mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
feat - add aretrieve_batch
This commit is contained in:
parent
c580fe03a0
commit
fe704e5857
3 changed files with 69 additions and 16 deletions
|
@ -47,7 +47,7 @@ async def acreate_file(
|
|||
**kwargs,
|
||||
) -> Coroutine[Any, Any, FileObject]:
|
||||
"""
|
||||
Files are used to upload documents that can be used with features like Assistants, Fine-tuning, and Batch API.
|
||||
Async: Files are used to upload documents that can be used with features like Assistants, Fine-tuning, and Batch API.
|
||||
|
||||
LiteLLM Equivalent of POST: POST https://api.openai.com/v1/files
|
||||
"""
|
||||
|
@ -181,7 +181,7 @@ async def acreate_batch(
|
|||
**kwargs,
|
||||
) -> Coroutine[Any, Any, Batch]:
|
||||
"""
|
||||
Creates and executes a batch from an uploaded file of request
|
||||
Async: Creates and executes a batch from an uploaded file of request
|
||||
|
||||
LiteLLM Equivalent of POST: https://api.openai.com/v1/batches
|
||||
"""
|
||||
|
@ -311,6 +311,48 @@ def create_batch(
|
|||
raise e
|
||||
|
||||
|
||||
async def aretrieve_batch(
|
||||
batch_id: str,
|
||||
custom_llm_provider: Literal["openai"] = "openai",
|
||||
metadata: Optional[Dict[str, str]] = None,
|
||||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
) -> Coroutine[Any, Any, Batch]:
|
||||
"""
|
||||
Async: Retrieves a batch.
|
||||
|
||||
LiteLLM Equivalent of GET https://api.openai.com/v1/batches/{batch_id}
|
||||
"""
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
kwargs["aretrieve_batch"] = True
|
||||
|
||||
# Use a partial function to pass your keyword arguments
|
||||
func = partial(
|
||||
retrieve_batch,
|
||||
batch_id,
|
||||
custom_llm_provider,
|
||||
metadata,
|
||||
extra_headers,
|
||||
extra_body,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Add the context to the function
|
||||
ctx = contextvars.copy_context()
|
||||
func_with_context = partial(ctx.run, func)
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
if asyncio.iscoroutine(init_response):
|
||||
response = await init_response
|
||||
else:
|
||||
response = init_response # type: ignore
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
def retrieve_batch(
|
||||
batch_id: str,
|
||||
custom_llm_provider: Literal["openai"] = "openai",
|
||||
|
@ -318,7 +360,7 @@ def retrieve_batch(
|
|||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
) -> Union[Batch, Coroutine[Any, Any, Batch]]:
|
||||
"""
|
||||
Retrieves a batch.
|
||||
|
||||
|
@ -409,10 +451,6 @@ def list_batch():
|
|||
pass
|
||||
|
||||
|
||||
async def aretrieve_batch():
|
||||
pass
|
||||
|
||||
|
||||
async def acancel_batch():
|
||||
pass
|
||||
|
||||
|
|
|
@ -1672,6 +1672,14 @@ class OpenAIBatchesAPI(BaseLLM):
|
|||
response = openai_client.batches.create(**create_batch_data)
|
||||
return response
|
||||
|
||||
async def aretrieve_batch(
|
||||
self,
|
||||
retrieve_batch_data: RetrieveBatchRequest,
|
||||
openai_client: AsyncOpenAI,
|
||||
) -> Batch:
|
||||
response = await openai_client.batches.retrieve(**retrieve_batch_data)
|
||||
return response
|
||||
|
||||
def retrieve_batch(
|
||||
self,
|
||||
_is_async: bool,
|
||||
|
@ -1696,6 +1704,15 @@ class OpenAIBatchesAPI(BaseLLM):
|
|||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(openai_client, AsyncOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.aretrieve_batch( # type: ignore
|
||||
retrieve_batch_data=retrieve_batch_data, openai_client=openai_client
|
||||
)
|
||||
response = openai_client.batches.retrieve(**retrieve_batch_data)
|
||||
return response
|
||||
|
||||
|
|
|
@ -109,17 +109,15 @@ async def test_async_create_batch():
|
|||
create_batch_response.input_file_id == batch_input_file_id
|
||||
), f"Failed to create batch, expected input_file_id to be {batch_input_file_id} but got {create_batch_response.input_file_id}"
|
||||
|
||||
# time.sleep(30)
|
||||
await asyncio.sleep(1)
|
||||
|
||||
# retrieved_batch = litellm.retrieve_batch(
|
||||
# batch_id=create_batch_response.id, custom_llm_provider="openai"
|
||||
# )
|
||||
# print("retrieved batch=", retrieved_batch)
|
||||
# # just assert that we retrieved a non None batch
|
||||
retrieved_batch = await litellm.aretrieve_batch(
|
||||
batch_id=create_batch_response.id, custom_llm_provider="openai"
|
||||
)
|
||||
print("retrieved batch=", retrieved_batch)
|
||||
# just assert that we retrieved a non None batch
|
||||
|
||||
# assert retrieved_batch.id == create_batch_response.id
|
||||
|
||||
pass
|
||||
assert retrieved_batch.id == create_batch_response.id
|
||||
|
||||
|
||||
def test_retrieve_batch():
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue