* build(pyproject.toml): add new dev dependencies - for type checking
* build: reformat files to fit black
* ci: reformat to fit black
* ci(test-litellm.yml): make tests run clear
* build(pyproject.toml): add ruff
* fix: fix ruff checks
* build(mypy/): fix mypy linting errors
* fix(hashicorp_secret_manager.py): fix passing cert for tls auth
* build(mypy/): resolve all mypy errors
* test: update test
* fix: fix black formatting
* build(pre-commit-config.yaml): use poetry run black
* fix(proxy_server.py): fix linting error
* fix: fix ruff safe representation error
* feat(bedrock/rerank): infer model region if model given as arn
* test: add unit testing to ensure bedrock region name inferred from arn on rerank
* feat(bedrock/rerank/transformation.py): include search units for bedrock rerank result
Resolves https://github.com/BerriAI/litellm/issues/7258#issuecomment-2671557137
* test(test_bedrock_completion.py): add testing for bedrock cohere rerank
* feat(cost_calculator.py): refactor rerank cost tracking to support bedrock cost tracking
* build(model_prices_and_context_window.json): add amazon.rerank model to model cost map
* fix(cost_calculator.py): bedrock/common_utils.py
get base model from model w/ arn -> handles rerank model
* build(model_prices_and_context_window.json): add bedrock cohere rerank pricing
* feat(bedrock/rerank): migrate bedrock config to basererank config
* Revert "feat(bedrock/rerank): migrate bedrock config to basererank config"
This reverts commit 84fae1f167.
* test: add testing to ensure large doc / queries are correctly counted
* Revert "test: add testing to ensure large doc / queries are correctly counted"
This reverts commit 4337f1657e.
* fix(migrate-jina-ai-to-rerank-config): enables cost tracking
* refactor(jina_ai/): finish migrating jina ai to base rerank config
enables cost tracking
* fix(jina_ai/rerank): e2e jina ai rerank cost tracking
* fix: cleanup dead code
* fix: fix python3.8 compatibility error
* test: fix test
* test: add e2e testing for azure ai rerank
* fix: fix linting error
* test: mark cohere as flaky
* test(azure_openai_o1.py): initial commit with testing for azure openai o1 preview model
* fix(base_llm_unit_tests.py): handle azure o1 preview response format tests
skip as o1 on azure doesn't support tool calling yet
* fix: initial commit of azure o1 handler using openai caller
simplifies calling + allows fake streaming logic alr. implemented for openai to just work
* feat(azure/o1_handler.py): fake o1 streaming for azure o1 models
azure does not currently support streaming for o1
* feat(o1_transformation.py): support overriding 'should_fake_stream' on azure/o1 via 'supports_native_streaming' param on model info
enables user to toggle on when azure allows o1 streaming without needing to bump versions
* style(router.py): remove 'give feedback/get help' messaging when router is used
Prevents noisy messaging
Closes https://github.com/BerriAI/litellm/issues/5942
* fix(types/utils.py): handle none logprobs
Fixes https://github.com/BerriAI/litellm/issues/328
* fix(exception_mapping_utils.py): fix error str unbound error
* refactor(azure_ai/): move to openai_like chat completion handler
allows for easy swapping of api base url's (e.g. ai.services.com)
Fixes https://github.com/BerriAI/litellm/issues/7275
* refactor(azure_ai/): move to base llm http handler
* fix(azure_ai/): handle differing api endpoints
* fix(azure_ai/): make sure all unit tests are passing
* fix: fix linting errors
* fix: fix linting errors
* fix: fix linting error
* fix: fix linting errors
* fix(azure_ai/transformation.py): handle extra body param
* fix(azure_ai/transformation.py): fix max retries param handling
* fix: fix test
* test(test_azure_o1.py): fix test
* fix(llm_http_handler.py): support handling azure ai unprocessable entity error
* fix(llm_http_handler.py): handle sync invalid param error for azure ai
* fix(azure_ai/): streaming support with base_llm_http_handler
* fix(llm_http_handler.py): working sync stream calls with unprocessable entity handling for azure ai
* fix: fix linting errors
* fix(llm_http_handler.py): fix linting error
* fix(azure_ai/): handle cohere tool call invalid index param error
* fix(health.md): add rerank model health check information
* build(model_prices_and_context_window.json): add gemini 2.0 for google ai studio - pricing + commercial rate limits
* build(model_prices_and_context_window.json): add gemini-2.0 supports audio output = true
* docs(team_model_add.md): clarify allowing teams to add models is an enterprise feature
* fix(o1_transformation.py): add support for 'n', 'response_format' and 'stop' params for o1 and 'stream_options' param for o1-mini
* build(model_prices_and_context_window.json): add 'supports_system_message' to supporting openai models
needed as o1-preview, and o1-mini models don't support 'system message
* fix(o1_transformation.py): translate system message based on if o1 model supports it
* fix(o1_transformation.py): return 'stream' param support if o1-mini/o1-preview
o1 currently doesn't support streaming, but the other model versions do
Fixes https://github.com/BerriAI/litellm/issues/7292
* fix(o1_transformation.py): return tool calling/response_format in supported params if model map says so
Fixes https://github.com/BerriAI/litellm/issues/7292
* fix: fix linting errors
* fix: update '_transform_messages'
* fix(o1_transformation.py): fix provider passed for supported param checks
* test(base_llm_unit_tests.py): skip test if api takes >5s to respond
* fix(utils.py): return false in 'supports_factory' if can't find value
* fix(o1_transformation.py): always return stream + stream_options as supported params + handle stream options being passed in for azure o1
* feat(openai.py): support stream faking natively in openai handler
Allows o1 calls to be faked for just the "o1" model, allows native streaming for o1-mini, o1-preview
Fixes https://github.com/BerriAI/litellm/issues/7292
* fix(openai.py): use inference param instead of original optional param
* fix use new format for Cohere config
* fix base llm http handler
* Litellm code qa common config (#7116)
* feat(base_llm): initial commit for common base config class
Addresses code qa critique https://github.com/andrewyng/aisuite/issues/113#issuecomment-2512369132
* feat(base_llm/): add transform request/response abstract methods to base config class
---------
Co-authored-by: Krrish Dholakia <krrishdholakia@gmail.com>
* use base transform helpers
* use base_llm_http_handler for cohere
* working cohere using base llm handler
* add async cohere chat completion support on base handler
* fix completion code
* working sync cohere stream
* add async support cohere_chat
* fix types get_model_response_iterator
* async / sync tests cohere
* feat cohere using base llm class
* fix linting errors
* fix _abc error
* add cohere params to transformation
* remove old cohere file
* fix type error
* fix merge conflicts
* fix cohere merge conflicts
* fix linting error
* fix litellm.llms.custom_httpx.http_handler.HTTPHandler.post
* fix passing cohere specific params
---------
Co-authored-by: Krrish Dholakia <krrishdholakia@gmail.com>
* feat(base_llm): initial commit for common base config class
Addresses code qa critique https://github.com/andrewyng/aisuite/issues/113#issuecomment-2512369132
* feat(base_llm/): add transform request/response abstract methods to base config class
* feat(cohere-+-clarifai): refactor integrations to use common base config class
* fix: fix linting errors
* refactor(anthropic/): move anthropic + vertex anthropic to use base config
* test: fix xai test
* test: fix tests
* fix: fix linting errors
* test: comment out WIP test
* fix(transformation.py): fix is pdf used check
* fix: fix linting error
* feat(pass_through_endpoints/): support logging anthropic/gemini pass through calls to langfuse/s3/etc.
* fix(utils.py): allow disabling end user cost tracking with new param
Allows proxy admin to disable cost tracking for end user - keeps prometheus metrics small
* docs(configs.md): add disable_end_user_cost_tracking reference to docs
* feat(key_management_endpoints.py): add support for restricting access to `/key/generate` by team/proxy level role
Enables admin to restrict key creation, and assign team admins to handle distributing keys
* test(test_key_management.py): add unit testing for personal / team key restriction checks
* docs: add docs on restricting key creation
* docs(finetuned_models.md): add new guide on calling finetuned models
* docs(input.md): cleanup anthropic supported params
Closes https://github.com/BerriAI/litellm/issues/6856
* test(test_embedding.py): add test for passing extra headers via embedding
* feat(cohere/embed): pass client to async embedding
* feat(rerank.py): add `/v1/rerank` if missing for cohere base url
Closes https://github.com/BerriAI/litellm/issues/6844
* fix(main.py): pass extra_headers param to openai
Fixes https://github.com/BerriAI/litellm/issues/6836
* fix(litellm_logging.py): don't disable global callbacks when dynamic callbacks are set
Fixes issue where global callbacks - e.g. prometheus were overriden when langfuse was set dynamically
* fix(handler.py): fix linting error
* fix: fix typing
* build: add conftest to proxy_admin_ui_tests/
* test: fix test
* fix: fix linting errors
* test: fix test
* fix: fix pass through testing
* fix(utils.py): support passing dynamic api base to validate_environment
Returns True if just api base is required and api base is passed
* fix(litellm_pre_call_utils.py): feature flag sending client headers to llm api
Fixes https://github.com/BerriAI/litellm/issues/6410
* fix(anthropic/chat/transformation.py): return correct error message
* fix(http_handler.py): add error response text in places where we expect it
* fix(factory.py): handle base case of no non-system messages to bedrock
Fixes https://github.com/BerriAI/litellm/issues/6411
* feat(cohere/embed): Support cohere image embeddings
Closes https://github.com/BerriAI/litellm/issues/6413
* fix(__init__.py): fix linting error
* docs(supported_embedding.md): add image embedding example to docs
* feat(cohere/embed): use cohere embedding returned usage for cost calc
* build(model_prices_and_context_window.json): add embed-english-v3.0 details (image cost + 'supports_image_input' flag)
* fix(cohere_transformation.py): fix linting error
* test(test_proxy_server.py): cleanup test
* test: cleanup test
* fix: fix linting errors
* LiteLLM Minor Fixes & Improvements (09/26/2024) (#5925)
* fix(litellm_logging.py): don't initialize prometheus_logger if non premium user
Prevents bad error messages in logs
Fixes https://github.com/BerriAI/litellm/issues/5897
* Add Support for Custom Providers in Vision and Function Call Utils (#5688)
* Add Support for Custom Providers in Vision and Function Call Utils Lookup
* Remove parallel function call due to missing model info param
* Add Unit Tests for Vision and Function Call Changes
* fix-#5920: set header value to string to fix "'int' object has no att… (#5922)
* LiteLLM Minor Fixes & Improvements (09/24/2024) (#5880)
* LiteLLM Minor Fixes & Improvements (09/23/2024) (#5842)
* feat(auth_utils.py): enable admin to allow client-side credentials to be passed
Makes it easier for devs to experiment with finetuned fireworks ai models
* feat(router.py): allow setting configurable_clientside_auth_params for a model
Closes https://github.com/BerriAI/litellm/issues/5843
* build(model_prices_and_context_window.json): fix anthropic claude-3-5-sonnet max output token limit
Fixes https://github.com/BerriAI/litellm/issues/5850
* fix(azure_ai/): support content list for azure ai
Fixes https://github.com/BerriAI/litellm/issues/4237
* fix(litellm_logging.py): always set saved_cache_cost
Set to 0 by default
* fix(fireworks_ai/cost_calculator.py): add fireworks ai default pricing
handles calling 405b+ size models
* fix(slack_alerting.py): fix error alerting for failed spend tracking
Fixes regression with slack alerting error monitoring
* fix(vertex_and_google_ai_studio_gemini.py): handle gemini no candidates in streaming chunk error
* docs(bedrock.md): add llama3-1 models
* test: fix tests
* fix(azure_ai/chat): fix transformation for azure ai calls
* feat(azure_ai/embed): Add azure ai embeddings support
Closes https://github.com/BerriAI/litellm/issues/5861
* fix(azure_ai/embed): enable async embedding
* feat(azure_ai/embed): support azure ai multimodal embeddings
* fix(azure_ai/embed): support async multi modal embeddings
* feat(together_ai/embed): support together ai embedding calls
* feat(rerank/main.py): log source documents for rerank endpoints to langfuse
improves rerank endpoint logging
* fix(langfuse.py): support logging `/audio/speech` input to langfuse
* test(test_embedding.py): fix test
* test(test_completion_cost.py): fix helper util
* fix-#5920: set header value to string to fix "'int' object has no attribute 'encode'"
---------
Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
* Revert "fix-#5920: set header value to string to fix "'int' object has no att…" (#5926)
This reverts commit a554ae2695.
* build(model_prices_and_context_window.json): add azure ai cohere rerank model pricing
Enables cost tracking for azure ai cohere rerank models
* fix(litellm_logging.py): fix debug log to be clearer
Closes https://github.com/BerriAI/litellm/issues/5909
* test(test_utils.py): fix test name
* fix(azure_ai/cost_calculator.py): support cost tracking for azure ai rerank models
* fix(azure_ai): fix azure ai base model cost tracking for rerank endpoints
* fix(converse_handler.py): support new llama 3-2 models
Fixes https://github.com/BerriAI/litellm/issues/5901
* fix(litellm_logging.py): ensure response is redacted for standard message logging
Fixes https://github.com/BerriAI/litellm/issues/5890#issuecomment-2378242360
* fix(cost_calculator.py): use 'get_model_info' for cohere rerank cost calculation
allows user to set custom cost for model
* fix(config.yml): fix docker hub auht
* build(config.yml): add docker auth to all tests
* fix(db/create_views.py): fix linting error
* fix(main.py): fix circular import
* fix(azure_ai/__init__.py): fix circular import
* fix(main.py): fix import
* fix: fix linting errors
* test: fix test
* fix(proxy_server.py): pass premium user value on startup
used for prometheus init
---------
Co-authored-by: Cole Murray <colemurray.cs@gmail.com>
Co-authored-by: bravomark <62681807+bravomark@users.noreply.github.com>
* handle streaming for azure ai studio error
* [Perf Proxy] parallel request limiter - use one cache update call (#5932)
* fix parallel request limiter - use one cache update call
* ci/cd run again
* run ci/cd again
* use docker username password
* fix config.yml
* fix config
* fix config
* fix config.yml
* ci/cd run again
* use correct typing for batch set cache
* fix async_set_cache_pipeline
* fix only check user id tpm / rpm limits when limits set
* fix test_openai_azure_embedding_with_oidc_and_cf
* test: fix test
* test(test_rerank.py): fix test
---------
Co-authored-by: Cole Murray <colemurray.cs@gmail.com>
Co-authored-by: bravomark <62681807+bravomark@users.noreply.github.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
* fix(model_prices_and_context_window.json): add cost tracking for more vertex llama3.1 model
8b and 70b models
* fix(proxy/utils.py): handle data being none on pre-call hooks
* fix(proxy/): create views on initial proxy startup
fixes base case, where user starts proxy for first time
Fixes https://github.com/BerriAI/litellm/issues/5756
* build(config.yml): fix vertex version for test
* feat(ui/): support enabling/disabling slack alerting
Allows admin to turn on/off slack alerting through ui
* feat(rerank/main.py): support langfuse logging
* fix(proxy/utils.py): fix linting errors
* fix(langfuse.py): log clean metadata
* test(tests): replace deprecated openai model
* fix(proxy_server.py): use default azure credentials to support azure non-client secret kms
* fix(langsmith.py): raise error if credentials missing
* feat(langsmith.py): support error logging for langsmith + standard logging payload
Fixes https://github.com/BerriAI/litellm/issues/5738
* Fix hardcoding of schema in view check (#5749)
* fix - deal with case when check view exists returns None (#5740)
* Revert "fix - deal with case when check view exists returns None (#5740)" (#5741)
This reverts commit 535228159b.
* test(test_router_debug_logs.py): move to mock response
* Fix hardcoding of schema
---------
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Krrish Dholakia <krrishdholakia@gmail.com>
* fix(proxy_server.py): allow admin to disable ui via `DISABLE_ADMIN_UI` flag
* fix(router.py): fix default model name value
Fixes 55db19a1e4 (r1763712148)
* fix(utils.py): fix unbound variable error
* feat(rerank/main.py): add azure ai rerank endpoints
Closes https://github.com/BerriAI/litellm/issues/5667
* feat(secret_detection.py): Allow configuring secret detection params
Allows admin to control what plugins to run for secret detection. Prevents overzealous secret detection.
* docs(secret_detection.md): add secret detection guardrail docs
* fix: fix linting errors
* fix - deal with case when check view exists returns None (#5740)
* Revert "fix - deal with case when check view exists returns None (#5740)" (#5741)
This reverts commit 535228159b.
* Litellm fix router testing (#5748)
* test: fix testing - azure changed content policy error logic
* test: fix tests to use mock responses
* test(test_image_generation.py): handle api instability
* test(test_image_generation.py): handle azure api instability
* fix(utils.py): fix unbounded variable error
* fix(utils.py): fix unbounded variable error
* test: refactor test to use mock response
* test: mark flaky azure tests
* Bump next from 14.1.1 to 14.2.10 in /ui/litellm-dashboard (#5753)
Bumps [next](https://github.com/vercel/next.js) from 14.1.1 to 14.2.10.
- [Release notes](https://github.com/vercel/next.js/releases)
- [Changelog](https://github.com/vercel/next.js/blob/canary/release.js)
- [Commits](https://github.com/vercel/next.js/compare/v14.1.1...v14.2.10)
---
updated-dependencies:
- dependency-name: next
dependency-type: direct:production
...
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
* [Fix] o1-mini causes pydantic warnings on `reasoning_tokens` (#5754)
* add requester_metadata in standard logging payload
* log requester_metadata in metadata
* use StandardLoggingPayload for logging
* docs StandardLoggingPayload
* fix import
* include standard logging object in failure
* add test for requester metadata
* handle completion_tokens_details
* add test for completion_tokens_details
* [Feat-Proxy-DataDog] Log Redis, Postgres Failure events on DataDog (#5750)
* dd - start tracking redis status on dd
* add async_service_succes_hook / failure hook in custom logger
* add async_service_failure_hook
* log service failures on dd
* fix import error
* add test for redis errors / warning
* [Fix] Router/ Proxy - Tag Based routing, raise correct error when no deployments found and tag filtering is on (#5745)
* fix tag routing - raise correct error when no model with tag based routing
* fix error string from tag based routing
* test router tag based routing
* raise 401 error when no tags avialable for deploymen
* linting fix
* [Feat] Log Request metadata on gcs bucket logging (#5743)
* add requester_metadata in standard logging payload
* log requester_metadata in metadata
* use StandardLoggingPayload for logging
* docs StandardLoggingPayload
* fix import
* include standard logging object in failure
* add test for requester metadata
* fix(litellm_logging.py): fix logging message
* fix(rerank_api/main.py): fix linting errors
* fix(custom_guardrails.py): maintain backwards compatibility for older guardrails
* fix(rerank_api/main.py): fix cost tracking for rerank endpoints
---------
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: steffen-sbt <148480574+steffen-sbt@users.noreply.github.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
* refactor(bedrock): initial commit to refactor bedrock to a folder
Improve code readability + maintainability
* refactor: more refactor work
* fix: fix imports
* feat(bedrock/embeddings.py): support translating embedding into amazon embedding formats
* fix: fix linting errors
* test: skip test on end of life model
* fix(cohere/embed.py): fix linting error
* fix(cohere/embed.py): fix typing
* fix(cohere/embed.py): fix post-call logging for cohere embedding call
* test(test_embeddings.py): fix error message assertion in test