* test: fix import for test
* fix: fix bad error string
* docs: cleanup files docs
* fix(files/main.py): cleanup error string
* style: initial commit with a provider/config pattern for files api
google ai studio files api onboarding
* fix: test
* feat(gemini/files/transformation.py): support gemini files api response transformation
* fix(gemini/files/transformation.py): return file id as gemini uri
allows id to be passed in to chat completion request, just like openai
* feat(llm_http_handler.py): support async route for files api on llm_http_handler
* fix: fix linting errors
* fix: fix model info check
* fix: fix ruff errors
* fix: fix linting errors
* Revert "fix: fix linting errors"
This reverts commit 926a5a527f.
* fix: fix linting errors
* test: fix test
* test: fix tests
* build(pyproject.toml): add new dev dependencies - for type checking
* build: reformat files to fit black
* ci: reformat to fit black
* ci(test-litellm.yml): make tests run clear
* build(pyproject.toml): add ruff
* fix: fix ruff checks
* build(mypy/): fix mypy linting errors
* fix(hashicorp_secret_manager.py): fix passing cert for tls auth
* build(mypy/): resolve all mypy errors
* test: update test
* fix: fix black formatting
* build(pre-commit-config.yaml): use poetry run black
* fix(proxy_server.py): fix linting error
* fix: fix ruff safe representation error
* refactor: introduce new transformation config for gpt-4o-transcribe models
* refactor: expose new transformation configs for audio transcription
* ci: fix config yml
* feat(openai/transcriptions): support provider config transformation on openai audio transcriptions
allows gpt-4o and whisper audio transformation to work as expected
* refactor: migrate fireworks ai + deepgram to new transform request pattern
* feat(openai/): working support for gpt-4o-audio-transcribe
* build(model_prices_and_context_window.json): add gpt-4o-transcribe to model cost map
* build(model_prices_and_context_window.json): specify what endpoints are supported for `/audio/transcriptions`
* fix(get_supported_openai_params.py): fix return
* refactor(deepgram/): migrate unit test to deepgram handler
* refactor: cleanup unused imports
* fix(get_supported_openai_params.py): fix linting error
* test: update test
* fix(vertex_and_google_ai_studio_gemini.py): log gemini audio tokens in usage object
enables accurate cost tracking
* refactor(vertex_ai/cost_calculator.py): refactor 128k+ token cost calculation to only run if model info has it
Google has moved away from this for gemini-2.0 models
* refactor(vertex_ai/cost_calculator.py): migrate to usage object for more flexible data passthrough
* fix(llm_cost_calc/utils.py): support audio token cost tracking in generic cost per token
enables vertex ai cost tracking to work with audio tokens
* fix(llm_cost_calc/utils.py): default to total prompt tokens if text tokens field not set
* refactor(llm_cost_calc/utils.py): move openai cost tracking to generic cost per token
more consistent behaviour across providers
* test: add unit test for gemini audio token cost calculation
* ci: bump ci config
* test: fix test
* fix(transformation.py): support a 'format' parameter for image's
allow user to specify mime type
* fix: pass mimetype via 'format' param
* feat(gemini/chat/transformation.py): support 'format' param for gemini
* fix(factory.py): support 'format' param on sync bedrock converse calls
* feat(bedrock/converse_transformation.py): support 'format' param for bedrock async calls
* refactor(factory.py): move to supporting 'format' param in base helper
ensures consistency in param support
* feat(gpt_transformation.py): filter out 'format' param
don't send invalid param to openai
* fix(gpt_transformation.py): fix translation
* fix: fix translation error
* fix(core_helpers.py): handle litellm_metadata instead of 'metadata'
* feat(batches/): ensure batches logs are written to db
makes batches response dict compatible
* fix(cost_calculator.py): handle batch response being a dictionary
* fix(batches/main.py): modify retrieve endpoints to use @client decorator
enables logging to work on retrieve call
* fix(batches/main.py): fix retrieve batch response type to be 'dict' compatible
* fix(spend_tracking_utils.py): send unique uuid for retrieve batch call type
create batch and retrieve batch share the same id
* fix(spend_tracking_utils.py): prevent duplicate retrieve batch calls from being double counted
* refactor(batches/): refactor cost tracking for batches - do it on retrieve, and within the established litellm_logging pipeline
ensures cost is always logged to db
* fix: fix linting errors
* fix: fix linting error
* fix(o_series_transformation.py): fix optional param check for o-series models
o3-mini and o-1 do not support parallel tool calling
* fix(utils.py): support 'drop_params' for 'thinking' param across models
allows switching to older claude versions (or non-anthropic models) and param to be safely dropped
* fix: fix passing thinking param in optional params
allows dropping thinking_param where not applicable
* test: update old model
* fix(utils.py): fix linting errors
* fix(main.py): add param to acompletion
* Fixed issue #8246 (#8250)
* Fixed issue #8246
* Added unit tests for discard() and for remove_callback_from_list_by_object()
* fix(openai.py): support dynamic passing of organization param to openai
handles scenario where client-side org id is passed to openai
---------
Co-authored-by: Erez Hadad <erezh@il.ibm.com>
* add back streaming for base o3 (#8361)
* test(base_llm_unit_tests.py): add base test for o-series models - ensure streaming always works
* fix(base_llm_unit_tests.py): fix test for o series models
* refactor: move test
---------
Co-authored-by: Matteo Boschini <12133566+mbosc@users.noreply.github.com>
* refactor(deepseek/): move deepseek to base llm http handler
Fixes https://github.com/BerriAI/litellm/issues/8128#issuecomment-2635430457
* fix(gpt_transformation.py): support stream parsing for gpt-like calls
* test(test_deepseek_completion.py): add async streaming test
* fix(gpt_transformation.py): fix import
* fix(gpt_transformation.py): return full api base and content type
* test(base_llm_unit_tests.py): add test to ensure drop params is respected
* fix(types/prometheus.py): use typing_extensions for python3.8 compatibility
* build: add cherry picked commits
* fix(o_series_transformation.py): add 'reasoning_effort' as o series model param
Closes https://github.com/BerriAI/litellm/issues/8182
* fix(main.py): ensure `reasoning_effort` is a mapped openai param
* refactor(azure/): rename o1_[x] files to o_series_[x]
* refactor(base_llm_unit_tests.py): refactor testing for o series reasoning effort
* test(test_azure_o_series.py): have azure o series tests correctly inherit from base o series model tests
* feat(base_utils.py): support translating 'developer' role to 'system' role for non-openai providers
Makes it easy to switch from openai to anthropic
* fix: fix linting errors
* fix(base_llm_unit_tests.py): fix test
* fix(main.py): add missing param
* fix: support azure o3 model family for fake streaming workaround (#8162)
* fix: support azure o3 model family for fake streaming workaround
* refactor: rename helper to is_o_series_model for clarity
* update function calling parameters for o3 models (#8178)
* refactor(o1_transformation.py): refactor o1 config to be o series config, expand o series model check to o3
ensures max_tokens is correctly translated for o3
* feat(openai/): refactor o1 files to be 'o_series' files
expands naming to cover o3
* fix(azure/chat/o1_handler.py): azure openai is an instance of openai - was causing resets
* test(test_azure_o_series.py): assert stream faked for azure o3 mini
Resolves https://github.com/BerriAI/litellm/pull/8162
* fix(o1_transformation.py): fix o1 transformation logic to handle explicit o1_series routing
* docs(azure.md): update doc with `o_series/` model name
---------
Co-authored-by: byrongrogan <47910641+byrongrogan@users.noreply.github.com>
Co-authored-by: Low Jian Sheng <15527690+lowjiansheng@users.noreply.github.com>