docs fix order of logging integrations

This commit is contained in:
Ishaan Jaff 2025-01-22 08:45:22 -08:00
parent c546dc83c2
commit ffde1d75d5

View file

@ -2,11 +2,11 @@
Log Proxy input, output, and exceptions using:
- Lunary
- MLflow
- Langfuse
- OpenTelemetry
- GCS, s3, Azure (Blob) Buckets
- Lunary
- MLflow
- Custom Callbacks
- Langsmith
- DataDog
@ -184,107 +184,6 @@ Found under `kwargs["standard_logging_object"]`. This is a standard payload, log
[👉 **Standard Logging Payload Specification**](./logging_spec)
## Lunary
### Step1: Install dependencies and set your environment variables
Install the dependencies
```shell
pip install litellm lunary
```
Get you Lunary public key from from https://app.lunary.ai/settings
```shell
export LUNARY_PUBLIC_KEY="<your-public-key>"
```
### Step 2: Create a `config.yaml` and set `lunary` callbacks
```yaml
model_list:
- model_name: "*"
litellm_params:
model: "*"
litellm_settings:
success_callback: ["lunary"]
failure_callback: ["lunary"]
```
### Step 3: Start the LiteLLM proxy
```shell
litellm --config config.yaml
```
### Step 4: Make a request
```shell
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-d '{
"model": "gpt-4o",
"messages": [
{
"role": "system",
"content": "You are a helpful math tutor. Guide the user through the solution step by step."
},
{
"role": "user",
"content": "how can I solve 8x + 7 = -23"
}
]
}'
```
## MLflow
### Step1: Install dependencies
Install the dependencies.
```shell
pip install litellm mlflow
```
### Step 2: Create a `config.yaml` with `mlflow` callback
```yaml
model_list:
- model_name: "*"
litellm_params:
model: "*"
litellm_settings:
success_callback: ["mlflow"]
failure_callback: ["mlflow"]
```
### Step 3: Start the LiteLLM proxy
```shell
litellm --config config.yaml
```
### Step 4: Make a request
```shell
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-d '{
"model": "gpt-4o-mini",
"messages": [
{
"role": "user",
"content": "What is the capital of France?"
}
]
}'
```
### Step 5: Review traces
Run the following command to start MLflow UI and review recorded traces.
```shell
mlflow ui
```
## Langfuse
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successfull LLM calls to langfuse. Make sure to set `LANGFUSE_PUBLIC_KEY` and `LANGFUSE_SECRET_KEY` in your environment
@ -1298,6 +1197,109 @@ LiteLLM supports customizing the following Datadog environment variables
| `HOSTNAME` | Hostname tag for your logs | "" | ❌ No |
| `POD_NAME` | Pod name tag (useful for Kubernetes deployments) | "unknown" | ❌ No |
## Lunary
### Step1: Install dependencies and set your environment variables
Install the dependencies
```shell
pip install litellm lunary
```
Get you Lunary public key from from https://app.lunary.ai/settings
```shell
export LUNARY_PUBLIC_KEY="<your-public-key>"
```
### Step 2: Create a `config.yaml` and set `lunary` callbacks
```yaml
model_list:
- model_name: "*"
litellm_params:
model: "*"
litellm_settings:
success_callback: ["lunary"]
failure_callback: ["lunary"]
```
### Step 3: Start the LiteLLM proxy
```shell
litellm --config config.yaml
```
### Step 4: Make a request
```shell
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-d '{
"model": "gpt-4o",
"messages": [
{
"role": "system",
"content": "You are a helpful math tutor. Guide the user through the solution step by step."
},
{
"role": "user",
"content": "how can I solve 8x + 7 = -23"
}
]
}'
```
## MLflow
### Step1: Install dependencies
Install the dependencies.
```shell
pip install litellm mlflow
```
### Step 2: Create a `config.yaml` with `mlflow` callback
```yaml
model_list:
- model_name: "*"
litellm_params:
model: "*"
litellm_settings:
success_callback: ["mlflow"]
failure_callback: ["mlflow"]
```
### Step 3: Start the LiteLLM proxy
```shell
litellm --config config.yaml
```
### Step 4: Make a request
```shell
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-d '{
"model": "gpt-4o-mini",
"messages": [
{
"role": "user",
"content": "What is the capital of France?"
}
]
}'
```
### Step 5: Review traces
Run the following command to start MLflow UI and review recorded traces.
```shell
mlflow ui
```
## Custom Callback Class [Async]
Use this when you want to run custom callbacks in `python`