Commit graph

543 commits

Author SHA1 Message Date
Krrish Dholakia
8bda3006fa fix: test 2025-01-05 14:37:17 -08:00
Krrish Dholakia
32538f09fc test: cleanup test 2025-01-05 14:18:29 -08:00
Ishaan Jaff
137879ffea vertex testing use pathrise-convert-1606954137718 2025-01-05 14:00:17 -08:00
Krrish Dholakia
c0e4485fe0 test: update test amazing vertex
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 12s
2025-01-05 13:56:31 -08:00
Ishaan Jaff
ef8812d150 ci/cd update vertex acct 2025-01-05 13:43:32 -08:00
Krish Dholakia
f770dd0c95
Support checking provider-specific /models endpoints for available models based on key (#7538)
* test(test_utils.py): initial test for valid models

Addresses https://github.com/BerriAI/litellm/issues/7525

* fix: test

* feat(fireworks_ai/transformation.py): support retrieving valid models from fireworks ai endpoint

* refactor(fireworks_ai/): support checking model info on `/v1/models` route

* docs(set_keys.md): update docs to clarify check llm provider api usage

* fix(watsonx/common_utils.py): support 'WATSONX_ZENAPIKEY' for iam auth

* fix(watsonx): read in watsonx token from env var

* fix: fix linting errors

* fix(utils.py): fix provider config check

* style: cleanup unused imports
2025-01-03 19:29:59 -08:00
Ishaan Jaff
716efd5fad
(fix proxy perf) use _read_request_body instead of ast.literal_eval to get better performance (#7545)
* fix ast literal eval

* run ci/cd again
2025-01-03 17:48:32 -08:00
Ishaan Jaff
1bb4941036
[Feature]: - allow print alert log to console (#7534)
* update send_to_webhook

* test_print_alerting_payload_warning

* add alerting_args spec

* test_alerting.py
2025-01-03 17:48:13 -08:00
Krish Dholakia
33f301ec86
Litellm dev 01 02 2025 p1 (#7516)
* fix(redact_messages.py): fix redact messages for non-model response input to be dictionary

fixes issue with otel logging when message redaction is enabled

* fix(proxy_server.py): fix langfuse key leak in exception string

* test: fix test

* test: fix test

* test: fix tests
2025-01-03 14:40:57 -08:00
Krish Dholakia
45b93f2721
Litellm dev 01 01 2025 p3 (#7503)
* fix(utils.py): add new validate tool choice helper function

Prevents https://github.com/BerriAI/litellm/issues/7483

* fix(main.py): add tool choice validation on .completion()

prevents user error like - https://github.com/BerriAI/litellm/issues/7483

* fix(utils.py): fix return val of tool choice validation logic
2025-01-01 22:12:15 -08:00
Krish Dholakia
0120176541
Litellm dev 12 30 2024 p2 (#7495)
* test(azure_openai_o1.py): initial commit with testing for azure openai o1 preview model

* fix(base_llm_unit_tests.py): handle azure o1 preview response format tests

skip as o1 on azure doesn't support tool calling yet

* fix: initial commit of azure o1 handler using openai caller

simplifies calling + allows fake streaming logic alr. implemented for openai to just work

* feat(azure/o1_handler.py): fake o1 streaming for azure o1 models

azure does not currently support streaming for o1

* feat(o1_transformation.py): support overriding 'should_fake_stream' on azure/o1 via 'supports_native_streaming' param on model info

enables user to toggle on when azure allows o1 streaming without needing to bump versions

* style(router.py): remove 'give feedback/get help' messaging when router is used

Prevents noisy messaging

Closes https://github.com/BerriAI/litellm/issues/5942

* fix(types/utils.py): handle none logprobs

Fixes https://github.com/BerriAI/litellm/issues/328

* fix(exception_mapping_utils.py): fix error str unbound error

* refactor(azure_ai/): move to openai_like chat completion handler

allows for easy swapping of api base url's (e.g. ai.services.com)

Fixes https://github.com/BerriAI/litellm/issues/7275

* refactor(azure_ai/): move to base llm http handler

* fix(azure_ai/): handle differing api endpoints

* fix(azure_ai/): make sure all unit tests are passing

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting error

* fix: fix linting errors

* fix(azure_ai/transformation.py): handle extra body param

* fix(azure_ai/transformation.py): fix max retries param handling

* fix: fix test

* test(test_azure_o1.py): fix test

* fix(llm_http_handler.py): support handling azure ai unprocessable entity error

* fix(llm_http_handler.py): handle sync invalid param error for azure ai

* fix(azure_ai/): streaming support with base_llm_http_handler

* fix(llm_http_handler.py): working sync stream calls with unprocessable entity handling for azure ai

* fix: fix linting errors

* fix(llm_http_handler.py): fix linting error

* fix(azure_ai/): handle cohere tool call invalid index param error
2025-01-01 18:57:29 -08:00
Ishaan Jaff
cf60444916
(Feat) Add support for reading secrets from Hashicorp vault (#7497)
* HashicorpSecretManager

* test_hashicorp_secret_managerv

* use 1 helper initialize_secret_manager

* add HASHICORP_VAULT

* working config

* hcorp read_secret

* HashicorpSecretManager

* add secret_manager_testing

* use 1 folder for secret manager testing

* test_hashicorp_secret_manager_get_secret

* HashicorpSecretManager

* docs HCP secrets

* update folder name

* docs hcorp secret manager

* remove unused imports

* add conftest.py

* fix tests

* docs document env vars
2025-01-01 18:35:05 -08:00
Krish Dholakia
39cbd9d878
Litellm dev 12 31 2024 p1 (#7488)
* fix(internal_user_endpoints.py): fix team list sort - handle team_alias being set + None

* fix(key_management_endpoints.py): allow team admin to create key for member via admin ui

Fixes https://github.com/BerriAI/litellm/issues/7482

* fix(proxy_server.py): allow querying info on specific model group via `/model_group/info`

allows client-side user to get model info from proxy

* fix(proxy_server.py): add docstring on `/model_group/info` showing how to filter by model name

* test(test_proxy_utils.py): add unit test for returning model group info filtered

* fix(proxy_server.py): fix query param

* fix(test_Get_model_info.py): handle no whitelisted bedrock modells
2024-12-31 23:21:51 -08:00
Krish Dholakia
080de89cfb
Fix team-based logging to langfuse + allow custom tokenizer on /token_counter endpoint (#7493)
* fix(langfuse_prompt_management.py): migrate dynamic logging to langfuse custom logger compatible class

* fix(langfuse_prompt_management.py): support failure callback logging to langfuse as well

* feat(proxy_server.py): support setting custom tokenizer on config.yaml

Allows customizing value for `/utils/token_counter`

* fix(proxy_server.py): fix linting errors

* test: skip if file not found

* style: cleanup unused import

* docs(configs.md): add docs on setting custom tokenizer
2024-12-31 23:18:41 -08:00
Krish Dholakia
41e5b3aa8d
HumanLoop integration for Prompt Management (#7479)
* feat(humanloop.py): initial commit for humanloop prompt management integration

Closes https://github.com/BerriAI/litellm/issues/213

* feat(humanloop.py): working e2e humanloop prompt management integration

Closes https://github.com/BerriAI/litellm/issues/213

* fix(humanloop.py): fix linting errors

* fix: fix linting erro

* fix: fix test

* test: handle filenotfound error
2024-12-30 22:26:03 -08:00
Krish Dholakia
347779b813
Litellm dev 12 30 2024 p1 (#7480)
* test(azure_openai_o1.py): initial commit with testing for azure openai o1 preview model

* fix(base_llm_unit_tests.py): handle azure o1 preview response format tests

skip as o1 on azure doesn't support tool calling yet

* fix: initial commit of azure o1 handler using openai caller

simplifies calling + allows fake streaming logic alr. implemented for openai to just work

* feat(azure/o1_handler.py): fake o1 streaming for azure o1 models

azure does not currently support streaming for o1

* feat(o1_transformation.py): support overriding 'should_fake_stream' on azure/o1 via 'supports_native_streaming' param on model info

enables user to toggle on when azure allows o1 streaming without needing to bump versions

* style(router.py): remove 'give feedback/get help' messaging when router is used

Prevents noisy messaging

Closes https://github.com/BerriAI/litellm/issues/5942

* test: fix azure o1 test

* test: fix tests

* fix: fix test
2024-12-30 21:52:52 -08:00
Krish Dholakia
31ace870a2
Litellm dev 12 28 2024 p1 (#7463)
* refactor(utils.py): migrate amazon titan config to base config

* refactor(utils.py): refactor bedrock meta invoke model translation to use base config

* refactor(utils.py): move bedrock ai21 to base config

* refactor(utils.py): move bedrock cohere to base config

* refactor(utils.py): move bedrock mistral to use base config

* refactor(utils.py): move all provider optional param translations to using a config

* docs(clientside_auth.md): clarify how to pass vertex region to litellm proxy

* fix(utils.py): handle scenario where custom llm provider is none / empty

* fix: fix get config

* test(test_otel_load_tests.py): widen perf margin

* fix(utils.py): fix get provider config check to handle custom llm's

* fix(utils.py): fix check
2024-12-28 20:26:00 -08:00
Krish Dholakia
cfb6890b9f
Litellm dev 12 28 2024 p2 (#7458)
* docs(sidebar.js): docs for support model access groups for wildcard routes

* feat(key_management_endpoints.py): add check if user is premium_user when adding model access group for wildcard route

* refactor(docs/): make control model access a root-level doc in proxy sidebar

easier to discover how to control model access on litellm

* docs: more cleanup

* feat(fireworks_ai/): add document inlining support

Enables user to call non-vision models with images/pdfs/etc.

* test(test_fireworks_ai_translation.py): add unit testing for fireworks ai transform inline helper util

* docs(docs/): add document inlining details to fireworks ai docs

* feat(fireworks_ai/): allow user to dynamically disable auto add transform inline

allows client-side disabling of this feature for proxy users

* feat(fireworks_ai/): return 'supports_vision' and 'supports_pdf_input' true on all fireworks ai models

now true as fireworks ai supports document inlining

* test: fix tests

* fix(router.py): add unit testing for _is_model_access_group_for_wildcard_route
2024-12-28 19:38:06 -08:00
Ishaan Jaff
3eb962c594 update - new test for test_text_completion_health_check 2024-12-28 19:36:23 -08:00
Ishaan Jaff
1e06ee3162
(Refactor) - Re use litellm.completion/litellm.embedding etc for health checks (#7455)
* add mode: realtime

* add _realtime_health_check

* test_realtime_health_check

* azure _realtime_health_check

* _realtime_health_check

* Realtime Models

* fix code quality

* delete OAI / Azure custom health check code

* simplest version of ahealth check

* update tests

* working health check post refactor

* working aspeech health check

* fix realtime health checks

* test_audio_transcription_health_check

* use get_audio_file_for_health_check

* test_text_completion_health_check

* ahealth_check

* simplify health check code

* update ahealth_check

* fix import

* fix unused imports

* fix ahealth_check

* fix local testing

* test_async_realtime_health_check
2024-12-28 18:38:54 -08:00
Ishaan Jaff
4e65722a00
(Bug Fix) Add health check support for realtime models (#7453)
* add mode: realtime

* add _realtime_health_check

* test_realtime_health_check

* azure _realtime_health_check

* _realtime_health_check

* Realtime Models

* fix code quality
2024-12-28 18:15:00 -08:00
Krish Dholakia
0924df4971
Litellm dev 12 27 2024 p2 1 (#7449)
* fix(azure_ai/transformation.py): route ai.services.azure calls to the azure provider route

requires token to be passed in as 'api-key'

Closes https://github.com/BerriAI/litellm/issues/7275

* fix(key_management_endpoints.py): enforce user is member of team, if team_id set and team_id exists in team table

* fix(key_management_endpoints.py): handle assigned_user_id = none

* feat(create_key_button.tsx): allow assigning keys to other users

allows proxy admin to easily assign other people keys

* build(create_key_button.tsx): fix error message display

don't swallow the error message for key creation failure

* build(create_key_button.tsx): allow proxy admin to edit team id

* build(create_key_button.tsx): allow proxy admin to assign keys to other users

* build(edit_user.tsx): clarify how 'user budgets' are applied

* test: remove dup test

* fix(key_management_endpoints.py): don't raise error if team not in db

'

* test: fix test
2024-12-27 20:02:32 -08:00
Krish Dholakia
67b39bacf7
LiteLLM Minor Fixes & Improvements (12/27/2024) - p1 (#7448)
* feat(main.py): mock_response() - support 'litellm.ContextWindowExceededError' in mock response

enabled quicker router/fallback/proxy debug on context window errors

* feat(exception_mapping_utils.py): extract special litellm errors from error str if calling `litellm_proxy/` as provider

Closes https://github.com/BerriAI/litellm/issues/7259

* fix(user_api_key_auth.py): specify 'Received Proxy Server Request' is span kind server

Closes https://github.com/BerriAI/litellm/issues/7298
2024-12-27 19:04:39 -08:00
Ishaan Jaff
8ef5b4e94c test_langfuse_logging_audio_transcriptions 2024-12-27 14:34:08 -08:00
Krish Dholakia
d88de268dd
Litellm dev 12 26 2024 p4 (#7439)
* fix(model_dashboard.tsx): support setting model_info params - e.g. mode on ui

Closes https://github.com/BerriAI/litellm/issues/5270

* fix(lowest_tpm_rpm_v2.py): deployment rpm over limit check

fixes selection error when getting potential deployments below known tpm/rpm limit

 Fixes https://github.com/BerriAI/litellm/issues/7395

* fix(test_tpm_rpm_routing_v2.py): add unit test for https://github.com/BerriAI/litellm/issues/7395

* fix(lowest_tpm_rpm_v2.py): fix tpm key name in dict post rpm update

* test: rename test to run earlier

* test: skip flaky test
2024-12-27 12:01:42 -08:00
Krish Dholakia
9d82ff4793
Litellm dev 12 26 2024 p3 (#7434)
* build(model_prices_and_context_window.json): update groq models to specify 'supports_vision' parameter

Closes https://github.com/BerriAI/litellm/issues/7433

* docs(groq.md): add groq vision example to docs

Closes https://github.com/BerriAI/litellm/issues/7433

* fix(prometheus.py): refactor self.litellm_proxy_failed_requests_metric to use label factory

* feat(prometheus.py): new 'litellm_proxy_failed_requests_by_tag_metric'

allows tracking failed requests by tag on proxy

* fix(prometheus.py): fix exception logging

* feat(prometheus.py): add new 'litellm_request_total_latency_by_tag_metric'

enables tracking latency by use-case

* feat(prometheus.py): add new llm api latency by tag metric

* feat(prometheus.py): new litellm_deployment_latency_per_output_token_by_tag metric

allows tracking deployment latency by tag

* fix(prometheus.py): refactor 'litellm_requests_metric' to use enum values + label factory

* feat(prometheus.py): new litellm_proxy_total_requests_by_tag metric

allows tracking total requests by tag

* feat(prometheus.py): new metric litellm_deployment_successful_fallbacks_by_tag

allows tracking deployment fallbacks by tag

* fix(prometheus.py): new 'litellm_deployment_failed_fallbacks_by_tag' metric

allows tracking failed fallbacks on deployment by custom tag

* test: fix test

* test: rename test to run earlier

* test: skip flaky test
2024-12-26 21:21:16 -08:00
Krish Dholakia
539f166166
Support budget/rate limit tiers for keys (#7429)
* feat(proxy/utils.py): get associated litellm budget from db in combined_view for key

allows user to create rate limit tiers and associate those to keys

* feat(proxy/_types.py): update the value of key-level tpm/rpm/model max budget metrics with the associated budget table values if set

allows rate limit tiers to be easily applied to keys

* docs(rate_limit_tiers.md): add doc on setting rate limit / budget tiers

make feature discoverable

* feat(key_management_endpoints.py): return litellm_budget_table value in key generate

make it easy for user to know associated budget on key creation

* fix(key_management_endpoints.py): document 'budget_id' param in `/key/generate`

* docs(key_management_endpoints.py): document budget_id usage

* refactor(budget_management_endpoints.py): refactor budget endpoints into separate file - makes it easier to run documentation testing against it

* docs(test_api_docs.py): add budget endpoints to ci/cd doc test + add missing param info to docs

* fix(customer_endpoints.py): use new pydantic obj name

* docs(user_management_heirarchy.md): add simple doc explaining teams/keys/org/users on litellm

* Litellm dev 12 26 2024 p2 (#7432)

* (Feat) Add logging for `POST v1/fine_tuning/jobs`  (#7426)

* init commit ft jobs logging

* add ft logging

* add logging for FineTuningJob

* simple FT Job create test

* (docs) - show all supported Azure OpenAI endpoints in overview  (#7428)

* azure batches

* update doc

* docs azure endpoints

* docs endpoints on azure

* docs azure batches api

* docs azure batches api

* fix(key_management_endpoints.py): fix key update to actually work

* test(test_key_management.py): add e2e test asserting ui key update call works

* fix: proxy/_types - fix linting erros

* test: update test

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>

* fix: test

* fix(parallel_request_limiter.py): enforce tpm/rpm limits on key from tiers

* fix: fix linting errors

* test: fix test

* fix: remove unused import

* test: update test

* docs(customer_endpoints.py): document new model_max_budget param

* test: specify unique key alias

* docs(budget_management_endpoints.py): document new model_max_budget param

* test: fix test

* test: fix tests

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
2024-12-26 19:05:27 -08:00
Krish Dholakia
760328b6ad
Litellm dev 12 25 2025 p2 (#7420)
* test: add new test image embedding to base llm unit tests

Addresses https://github.com/BerriAI/litellm/issues/6515

* fix(bedrock/embed/multimodal-embeddings): strip data prefix from image urls for bedrock multimodal embeddings

Fix https://github.com/BerriAI/litellm/issues/6515

* feat: initial commit for fireworks ai audio transcription support

Relevant issue: https://github.com/BerriAI/litellm/issues/7134

* test: initial fireworks ai test

* feat(fireworks_ai/): implemented fireworks ai audio transcription config

* fix(utils.py): register fireworks ai audio transcription config, in config manager

* fix(utils.py): add fireworks ai param translation to 'get_optional_params_transcription'

* refactor(fireworks_ai/): define text completion route with model name handling

moves model name handling to specific fireworks routes, as required by their api

* refactor(fireworks_ai/chat): define transform_Request - allows fixing model if accounts/ is missing

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting errors

* fix(handler.py): fix linting errors

* fix(main.py): fix tgai text completion route

* refactor(together_ai/completion): refactors together ai text completion route to just use provider transform request

* refactor: move test_fine_tuning_api out of local_testing

reduces local testing ci/cd time
2024-12-25 18:35:34 -08:00
Krish Dholakia
39dabb2e89
Litellm dev 12 24 2024 p4 (#7407)
* fix(invoke_handler.py): fix mock response iterator to handle tool calling

returns tool call if returned by model response

* fix(prometheus.py): add new 'tokens_by_tag' metric on prometheus

allows tracking 'token usage' by task

* feat(prometheus.py): add input + output token tracking by tag

* feat(prometheus.py): add tag based deployment failure tracking

allows admin to track failure by use-case
2024-12-24 20:24:06 -08:00
Krish Dholakia
3ac54483a7
Litellm dev 12 24 2024 p3 (#7403)
* fix(model_prices_and_context_window.json): specify meta llama is a bedrock converse model route

Fixes https://github.com/BerriAI/litellm/issues/7385

* test(test_get_model_info.py): enforce all new bedrock chat models added have the bedrock_converse route

Prevents https://github.com/BerriAI/litellm/issues/7385 and https://github.com/BerriAI/litellm/discussions/7325

* fix(get_supported_openai_params.py): use vertex gemini config by default for vertex ai route

Fixes https://github.com/BerriAI/litellm/issues/7378

* refactor(vertex_ai/gemini/): rename vertexaiconfig to vertexaibaseconfig - make it clear vertexaiconfig = vertexgemini config

* build(model_prices_and_context_window.json): add gpt-4o-audio-preview-2024-12-17

Closes https://github.com/BerriAI/litellm/issues/7367

* test: fix test

* test: fix o1 tests

* fix: handle llm api errors

* fix: fix linting errors
2024-12-24 18:07:53 -08:00
Krrish Dholakia
48d5acf678 test(test_cost_calc.py): fix test to handle llm api errors 2024-12-24 16:49:02 -08:00
Krish Dholakia
78fe124c14
Add 'end_user', 'user' and 'requested_model' on more prometheus metrics (#7399)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 11s
* fix(prometheus.py): support streaming end user litellm_proxy_total_requests_metric tracking

* fix(prometheus.py): add 'requested_model' and 'end_user_id' to 'litellm_request_total_latency_metric_bucket'

enables latency tracking by end user + requested model

* fix(prometheus.py): add end user, user and requested model metrics to 'litellm_llm_api_latency_metric'

* test: update prometheus unit tests

* test(test_prometheus.py): update tests

* test(test_prometheus.py): fix test

* test: reorder test
2024-12-24 14:08:30 -08:00
Krish Dholakia
c3edfc2c92
LiteLLM Minor Fixes & Improvements (12/23/2024) - p3 (#7394)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 35s
* build(model_prices_and_context_window.json): add gemini-1.5-flash context caching

* fix(context_caching/transformation.py): just use last identified cache point

Fixes https://github.com/BerriAI/litellm/issues/6738

* fix(context_caching/transformation.py): pick first contiguous block - handles system message error from google

Fixes https://github.com/BerriAI/litellm/issues/6738

* fix(vertex_ai/gemini/): track context caching tokens

* refactor(gemini/): place transformation.py inside `chat/` folder

make it easy for user to know we support the equivalent endpoint

* fix: fix import

* refactor(vertex_ai/): move vertex_ai cost calc inside vertex_ai/ folder

make it easier to see cost calculation logic

* fix: fix linting errors

* fix: fix circular import

* feat(gemini/cost_calculator.py): support gemini context caching cost calculation

generifies anthropic's cost calculation function and uses it across anthropic + gemini

* build(model_prices_and_context_window.json): add cost tracking for gemini-1.5-flash-002 w/ context caching

Closes https://github.com/BerriAI/litellm/issues/6891

* docs(gemini.md): add gemini context caching architecture diagram

make it easier for user to understand how context caching works

* docs(gemini.md): link to relevant gemini context caching code

* docs(gemini/context_caching): add readme in github, make it easy for dev to know context caching is supported + where to go for code

* fix(llm_cost_calc/utils.py): handle gemini 128k token diff cost calc scenario

* fix(deepseek/cost_calculator.py): support deepseek context caching cost calculation

* test: fix test
2024-12-23 22:02:52 -08:00
Ishaan Jaff
4bcb422d31 test_router_get_available_deployments 2024-12-23 18:21:27 -08:00
Ishaan Jaff
05b0d2026f
(feat) Add cost tracking for /batches requests OpenAI (#7384)
* add basic logging for create`batch`

* add create_batch as a call type

* add basic dd logging for batches

* basic batch creation logging on DD

* batch endpoints add cost calc

* fix batches_async_logging

* separate folder for batches testing

* new job for batches tests

* test batches logging

* fix validation logic

* add vertex_batch_completions.jsonl

* test test_async_create_batch

* test_async_create_batch

* update tests

* test_completion_with_no_model

* remove dead code

* update load_vertex_ai_credentials

* test_avertex_batch_prediction

* update get async httpx client

* fix get_async_httpx_client

* update test_avertex_batch_prediction

* fix batches testing config.yaml

* add google deps

* fix vertex files handler
2024-12-23 17:47:26 -08:00
Ishaan Jaff
87f19d6f13
(feat) Add basic logging support for /batches endpoints (#7381)
* add basic logging for create`batch`

* add create_batch as a call type

* add basic dd logging for batches

* basic batch creation logging on DD
2024-12-23 17:45:03 -08:00
Ishaan Jaff
61b636c20d
[Bug Fix]: Errors in LiteLLM When Using Embeddings Model with Usage-Based Routing (#7390)
* use slp for usage based routing v2

* update error msg

* fix usage based routing v2

* test_tpm_rpm_updated

* fix unused imports

* fix unused imports
2024-12-23 17:42:24 -08:00
Krish Dholakia
48316520f4
LiteLLM Minor Fixes & Improvements (12/23/2024) - P2 (#7386)
* fix(main.py): support 'mock_timeout=true' param

allows mock requests on proxy to have a time delay, for testing

* fix(main.py): ensure mock timeouts raise litellm.Timeout error

triggers retry/fallbacks

* fix: fix fallback + mock timeout testing

* fix(router.py): always return remaining tpm/rpm limits, if limits are known

allows for rate limit headers to be guaranteed

* docs(timeout.md): add docs on mock timeout = true

* fix(main.py): fix linting errors

* test: fix test
2024-12-23 17:41:27 -08:00
Krish Dholakia
3671829e39
Complete 'requests' library removal (#7350)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 12s
* refactor: initial commit moving watsonx_text to base_llm_http_handler + clarifying new provider directory structure

* refactor(watsonx/completion/handler.py): move to using base llm http handler

removes 'requests' library usage

* fix(watsonx_text/transformation.py): fix result transformation

migrates to transformation.py, for usage with base llm http handler

* fix(streaming_handler.py): migrate watsonx streaming to transformation.py

ensures streaming works with base llm http handler

* fix(streaming_handler.py): fix streaming linting errors and remove watsonx conditional logic

* fix(watsonx/): fix chat route post completion route refactor

* refactor(watsonx/embed): refactor watsonx to use base llm http handler for embedding calls as well

* refactor(base.py): remove requests library usage from litellm

* build(pyproject.toml): remove requests library usage

* fix: fix linting errors

* fix: fix linting errors

* fix(types/utils.py): fix validation errors for modelresponsestream

* fix(replicate/handler.py): fix linting errors

* fix(litellm_logging.py): handle modelresponsestream object

* fix(streaming_handler.py): fix modelresponsestream args

* fix: remove unused imports

* test: fix test

* fix: fix test

* test: fix test

* test: fix tests

* test: fix test

* test: fix patch target

* test: fix test
2024-12-22 07:21:25 -08:00
Krish Dholakia
a8ae2f551a
Litellm enforce enterprise features (#7357)
* fix(proxy_server.py): enforce team id based model add only works if enterprise user

* fix(auth_checks.py): enforce common_checks can only be imported by user_api_key_auth.py

* fix(auth_checks.py): insert not premium user error message on failed common checks run
2024-12-21 19:14:13 -08:00
Ishaan Jaff
49b6e539b7 test fix 2024-12-21 18:48:16 -08:00
Krish Dholakia
404bf2974b
Litellm dev 2024 12 20 p1 (#7335)
* fix(utils.py): e2e azure tts cost tracking working

moves tts response obj to include hidden params (allows for litellm call id, etc. to be sent in response headers) ; fixes spend_Tracking_utils logging payload to account for non-base model use-case

Fixes https://github.com/BerriAI/litellm/issues/7223

* fix: fix linting errors

* build(model_prices_and_context_window.json): add bedrock llama 3.3

Closes https://github.com/BerriAI/litellm/issues/7329

* fix(openai.py): fix return type for sync openai httpx response

* test: update test

* fix(spend_tracking_utils.py): fix if check

* fix(spend_tracking_utils.py): fix if check

* test: improve debugging for test

* fix: fix import
2024-12-20 21:22:31 -08:00
Krish Dholakia
522da384b6
Litellm dev 12 20 2024 p3 (#7339)
* fix(proxy_track_cost_callback.py): log to db if only end user param given

* fix: allows for jwt-auth based end user id spend tracking to work

* fix(utils.py): fix 'get_end_user_id_for_cost_tracking' to use 'user_api_key_end_user_id'

more stable - works with jwt-auth based end user tracking as well

* test(test_jwt.py): add e2e unit test to confirm end user cost tracking works for spend logs

* test: update test to use end_user api key hash param

* fix(langfuse.py): support end user cost tracking via jwt auth + langfuse

logs end user to langfuse if decoded from jwt token

* fix: fix linting errors

* test: fix test

* test: fix test

* fix: fix end user id extraction

* fix: run test earlier
2024-12-20 21:13:32 -08:00
Ishaan Jaff
6107f9f3f3
[Bug fix ]: Triton /infer handler incompatible with batch responses (#7337)
* migrate triton to base llm http handler

* clean up triton handler.py

* use transform functions for triton

* add TritonConfig

* get openai params for triton

* use triton embedding config

* test_completion_triton_generate_api

* test_completion_triton_infer_api

* fix TritonConfig doc string

* use TritonResponseIterator

* fix triton embeddings

* docs triton chat usage
2024-12-20 20:59:40 -08:00
Krish Dholakia
70a9ea99f2
Controll fallback prompts client-side (#7334)
* feat(router.py): support passing model-specific messages in fallbacks

* docs(routing.md): separate router timeouts into separate doc

allow for 1 fallbacks doc (across proxy/router)

* docs(routing.md): cleanup router docs

* docs(reliability.md): cleanup docs

* docs(reliability.md): cleaned up fallback doc

just have 1 doc across sdk/proxy

simplifies docs

* docs(reliability.md): add setting model-specific fallback prompts

* fix: fix linting errors

* test: skip test causing openai rate limit errros

* test: fix test

* test: run vertex test first to catch error
2024-12-20 19:09:53 -08:00
Krish Dholakia
27a4d08604
Litellm dev 2024 12 19 p3 (#7322)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 13s
* fix(utils.py): remove unsupported optional params (if drop_params=True) before passing into map openai params

Fixes https://github.com/BerriAI/litellm/issues/7242

* test: new test for langfuse prompt management hook

Addresses https://github.com/BerriAI/litellm/issues/3893#issuecomment-2549080296

* feat(main.py): add 'get_chat_completion_prompt' customlogger hook

allows for langfuse prompt management

Addresses https://github.com/BerriAI/litellm/issues/3893#issuecomment-2549080296

* feat(langfuse_prompt_management.py): working e2e langfuse prompt management

works with `langfuse/` route

* feat(main.py): initial tracing for dynamic langfuse params

allows admin to specify langfuse keys by model in model_list

* feat(main.py): support passing langfuse credentials dynamically

* fix(langfuse_prompt_management.py): create langfuse client based on dynamic callback params

allows dynamic langfuse params to work

* fix: fix linting errors

* docs(prompt_management.md): refactor docs for sdk + proxy prompt management tutorial

* docs(prompt_management.md): cleanup doc

* docs: cleanup topnav

* docs(prompt_management.md): update docs to be easier to use

* fix: remove unused imports

* docs(prompt_management.md): add architectural overview doc

* fix(litellm_logging.py): fix dynamic param passing

* fix(langfuse_prompt_management.py): fix linting errors

* fix: fix linting errors

* fix: use typing_extensions for typealias to ensure python3.8 compatibility

* test: use stream_options in test to account for tiktoken diff

* fix: improve import error message, and check run test earlier
2024-12-20 13:30:16 -08:00
Krish Dholakia
4c7a3931b7
Litellm dev 12 19 2024 p2 (#7315)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 46s
* fix(proxy_server.py): only update k,v pair if v is not empty/null

Fixes https://github.com/BerriAI/litellm/issues/6787

* test(test_router.py): cleanup duplicate calls

* test: add new test stream options drop params test

* test: update optional params / stream options test to test for vertex ai mistral route specifically

Addresses https://github.com/BerriAI/litellm/issues/7309

* fix(proxy_server.py): fix linting errors

* fix: fix linting errors
2024-12-19 20:28:16 -08:00
Ishaan Jaff
5f15b0aa20
(code refactor) - Add BaseRerankConfig. Use BaseRerankConfig for cohere/rerank and azure_ai/rerank (#7319)
* add base rerank config

* working sync cohere rerank

* update rerank types

* update base rerank config

* remove old rerank

* add new cohere handler.py

* add cohere rerank transform

* add get_provider_rerank_config

* add rerank to base llm http handler

* add rerank utils

* add arerank to llm http handler.py

* add AzureAIRerankConfig

* updates rerank config

* update test rerank

* fix unused imports

* update get_provider_rerank_config

* test_basic_rerank_caching

* fix unused import

* test rerank
2024-12-19 17:03:34 -08:00
Ishaan Jaff
a790d43116
[Bug Fix]: ImportError: cannot import name 'T' from 're' (#7314)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 11s
* fix unused imports

* add test for python 3.12

* re introduce error - as a test

* update config for ci/cd

* fix python 13 install

* bump pyyaml

* bump numpy

* fix embedding requests

* bump pillow dep

* bump version

* bump pydantic

* bump tiktoken

* fix import

* fix python 3.13 import

* fix unused imports in tests/*
2024-12-19 13:09:30 -08:00
Ishaan Jaff
c7f14e936a
(code quality) run ruff rule to ban unused imports (#7313)
* remove unused imports

* fix AmazonConverseConfig

* fix test

* fix import

* ruff check fixes

* test fixes

* fix testing

* fix imports
2024-12-19 12:33:42 -08:00