* feat: prioritize api_key over tenant_id for more Azure AD token provider (#8318)
* fix: prioritize api_key over tenant_id for Azure AD token provider
* test: Add test for Azure AD token provider in router
* fix: fix linting error
---------
Co-authored-by: you-n-g <you-n-g@users.noreply.github.com>
* fix(transformation.py): support a 'format' parameter for image's
allow user to specify mime type
* fix: pass mimetype via 'format' param
* feat(gemini/chat/transformation.py): support 'format' param for gemini
* fix(factory.py): support 'format' param on sync bedrock converse calls
* feat(bedrock/converse_transformation.py): support 'format' param for bedrock async calls
* refactor(factory.py): move to supporting 'format' param in base helper
ensures consistency in param support
* feat(gpt_transformation.py): filter out 'format' param
don't send invalid param to openai
* fix(gpt_transformation.py): fix translation
* fix: fix translation error
* Fix missing signature_delta in thinking blocks when streaming from Claude 3.7 (#8797)
Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
* test: update test to enforce signature found
* feat(refactor-signature-param-to-be-'signature'-instead-of-'signature_delta'): keeps it in sync with anthropic
* fix: fix linting error
---------
Co-authored-by: Martin Krasser <krasserm@googlemail.com>
* fix(core_helpers.py): handle litellm_metadata instead of 'metadata'
* feat(batches/): ensure batches logs are written to db
makes batches response dict compatible
* fix(cost_calculator.py): handle batch response being a dictionary
* fix(batches/main.py): modify retrieve endpoints to use @client decorator
enables logging to work on retrieve call
* fix(batches/main.py): fix retrieve batch response type to be 'dict' compatible
* fix(spend_tracking_utils.py): send unique uuid for retrieve batch call type
create batch and retrieve batch share the same id
* fix(spend_tracking_utils.py): prevent duplicate retrieve batch calls from being double counted
* refactor(batches/): refactor cost tracking for batches - do it on retrieve, and within the established litellm_logging pipeline
ensures cost is always logged to db
* fix: fix linting errors
* fix: fix linting error
* fix(route_llm_request.py): move to using common router, even for client-side credentials
ensures fallbacks / cooldown logic still works
* test(test_route_llm_request.py): add unit test for route request
* feat(router.py): generate unique model id when clientside credential passed in
Prevents cooldowns for api key 1 from impacting api key 2
* test(test_router.py): update testing to ensure original litellm params not mutated
* fix(router.py): upsert clientside call into llm router model list
enables cooldown logic to work accurately
* fix: fix linting error
* test(test_router_utils.py): add direct test for new util on router
* feat(bedrock/converse/transformation.py): support claude-3-7-sonnet reasoning_Content transformation
Closes https://github.com/BerriAI/litellm/issues/8777
* fix(bedrock/): support returning `reasoning_content` on streaming for claude-3-7
Resolves https://github.com/BerriAI/litellm/issues/8777
* feat(bedrock/): unify converse reasoning content blocks for consistency across anthropic and bedrock
* fix(anthropic/chat/transformation.py): handle deepseek-style 'reasoning_content' extraction within transformation.py
simpler logic
* feat(bedrock/): fix streaming to return blocks in consistent format
* fix: fix linting error
* test: fix test
* feat(factory.py): fix bedrock thinking block translation on tool calling
allows passing the thinking blocks back to bedrock for tool calling
* fix(types/utils.py): don't exclude provider_specific_fields on model dump
ensures consistent responses
* fix: fix linting errors
* fix(convert_dict_to_response.py): pass reasoning_content on root
* fix: test
* fix(streaming_handler.py): add helper util for setting model id
* fix(streaming_handler.py): fix setting model id on model response stream chunk
* fix(streaming_handler.py): fix linting error
* fix(streaming_handler.py): fix linting error
* fix(types/utils.py): add provider_specific_fields to model stream response
* fix(streaming_handler.py): copy provider specific fields and add them to the root of the streaming response
* fix(streaming_handler.py): fix check
* fix: fix test
* fix(types/utils.py): ensure messages content is always openai compatible
* fix(types/utils.py): fix delta object to always be openai compatible
only introduce new params if variable exists
* test: fix bedrock nova tests
* test: skip flaky test
* test: skip flaky test in ci/cd
* fix(o_series_transformation.py): fix optional param check for o-series models
o3-mini and o-1 do not support parallel tool calling
* fix(utils.py): support 'drop_params' for 'thinking' param across models
allows switching to older claude versions (or non-anthropic models) and param to be safely dropped
* fix: fix passing thinking param in optional params
allows dropping thinking_param where not applicable
* test: update old model
* fix(utils.py): fix linting errors
* fix(main.py): add param to acompletion
* fix running litellm on windows
* fix importing litellm
* _init_hypercorn_server
* linting fix
* TestProxyInitializationHelpers
* ci/cd run again
* ci/cd run again
* Adding VertexAI Claude 3.7 Sonnet (#8774)
Co-authored-by: Emerson Gomes <emerson.gomes@thalesgroup.com>
* build(model_prices_and_context_window.json): add anthropic 3-7 models on vertex ai and bedrock
* Support video_url (#8743)
* Support video_url
Support VLMs that works with video.
Example implemenation in vllm: https://github.com/vllm-project/vllm/pull/10020
* llms openai.py: Add ChatCompletionVideoObject
Add data structures to support `video_url` in chat completion
* test test_completion.py: add test for video_url
* Arize Phoenix - ensure correct endpoint/protocol are used; and default to phoenix cloud (#8750)
* minor fixes to default to http and to ensure that the correct endpoint is used
* Update test_arize_phoenix.py
* prioritize http over grpc
---------
Co-authored-by: Emerson Gomes <emerson.gomes@gmail.com>
Co-authored-by: Emerson Gomes <emerson.gomes@thalesgroup.com>
Co-authored-by: Pang Wu <104795337+pang-wu@users.noreply.github.com>
Co-authored-by: Nate Mar <67926244+nate-mar@users.noreply.github.com>
* feat(bedrock/rerank): infer model region if model given as arn
* test: add unit testing to ensure bedrock region name inferred from arn on rerank
* feat(bedrock/rerank/transformation.py): include search units for bedrock rerank result
Resolves https://github.com/BerriAI/litellm/issues/7258#issuecomment-2671557137
* test(test_bedrock_completion.py): add testing for bedrock cohere rerank
* feat(cost_calculator.py): refactor rerank cost tracking to support bedrock cost tracking
* build(model_prices_and_context_window.json): add amazon.rerank model to model cost map
* fix(cost_calculator.py): bedrock/common_utils.py
get base model from model w/ arn -> handles rerank model
* build(model_prices_and_context_window.json): add bedrock cohere rerank pricing
* feat(bedrock/rerank): migrate bedrock config to basererank config
* Revert "feat(bedrock/rerank): migrate bedrock config to basererank config"
This reverts commit 84fae1f167.
* test: add testing to ensure large doc / queries are correctly counted
* Revert "test: add testing to ensure large doc / queries are correctly counted"
This reverts commit 4337f1657e.
* fix(migrate-jina-ai-to-rerank-config): enables cost tracking
* refactor(jina_ai/): finish migrating jina ai to base rerank config
enables cost tracking
* fix(jina_ai/rerank): e2e jina ai rerank cost tracking
* fix: cleanup dead code
* fix: fix python3.8 compatibility error
* test: fix test
* test: add e2e testing for azure ai rerank
* fix: fix linting error
* test: mark cohere as flaky
* feat(create_key_button.tsx): initial commit using openapi.json to ensure all values via api are supported on ui for `/key/generate`
Closes https://github.com/BerriAI/litellm/issues/7763
* style(create_key_button.tsx): put openapi settings inside 'advanced setting' accordion
* fix(check_openapi_schema.tsx): style improvements for advanced settings
* style(create_key_button.tsx): add tooltip explaining what the settings mean
* fix(team_info.tsx): render metadata field on team update
allow updating a team's metadata
* fix(networking.tsx): add 'metadata' field to create team form
* refactor: cleanup dead codeblock
* fix(organization_endpoints.py): fix metadata param support on `/organization/new`
* feat(organization_endpoints.py): support updating metadata for organization on api + ui
* test: mark flaky test
* refactor get model info for team models
* allow adding a model to a team when creating team specific model
* ui update selected Team on Team Dropdown
* test_team_model_association
* testing for team specific models
* test_get_team_specific_model
* test: skip on internal server error
* remove model alias card on teams page
* linting fix _get_team_specific_model
* fix DeploymentTypedDict
* fix linting error
* fix code quality
* fix model info checks
---------
Co-authored-by: Krrish Dholakia <krrishdholakia@gmail.com>
* fix(team_endpoints.py): cleanup user <-> team association on team delete
Fixes issue where user table still listed team membership post delete
* test(test_team.py): update e2e test - ensure user/team membership is deleted on team delete
* fix(base_invoke_transformation.py): fix deepseek r1 transformation
remove deepseek name from model url
* test(test_completion.py): assert model route not in url
* feat(base_invoke_transformation.py): infer region name from model arn
prevent errors due to different region name in env var vs. model arn, respect if explicitly set in call though
* test: fix test
* test: skip on internal server error
* fix(parallel_request_limiter.py): improve single instance rate limiting by updating in-memory cache instantly
Fixes issue where parallel request limiter had a leak
* fix(parallel_request_limiter.py): fix parallel request limiter to not decrement val on max limit being reached
* test(test_parallel_request_limiter.py): fix test
* test: fix test
* fix(parallel_request_limiter.py): move to using common enum
* test: fix test
* feat(litellm_pre_call_utils.py): support `x-litellm-tags` request header
allow tag based routing + spend tracking via request headers
* docs(request_headers.md): document new `x-litellm-tags` for tag based routing and spend tracking
* docs(tag_routing.md): add to docs
* fix(utils.py): only pass str values for openai metadata param
* fix(utils.py): drop non-str values for metadata param to openai
preview-feature, otel span was being sent in
* ui - use common team dropdown component
* re-use team component
* rename org field on add model
* handle add model submit
* working view model_id and team_id on root models page
* cleaner
* show all fields
* working model info view
* working team info selector
* clean up team id
* new component for model dashboard
* ui show table with dropdown
* make public model names like email
* revert changes to litellm model name
* fix litellm model name
* ui fix public model
* fix mappings
* fix conditional text input
* fix message
* ui fix bulk add models
* _add_team_model_to_db
* move model mgmt helper funcs
* test_add_team_model_to_db
* ui - display model team model name
* fix add model tab
* fix remove redundant info tab on models page
* dont pass model mappings all the way through
* fix jarring model name when adding team models
* fix edit model button
* delete button on model info
* ui fix model dashboard
* fix DeploymentTypedDict
* _is_model_access_group_for_wildcard_route
* test _get_public_model_name
* ui fix viewing public model name
* fix linting error
* fix linting errors
* fix selectedModel logic
* fix(azure/chat/gpt_transformation.py): add 'prediction' as a support azure param
Closes https://github.com/BerriAI/litellm/issues/8500
* build(model_prices_and_context_window.json): add new 'gemini-2.0-pro-exp-02-05' model
* style: cleanup invalid json trailing commma
* feat(utils.py): support passing 'tokenizer_config' to register_prompt_template
enables passing complete tokenizer config of model to litellm
Allows calling deepseek on bedrock with the correct prompt template
* fix(utils.py): fix register_prompt_template for custom model names
* test(test_prompt_factory.py): fix test
* test(test_completion.py): add e2e test for bedrock invoke deepseek ft model
* feat(base_invoke_transformation.py): support hf_model_name param for bedrock invoke calls
enables proxy admin to set base model for ft bedrock deepseek model
* feat(bedrock/invoke): support deepseek_r1 route for bedrock
makes it easy to apply the right chat template to that call
* feat(constants.py): store deepseek r1 chat template - allow user to get correct response from deepseek r1 without extra work
* test(test_completion.py): add e2e mock test for bedrock deepseek
* docs(bedrock.md): document new deepseek_r1 route for bedrock
allows us to use the right config
* fix(exception_mapping_utils.py): catch read operation timeout
* fix(router.py): add more deployment timeout debug information for timeout errors
help understand why some calls in high-traffic don't respect their model-specific timeouts
* test(test_convert_dict_to_response.py): unit test ensuring empty str is not converted to None
Addresses https://github.com/BerriAI/litellm/issues/8507
* fix(convert_dict_to_response.py): handle empty message str - don't return back as 'None'
Fixes https://github.com/BerriAI/litellm/issues/8507
* test(test_completion.py): add e2e test