | | Supported LLM providers | **All LiteLLM supported providers** | `openai`, `anthropic`, `bedrock`, `vertex_ai`, `gemini`, `azure`, `azure_ai` etc. |
## Usage ## Usage
## Create a model response ### LiteLLM Python SDK
<Tabs> <Tabs>
<TabItem value="litellm-sdk" label="LiteLLM SDK"> <TabItem value="openai" label="OpenAI">
#### Non-streaming #### Non-streaming
```python ```python showLineNumbers title="OpenAI Non-streaming Response"
import litellm import litellm
# Non-streaming response # Non-streaming response
response = litellm.responses( response = litellm.responses(
model="gpt-4o", model="openai/o1-pro",
input="Tell me a three sentence bedtime story about a unicorn.", input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100 max_output_tokens=100
) )
@ -38,12 +38,12 @@ print(response)
``` ```
#### Streaming #### Streaming
```python ```python showLineNumbers title="OpenAI Streaming Response"
import litellm import litellm
# Streaming response # Streaming response
response = litellm.responses( response = litellm.responses(
model="gpt-4o", model="openai/o1-pro",
input="Tell me a three sentence bedtime story about a unicorn.", input="Tell me a three sentence bedtime story about a unicorn.",
stream=True stream=True
) )
@ -53,58 +53,169 @@ for event in response:
``` ```
</TabItem> </TabItem>
<TabItem value="proxy" label="OpenAI SDK with LiteLLM Proxy">
First, add this to your litellm proxy config.yaml: <TabItem value="anthropic" label="Anthropic">
```yaml
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY
```
Start your LiteLLM proxy:
```bash
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
Then use the OpenAI SDK pointed to your proxy:
#### Non-streaming #### Non-streaming
```python ```python showLineNumbers title="Anthropic Non-streaming Response"
from openai import OpenAI import litellm
import os
# Initialize client with your proxy URL # Set API key
client = OpenAI( os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-api-key"
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response # Non-streaming response
response = client.responses.create( response = litellm.responses(
model="gpt-4o", model="anthropic/claude-3-5-sonnet-20240620",
input="Tell me a three sentence bedtime story about a unicorn." input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100
) )
print(response) print(response)
``` ```
#### Streaming #### Streaming
```python ```python showLineNumbers title="Anthropic Streaming Response"
from openai import OpenAI import litellm
import os
# Initialize client with your proxy URL # Set API key
client = OpenAI( os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-api-key"
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response # Streaming response
response = client.responses.create( response = litellm.responses(
model="gpt-4o", model="anthropic/claude-3-5-sonnet-20240620",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="vertex" label="Vertex AI">
#### Non-streaming
```python showLineNumbers title="Vertex AI Non-streaming Response"
import litellm
import os
# Set credentials - Vertex AI uses application default credentials
# Run 'gcloud auth application-default login' to authenticate
os.environ["VERTEXAI_PROJECT"] = "your-gcp-project-id"
os.environ["VERTEXAI_LOCATION"] = "us-central1"
# Non-streaming response
response = litellm.responses(
model="vertex_ai/gemini-1.5-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100
)
print(response)
```
#### Streaming
```python showLineNumbers title="Vertex AI Streaming Response"
import litellm
import os
# Set credentials - Vertex AI uses application default credentials
# Run 'gcloud auth application-default login' to authenticate
os.environ["VERTEXAI_PROJECT"] = "your-gcp-project-id"
os.environ["VERTEXAI_LOCATION"] = "us-central1"
# Streaming response
response = litellm.responses(
model="vertex_ai/gemini-1.5-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="bedrock" label="AWS Bedrock">
#### Non-streaming
```python showLineNumbers title="AWS Bedrock Non-streaming Response"
import litellm
import os
# Set AWS credentials
os.environ["AWS_ACCESS_KEY_ID"] = "your-access-key-id"
os.environ["AWS_SECRET_ACCESS_KEY"] = "your-secret-access-key"
os.environ["AWS_REGION_NAME"] = "us-west-2" # or your AWS region
# Non-streaming response
response = litellm.responses(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100
)
print(response)
```
#### Streaming
```python showLineNumbers title="AWS Bedrock Streaming Response"
import litellm
import os
# Set AWS credentials
os.environ["AWS_ACCESS_KEY_ID"] = "your-access-key-id"
os.environ["AWS_SECRET_ACCESS_KEY"] = "your-secret-access-key"
os.environ["AWS_REGION_NAME"] = "us-west-2" # or your AWS region
# Streaming response
response = litellm.responses(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="gemini" label="Google AI Studio">
#### Non-streaming
```python showLineNumbers title="Google AI Studio Non-streaming Response"
import litellm
import os
# Set API key for Google AI Studio
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"
# Non-streaming response
response = litellm.responses(
model="gemini/gemini-1.5-flash",
input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100
)
print(response)
```
#### Streaming
```python showLineNumbers title="Google AI Studio Streaming Response"
import litellm
import os
# Set API key for Google AI Studio
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"
# Streaming response
response = litellm.responses(
model="gemini/gemini-1.5-flash",
input="Tell me a three sentence bedtime story about a unicorn.", input="Tell me a three sentence bedtime story about a unicorn.",
stream=True stream=True
) )
@ -115,3 +226,408 @@ for event in response:
</TabItem> </TabItem>
</Tabs> </Tabs>
### LiteLLM Proxy with OpenAI SDK
First, set up and start your LiteLLM proxy server.
```bash title="Start LiteLLM Proxy Server"
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
<Tabs>
<TabItem value="openai" label="OpenAI">
First, add this to your litellm proxy config.yaml:
```yaml showLineNumbers title="OpenAI Proxy Configuration"
model_list:
- model_name: openai/o1-pro
litellm_params:
model: openai/o1-pro
api_key: os.environ/OPENAI_API_KEY
```
#### Non-streaming
```python showLineNumbers title="OpenAI Proxy Non-streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="openai/o1-pro",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python showLineNumbers title="OpenAI Proxy Streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="openai/o1-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="anthropic" label="Anthropic">
First, add this to your litellm proxy config.yaml:
```yaml showLineNumbers title="Anthropic Proxy Configuration"
model_list:
- model_name: anthropic/claude-3-5-sonnet-20240620
litellm_params:
model: anthropic/claude-3-5-sonnet-20240620
api_key: os.environ/ANTHROPIC_API_KEY
```
#### Non-streaming
```python showLineNumbers title="Anthropic Proxy Non-streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="anthropic/claude-3-5-sonnet-20240620",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python showLineNumbers title="Anthropic Proxy Streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="anthropic/claude-3-5-sonnet-20240620",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="vertex" label="Vertex AI">
First, add this to your litellm proxy config.yaml:
```yaml showLineNumbers title="Vertex AI Proxy Configuration"
model_list:
- model_name: vertex_ai/gemini-1.5-pro
litellm_params:
model: vertex_ai/gemini-1.5-pro
vertex_project: your-gcp-project-id
vertex_location: us-central1
```
#### Non-streaming
```python showLineNumbers title="Vertex AI Proxy Non-streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="vertex_ai/gemini-1.5-pro",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python showLineNumbers title="Vertex AI Proxy Streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="vertex_ai/gemini-1.5-pro",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="bedrock" label="AWS Bedrock">
First, add this to your litellm proxy config.yaml:
```yaml showLineNumbers title="AWS Bedrock Proxy Configuration"
model_list:
- model_name: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
litellm_params:
model: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
aws_region_name: us-west-2
```
#### Non-streaming
```python showLineNumbers title="AWS Bedrock Proxy Non-streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python showLineNumbers title="AWS Bedrock Proxy Streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="gemini" label="Google AI Studio">
First, add this to your litellm proxy config.yaml:
```yaml showLineNumbers title="Google AI Studio Proxy Configuration"
model_list:
- model_name: gemini/gemini-1.5-flash
litellm_params:
model: gemini/gemini-1.5-flash
api_key: os.environ/GEMINI_API_KEY
```
#### Non-streaming
```python showLineNumbers title="Google AI Studio Proxy Non-streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="gemini/gemini-1.5-flash",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python showLineNumbers title="Google AI Studio Proxy Streaming Response"
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="gemini/gemini-1.5-flash",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
</Tabs>
## Supported Responses API Parameters
| Provider | Supported Parameters |
|----------|---------------------|
| `openai` | [All Responses API parameters are supported](https://github.com/BerriAI/litellm/blob/7c3df984da8e4dff9201e4c5353fdc7a2b441831/litellm/llms/openai/responses/transformation.py#L23) |
| `azure` | [All Responses API parameters are supported](https://github.com/BerriAI/litellm/blob/7c3df984da8e4dff9201e4c5353fdc7a2b441831/litellm/llms/openai/responses/transformation.py#L23) |
| `anthropic` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
| `bedrock` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
| `gemini` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
| `vertex_ai` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
| `azure_ai` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
| All other llm api providers | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
## Load Balancing with Routing Affinity
When using the Responses API with multiple deployments of the same model (e.g., multiple Azure OpenAI endpoints), LiteLLM provides routing affinity for conversations. This ensures that follow-up requests using a `previous_response_id` are routed to the same deployment that generated the original response.
#### Example Usage
<Tabs>
<TabItem value="python-sdk" label="Python SDK">
```python showLineNumbers title="Python SDK with Routing Affinity"
import litellm
# Set up router with multiple deployments of the same model
router = litellm.Router(
model_list=[
{
"model_name": "azure-gpt4-turbo",
"litellm_params": {
"model": "azure/gpt-4-turbo",
"api_key": "your-api-key-1",
"api_version": "2024-06-01",
"api_base": "https://endpoint1.openai.azure.com",
},
},
{
"model_name": "azure-gpt4-turbo",
"litellm_params": {
"model": "azure/gpt-4-turbo",
"api_key": "your-api-key-2",
"api_version": "2024-06-01",
"api_base": "https://endpoint2.openai.azure.com",
},
},
],
optional_pre_call_checks=["responses_api_deployment_check"],
)
# Initial request
response = await router.aresponses(
model="azure-gpt4-turbo",
input="Hello, who are you?",
truncation="auto",
)
# Store the response ID
response_id = response.id
# Follow-up request - will be automatically routed to the same deployment
follow_up = await router.aresponses(
model="azure-gpt4-turbo",
input="Tell me more about yourself",
truncation="auto",
previous_response_id=response_id # This ensures routing to the same deployment
)
```
</TabItem>
<TabItem value="proxy-server" label="Proxy Server">
#### 1. Setup routing affinity on proxy config.yaml
To enable routing affinity for Responses API in your LiteLLM proxy, set `optional_pre_call_checks: ["responses_api_deployment_check"]` in your proxy config.yaml.
```yaml showLineNumbers title="config.yaml with Responses API Routing Affinity"
model_list:
- model_name: azure-gpt4-turbo
litellm_params:
model: azure/gpt-4-turbo
api_key: your-api-key-1
api_version: 2024-06-01
api_base: https://endpoint1.openai.azure.com
- model_name: azure-gpt4-turbo
litellm_params:
model: azure/gpt-4-turbo
api_key: your-api-key-2
api_version: 2024-06-01
api_base: https://endpoint2.openai.azure.com
router_settings:
optional_pre_call_checks: ["responses_api_deployment_check"]
```
#### 2. Use the OpenAI Python SDK to make requests to LiteLLM Proxy
```python showLineNumbers title="OpenAI Client with Proxy Server"
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:4000",
api_key="your-api-key"
)
# Initial request
response = client.responses.create(
model="azure-gpt4-turbo",
input="Hello, who are you?"
)
response_id = response.id
# Follow-up request - will be automatically routed to the same deployment
follow_up = client.responses.create(
model="azure-gpt4-turbo",
input="Tell me more about yourself",
previous_response_id=response_id # This ensures routing to the same deployment
)
```
</TabItem>
</Tabs>

View file

@ -188,7 +188,13 @@ Currently implemented for:
- OpenAI (if OPENAI_API_KEY is set) - OpenAI (if OPENAI_API_KEY is set)
- Fireworks AI (if FIREWORKS_AI_API_KEY is set) - Fireworks AI (if FIREWORKS_AI_API_KEY is set)
- LiteLLM Proxy (if LITELLM_PROXY_API_KEY is set) - LiteLLM Proxy (if LITELLM_PROXY_API_KEY is set)
- Gemini (if GEMINI_API_KEY is set)
- XAI (if XAI_API_KEY is set)
- Anthropic (if ANTHROPIC_API_KEY is set)
You can also specify a custom provider to check:
**All providers**:
```python ```python
from litellm import get_valid_models from litellm import get_valid_models
@ -196,6 +202,14 @@ valid_models = get_valid_models(check_provider_endpoint=True)
print(valid_models) print(valid_models)
``` ```
**Specific provider**:
```python
from litellm import get_valid_models
valid_models = get_valid_models(check_provider_endpoint=True, custom_llm_provider="openai")
print(valid_models)
```
### `validate_environment(model: str)` ### `validate_environment(model: str)`
This helper tells you if you have all the required environment variables for a model, and if not - what's missing. This helper tells you if you have all the required environment variables for a model, and if not - what's missing.

View file

@ -0,0 +1,162 @@
import Image from '@theme/IdealImage';
# Microsoft SSO: Sync Groups, Members with LiteLLM
Sync Microsoft SSO Groups, Members with LiteLLM Teams.
<Image img={require('../../img/litellm_entra_id.png')} style={{ width: '800px', height: 'auto' }} />
<br />
<br />
## Prerequisites
- An Azure Entra ID account with administrative access
- A LiteLLM Enterprise App set up in your Azure Portal
- Access to Microsoft Entra ID (Azure AD)
## Overview of this tutorial
1. Auto-Create Entra ID Groups on LiteLLM Teams
2. Sync Entra ID Team Memberships
3. Set default params for new teams and users auto-created on LiteLLM
## 1. Auto-Create Entra ID Groups on LiteLLM Teams
In this step, our goal is to have LiteLLM automatically create a new team on the LiteLLM DB when there is a new Group Added to the LiteLLM Enterprise App on Azure Entra ID.
### 1.1 Create a new group in Entra ID
Navigate to [your Azure Portal](https://portal.azure.com/) > Groups > New Group. Create a new group.
<Image img={require('../../img/entra_create_team.png')} style={{ width: '800px', height: 'auto' }} />
### 1.2 Assign the group to your LiteLLM Enterprise App
On your Azure Portal, navigate to `Enterprise Applications` > Select your litellm app
<Image img={require('../../img/msft_enterprise_app.png')} style={{ width: '800px', height: 'auto' }} />
<br />
<br />
Once you've selected your litellm app, click on `Users and Groups` > `Add user/group`
<Image img={require('../../img/msft_enterprise_assign_group.png')} style={{ width: '800px', height: 'auto' }} />
<br />
Now select the group you created in step 1.1. And add it to the LiteLLM Enterprise App. At this point we have added `Production LLM Evals Group` to the LiteLLM Enterprise App. The next steps is having LiteLLM automatically create the `Production LLM Evals Group` on the LiteLLM DB when a new user signs in.
<Image img={require('../../img/msft_enterprise_select_group.png')} style={{ width: '800px', height: 'auto' }} />
### 1.3 Sign in to LiteLLM UI via SSO
Sign into the LiteLLM UI via SSO. You should be redirected to the Entra ID SSO page. This SSO sign in flow will trigger LiteLLM to fetch the latest Groups and Members from Azure Entra ID.
<Image img={require('../../img/msft_sso_sign_in.png')} style={{ width: '800px', height: 'auto' }} />
### 1.4 Check the new team on LiteLLM UI
On the LiteLLM UI, Navigate to `Teams`, You should see the new team `Production LLM Evals Group` auto-created on LiteLLM.
<Image img={require('../../img/msft_auto_team.png')} style={{ width: '900px', height: 'auto' }} />
#### How this works
When a SSO user signs in to LiteLLM:
- LiteLLM automatically fetches the Groups under the LiteLLM Enterprise App
- It finds the Production LLM Evals Group assigned to the LiteLLM Enterprise App
- LiteLLM checks if this group's ID exists in the LiteLLM Teams Table
- Since the ID doesn't exist, LiteLLM automatically creates a new team with:
- Name: Production LLM Evals Group
- ID: Same as the Entra ID group's ID
## 2. Sync Entra ID Team Memberships
In this step, we will have LiteLLM automatically add a user to the `Production LLM Evals` Team on the LiteLLM DB when a new user is added to the `Production LLM Evals` Group in Entra ID.
### 2.1 Navigate to the `Production LLM Evals` Group in Entra ID
Navigate to the `Production LLM Evals` Group in Entra ID.
<Image img={require('../../img/msft_member_1.png')} style={{ width: '800px', height: 'auto' }} />
### 2.2 Add a member to the group in Entra ID
Select `Members` > `Add members`
In this stage you should add the user you want to add to the `Production LLM Evals` Team.
<Image img={require('../../img/msft_member_2.png')} style={{ width: '800px', height: 'auto' }} />
### 2.3 Sign in as the new user on LiteLLM UI
Sign in as the new user on LiteLLM UI. You should be redirected to the Entra ID SSO page. This SSO sign in flow will trigger LiteLLM to fetch the latest Groups and Members from Azure Entra ID. During this step LiteLLM sync it's teams, team members with what is available from Entra ID
<Image img={require('../../img/msft_sso_sign_in.png')} style={{ width: '800px', height: 'auto' }} />
### 2.4 Check the team membership on LiteLLM UI
On the LiteLLM UI, Navigate to `Teams`, You should see the new team `Production LLM Evals Group`. Since your are now a member of the `Production LLM Evals Group` in Entra ID, you should see the new team `Production LLM Evals Group` on the LiteLLM UI.
<Image img={require('../../img/msft_member_3.png')} style={{ width: '900px', height: 'auto' }} />
## 3. Set default params for new teams auto-created on LiteLLM
Since litellm auto creates a new team on the LiteLLM DB when there is a new Group Added to the LiteLLM Enterprise App on Azure Entra ID, we can set default params for new teams created.
This allows you to set a default budget, models, etc for new teams created.
### 3.1 Set `default_team_params` on litellm
Navigate to your litellm config file and set the following params
```yaml showLineNumbers title="litellm config with default_team_params"
litellm_settings:
default_team_params: # Default Params to apply when litellm auto creates a team from SSO IDP provider
max_budget: 100 # Optional[float], optional): $100 budget for the team
budget_duration: 30d # Optional[str], optional): 30 days budget_duration for the team
models: ["gpt-3.5-turbo"] # Optional[List[str]], optional): models to be used by the team
```
### 3.2 Auto-create a new team on LiteLLM
- In this step you should add a new group to the LiteLLM Enterprise App on Azure Entra ID (like we did in step 1.1). We will call this group `Default LiteLLM Prod Team` on Azure Entra ID.
- Start litellm proxy server with your config
- Sign into LiteLLM UI via SSO
- Navigate to `Teams` and you should see the new team `Default LiteLLM Prod Team` auto-created on LiteLLM
- Note LiteLLM will set the default params for this new team.
<Image img={require('../../img/msft_default_settings.png')} style={{ width: '900px', height: 'auto' }} />
## Video Walkthrough
This walks through setting up sso auto-add for **Microsoft Entra ID**
Follow along this video for a walkthrough of how to set this up with Microsoft Entra ID
<iframe width="840" height="500" src="https://www.loom.com/embed/ea711323aa9a496d84a01fd7b2a12f54?sid=c53e238c-5bfd-4135-b8fb-b5b1a08632cf" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe>

View file

@ -0,0 +1,146 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Using LiteLLM with OpenAI Codex
This guide walks you through connecting OpenAI Codex to LiteLLM. Using LiteLLM with Codex allows teams to:
- Access 100+ LLMs through the Codex interface
- Use powerful models like Gemini through a familiar interface
- Track spend and usage with LiteLLM's built-in analytics
- Control model access with virtual keys
<Image img={require('../../img/litellm_codex.gif')} />
## Quickstart
:::info
Requires LiteLLM v1.66.3.dev5 and higher
:::
Make sure to set up LiteLLM with the [LiteLLM Getting Started Guide](../proxy/docker_quick_start.md).
## 1. Install OpenAI Codex
Install the OpenAI Codex CLI tool globally using npm:
<Tabs>
<TabItem value="npm" label="npm">
```bash showLineNumbers
npm i -g @openai/codex
```
</TabItem>
<TabItem value="yarn" label="yarn">
```bash showLineNumbers
yarn global add @openai/codex
```
</TabItem>
</Tabs>
## 2. Start LiteLLM Proxy
<Tabs>
<TabItem value="docker" label="Docker">
```bash showLineNumbers
docker run \
-v $(pwd)/litellm_config.yaml:/app/config.yaml \
-p 4000:4000 \
ghcr.io/berriai/litellm:main-latest \
--config /app/config.yaml
```
</TabItem>
<TabItem value="pip" label="LiteLLM CLI">
```bash showLineNumbers
litellm --config /path/to/config.yaml
```
</TabItem>
</Tabs>
LiteLLM should now be running on [http://localhost:4000](http://localhost:4000)
## 3. Configure LiteLLM for Model Routing
Ensure your LiteLLM Proxy is properly configured to route to your desired models. Create a `litellm_config.yaml` file with the following content:
```yaml showLineNumbers
model_list:
- model_name: o3-mini
litellm_params:
model: openai/o3-mini
api_key: os.environ/OPENAI_API_KEY
- model_name: claude-3-7-sonnet-latest
litellm_params:
model: anthropic/claude-3-7-sonnet-latest
api_key: os.environ/ANTHROPIC_API_KEY
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
litellm_settings:
drop_params: true
```
This configuration enables routing to specific OpenAI, Anthropic, and Gemini models with explicit names.
## 4. Configure Codex to Use LiteLLM Proxy
Set the required environment variables to point Codex to your LiteLLM Proxy:
```bash
# Point to your LiteLLM Proxy server
export OPENAI_BASE_URL=http://0.0.0.0:4000
# Use your LiteLLM API key (if you've set up authentication)
export OPENAI_API_KEY="sk-1234"
```
## 5. Run Codex with Gemini
With everything configured, you can now run Codex with Gemini:
```bash showLineNumbers
codex --model gemini-2.0-flash --full-auto
```
<Image img={require('../../img/litellm_codex.gif')} />
The `--full-auto` flag allows Codex to automatically generate code without additional prompting.
## 6. Advanced Options
### Using Different Models
You can use any model configured in your LiteLLM proxy:
```bash
# Use Claude models
codex --model claude-3-7-sonnet-latest
# Use Google AI Studio Gemini models
codex --model gemini/gemini-2.0-flash
```
## Troubleshooting
- If you encounter connection issues, ensure your LiteLLM Proxy is running and accessible at the specified URL
- Verify your LiteLLM API key is valid if you're using authentication
- Check that your model routing configuration is correct
- For model-specific errors, ensure the model is properly configured in your LiteLLM setup
## Additional Resources
- [LiteLLM Docker Quick Start Guide](../proxy/docker_quick_start.md)
- [OpenAI Codex GitHub Repository](https://github.com/openai/codex)
- [LiteLLM Virtual Keys and Authentication](../proxy/virtual_keys.md)

View file

@ -98,6 +98,5 @@ On the models dropdown select `thinking-anthropic-claude-3-7-sonnet`
<Image img={require('../../img/litellm_thinking_openweb.gif')} /> <Image img={require('../../img/litellm_thinking_openweb.gif')} />
## Additional Resources
- Running LiteLLM and OpenWebUI on Windows Localhost: A Comprehensive Guide [https://www.tanyongsheng.com/note/running-litellm-and-openwebui-on-windows-localhost-a-comprehensive-guide/](https://www.tanyongsheng.com/note/running-litellm-and-openwebui-on-windows-localhost-a-comprehensive-guide/)

View file

@ -0,0 +1,128 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Auto-Inject Prompt Caching Checkpoints
Reduce costs by up to 90% by using LiteLLM to auto-inject prompt caching checkpoints.
<Image img={require('../../img/auto_prompt_caching.png')} style={{ width: '800px', height: 'auto' }} />
## How it works
LiteLLM can automatically inject prompt caching checkpoints into your requests to LLM providers. This allows:
- **Cost Reduction**: Long, static parts of your prompts can be cached to avoid repeated processing
- **No need to modify your application code**: You can configure the auto-caching behavior in the LiteLLM UI or in the `litellm config.yaml` file.
## Configuration
You need to specify `cache_control_injection_points` in your model configuration. This tells LiteLLM:
1. Where to add the caching directive (`location`)
2. Which message to target (`role`)
LiteLLM will then automatically add a `cache_control` directive to the specified messages in your requests:
```json
"cache_control": {
"type": "ephemeral"
}
```
## Usage Example
In this example, we'll configure caching for system messages by adding the directive to all messages with `role: system`.
<Tabs>
<TabItem value="litellm config.yaml" label="litellm config.yaml">
```yaml showLineNumbers title="litellm config.yaml"
model_list:
- model_name: anthropic-auto-inject-cache-system-message
litellm_params:
model: anthropic/claude-3-5-sonnet-20240620
api_key: os.environ/ANTHROPIC_API_KEY
cache_control_injection_points:
- location: message
role: system
```
</TabItem>
<TabItem value="UI" label="LiteLLM UI">
On the LiteLLM UI, you can specify the `cache_control_injection_points` in the `Advanced Settings` tab when adding a model.
<Image img={require('../../img/ui_auto_prompt_caching.png')}/>
</TabItem>
</Tabs>
## Detailed Example
### 1. Original Request to LiteLLM
In this example, we have a very long, static system message and a varying user message. It's efficient to cache the system message since it rarely changes.
```json
{
"messages": [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a helpful assistant. This is a set of very long instructions that you will follow. Here is a legal document that you will use to answer the user's question."
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is the main topic of this legal document?"
}
]
}
]
}
```
### 2. LiteLLM's Modified Request
LiteLLM auto-injects the caching directive into the system message based on our configuration:
```json
{
"messages": [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a helpful assistant. This is a set of very long instructions that you will follow. Here is a legal document that you will use to answer the user's question.",
"cache_control": {"type": "ephemeral"}
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is the main topic of this legal document?"
}
]
}
]
}
```
When the model provider processes this request, it will recognize the caching directive and only process the system message once, caching it for subsequent requests.

View file

@ -0,0 +1,74 @@
import Image from '@theme/IdealImage';
# SCIM with LiteLLM
Enables identity providers (Okta, Azure AD, OneLogin, etc.) to automate user and team (group) provisioning, updates, and deprovisioning on LiteLLM.
This tutorial will walk you through the steps to connect your IDP to LiteLLM SCIM Endpoints.
### Supported SSO Providers for SCIM
Below is a list of supported SSO providers for connecting to LiteLLM SCIM Endpoints.
- Microsoft Entra ID (Azure AD)
- Okta
- Google Workspace
- OneLogin
- Keycloak
- Auth0
## 1. Get your SCIM Tenant URL and Bearer Token
On LiteLLM, navigate to the Settings > Admin Settings > SCIM. On this page you will create a SCIM Token, this allows your IDP to authenticate to litellm `/scim` endpoints.
<Image img={require('../../img/scim_2.png')} style={{ width: '800px', height: 'auto' }} />
## 2. Connect your IDP to LiteLLM SCIM Endpoints
On your IDP provider, navigate to your SSO application and select `Provisioning` > `New provisioning configuration`.
On this page, paste in your litellm scim tenant url and bearer token.
Once this is pasted in, click on `Test Connection` to ensure your IDP can authenticate to the LiteLLM SCIM endpoints.
<Image img={require('../../img/scim_4.png')} style={{ width: '800px', height: 'auto' }} />
## 3. Test SCIM Connection
### 3.1 Assign the group to your LiteLLM Enterprise App
On your IDP Portal, navigate to `Enterprise Applications` > Select your litellm app
<Image img={require('../../img/msft_enterprise_app.png')} style={{ width: '800px', height: 'auto' }} />
<br />
<br />
Once you've selected your litellm app, click on `Users and Groups` > `Add user/group`
<Image img={require('../../img/msft_enterprise_assign_group.png')} style={{ width: '800px', height: 'auto' }} />
<br />
Now select the group you created in step 1.1. And add it to the LiteLLM Enterprise App. At this point we have added `Production LLM Evals Group` to the LiteLLM Enterprise App. The next step is having LiteLLM automatically create the `Production LLM Evals Group` on the LiteLLM DB when a new user signs in.
<Image img={require('../../img/msft_enterprise_select_group.png')} style={{ width: '800px', height: 'auto' }} />
### 3.2 Sign in to LiteLLM UI via SSO
Sign into the LiteLLM UI via SSO. You should be redirected to the Entra ID SSO page. This SSO sign in flow will trigger LiteLLM to fetch the latest Groups and Members from Azure Entra ID.
<Image img={require('../../img/msft_sso_sign_in.png')} style={{ width: '800px', height: 'auto' }} />
### 3.3 Check the new team on LiteLLM UI
On the LiteLLM UI, Navigate to `Teams`, You should see the new team `Production LLM Evals Group` auto-created on LiteLLM.
<Image img={require('../../img/msft_auto_team.png')} style={{ width: '900px', height: 'auto' }} />

View file

@ -0,0 +1,145 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# [Beta] Routing based on request metadata
Create routing rules based on request metadata.
## Setup
Add the following to your litellm proxy config yaml file.
```yaml showLineNumbers title="litellm proxy config.yaml"
router_settings:
enable_tag_filtering: True # 👈 Key Change
```
## 1. Create a tag
On the LiteLLM UI, navigate to Experimental > Tag Management > Create Tag.
Create a tag called `private-data` and only select the allowed models for requests with this tag. Once created, you will see the tag in the Tag Management page.
<Image img={require('../../img/tag_create.png')} style={{ width: '800px', height: 'auto' }} />
## 2. Test Tag Routing
Now we will test the tag based routing rules.
### 2.1 Invalid model
This request will fail since we send `tags=private-data` but the model `gpt-4o` is not in the allowed models for the `private-data` tag.
<Image img={require('../../img/tag_invalid.png')} style={{ width: '800px', height: 'auto' }} />
<br />
Here is an example sending the same request using the OpenAI Python SDK.
<Tabs>
<TabItem value="python" label="OpenAI Python SDK">
```python showLineNumbers
from openai import OpenAI
client = OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000/v1/"
)
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "user", "content": "Hello, how are you?"}
],
extra_body={
"tags": "private-data"
}
)
```
</TabItem>
<TabItem value="curl" label="cURL">
```bash
curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gpt-4o",
"messages": [
{
"role": "user",
"content": "Hello, how are you?"
}
],
"tags": "private-data"
}'
```
</TabItem>
</Tabs>
<br />
### 2.2 Valid model
This request will succeed since we send `tags=private-data` and the model `us.anthropic.claude-3-7-sonnet-20250219-v1:0` is in the allowed models for the `private-data` tag.
<Image img={require('../../img/tag_valid.png')} style={{ width: '800px', height: 'auto' }} />
Here is an example sending the same request using the OpenAI Python SDK.
<Tabs>
<TabItem value="python" label="OpenAI Python SDK">
```python showLineNumbers
from openai import OpenAI
client = OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000/v1/"
)
response = client.chat.completions.create(
model="us.anthropic.claude-3-7-sonnet-20250219-v1:0",
messages=[
{"role": "user", "content": "Hello, how are you?"}
],
extra_body={
"tags": "private-data"
}
)
```
</TabItem>
<TabItem value="curl" label="cURL">
```bash
curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "us.anthropic.claude-3-7-sonnet-20250219-v1:0",
"messages": [
{
"role": "user",
"content": "Hello, how are you?"
}
],
"tags": "private-data"
}'
```
</TabItem>
</Tabs>
## Additional Tag Features
- [Sending tags in request headers](https://docs.litellm.ai/docs/proxy/tag_routing#calling-via-request-header)
- [Tag based routing](https://docs.litellm.ai/docs/proxy/tag_routing)
- [Track spend per tag](cost_tracking#-custom-tags)
- [Setup Budgets per Virtual Key, Team](users)

Binary file not shown.

After

Width:  |  Height:  |  Size: 707 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 346 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Some files were not shown because too many files have changed in this diff Show more