* fix(azure/common_utils.py): check for azure tenant id, client id, client secret in env var
Fixes https://github.com/BerriAI/litellm/issues/9598#issuecomment-2801966027
* fix(azure/gpt_transformation.py): fix passing response_format to azure when api year = 2025
Fixes https://github.com/BerriAI/litellm/issues/9703
* test: monkeypatch azure api version in test
* test: update testing
* test: fix test
* test: update test
* docs(config_settings.md): document env vars
* fix(azure/chat/gpt_transformation.py): add 'prediction' as a support azure param
Closes https://github.com/BerriAI/litellm/issues/8500
* build(model_prices_and_context_window.json): add new 'gemini-2.0-pro-exp-02-05' model
* style: cleanup invalid json trailing commma
* feat(utils.py): support passing 'tokenizer_config' to register_prompt_template
enables passing complete tokenizer config of model to litellm
Allows calling deepseek on bedrock with the correct prompt template
* fix(utils.py): fix register_prompt_template for custom model names
* test(test_prompt_factory.py): fix test
* test(test_completion.py): add e2e test for bedrock invoke deepseek ft model
* feat(base_invoke_transformation.py): support hf_model_name param for bedrock invoke calls
enables proxy admin to set base model for ft bedrock deepseek model
* feat(bedrock/invoke): support deepseek_r1 route for bedrock
makes it easy to apply the right chat template to that call
* feat(constants.py): store deepseek r1 chat template - allow user to get correct response from deepseek r1 without extra work
* test(test_completion.py): add e2e mock test for bedrock deepseek
* docs(bedrock.md): document new deepseek_r1 route for bedrock
allows us to use the right config
* fix(exception_mapping_utils.py): catch read operation timeout
* fix(convert_dict_to_response.py): only convert if response is the response_format tool call passed in
Fixes https://github.com/BerriAI/litellm/issues/8241
* fix(gpt_transformation.py): makes sure response format / tools conversion doesn't remove previous tool calls
* refactor(gpt_transformation.py): refactor out json schema converstion to base config
keeps logic consistent across providers
* fix(o_series_transformation.py): support o3 mini native streaming
Fixes https://github.com/BerriAI/litellm/issues/8274
* fix(gpt_transformation.py): remove unused variables
* test: update test
* fix(o_series_transformation.py): add 'reasoning_effort' as o series model param
Closes https://github.com/BerriAI/litellm/issues/8182
* fix(main.py): ensure `reasoning_effort` is a mapped openai param
* refactor(azure/): rename o1_[x] files to o_series_[x]
* refactor(base_llm_unit_tests.py): refactor testing for o series reasoning effort
* test(test_azure_o_series.py): have azure o series tests correctly inherit from base o series model tests
* feat(base_utils.py): support translating 'developer' role to 'system' role for non-openai providers
Makes it easy to switch from openai to anthropic
* fix: fix linting errors
* fix(base_llm_unit_tests.py): fix test
* fix(main.py): add missing param
* fix: support azure o3 model family for fake streaming workaround (#8162)
* fix: support azure o3 model family for fake streaming workaround
* refactor: rename helper to is_o_series_model for clarity
* update function calling parameters for o3 models (#8178)
* refactor(o1_transformation.py): refactor o1 config to be o series config, expand o series model check to o3
ensures max_tokens is correctly translated for o3
* feat(openai/): refactor o1 files to be 'o_series' files
expands naming to cover o3
* fix(azure/chat/o1_handler.py): azure openai is an instance of openai - was causing resets
* test(test_azure_o_series.py): assert stream faked for azure o3 mini
Resolves https://github.com/BerriAI/litellm/pull/8162
* fix(o1_transformation.py): fix o1 transformation logic to handle explicit o1_series routing
* docs(azure.md): update doc with `o_series/` model name
---------
Co-authored-by: byrongrogan <47910641+byrongrogan@users.noreply.github.com>
Co-authored-by: Low Jian Sheng <15527690+lowjiansheng@users.noreply.github.com>
* fix(gpt_transformation.py): fix response_format translation check for 4o models
Fixes https://github.com/BerriAI/litellm/issues/7616
* feat(key_management_endpoints.py): support 'temp_budget_increase' and 'temp_budget_expiry' fields
Allow proxy admin to grant temporary budget increases to keys
* fix(proxy/_types.py): enforce temp_budget_increase and temp_budget_expiry are always passed together
* feat(user_api_key_auth.py): initial working temp budget increase logic
ensures key budget exceeded error checks for temp budget in key metadata
* feat(proxy_server.py): return the key max budget and key spend in the response headers
Allows clientside user to know their remaining limits
* test: add unit testing for new proxy utils
Ensures new key budget is correctly handled
* docs(temporary_budget_increase.md): add doc on temporary budget increase
* fix(utils.py): remove 3.5 from response_format check for now
not all azure 3.5 models support response_format
* fix(user_api_key_auth.py): return valid user api key auth object on all paths
* test(azure_openai_o1.py): initial commit with testing for azure openai o1 preview model
* fix(base_llm_unit_tests.py): handle azure o1 preview response format tests
skip as o1 on azure doesn't support tool calling yet
* fix: initial commit of azure o1 handler using openai caller
simplifies calling + allows fake streaming logic alr. implemented for openai to just work
* feat(azure/o1_handler.py): fake o1 streaming for azure o1 models
azure does not currently support streaming for o1
* feat(o1_transformation.py): support overriding 'should_fake_stream' on azure/o1 via 'supports_native_streaming' param on model info
enables user to toggle on when azure allows o1 streaming without needing to bump versions
* style(router.py): remove 'give feedback/get help' messaging when router is used
Prevents noisy messaging
Closes https://github.com/BerriAI/litellm/issues/5942
* fix(types/utils.py): handle none logprobs
Fixes https://github.com/BerriAI/litellm/issues/328
* fix(exception_mapping_utils.py): fix error str unbound error
* refactor(azure_ai/): move to openai_like chat completion handler
allows for easy swapping of api base url's (e.g. ai.services.com)
Fixes https://github.com/BerriAI/litellm/issues/7275
* refactor(azure_ai/): move to base llm http handler
* fix(azure_ai/): handle differing api endpoints
* fix(azure_ai/): make sure all unit tests are passing
* fix: fix linting errors
* fix: fix linting errors
* fix: fix linting error
* fix: fix linting errors
* fix(azure_ai/transformation.py): handle extra body param
* fix(azure_ai/transformation.py): fix max retries param handling
* fix: fix test
* test(test_azure_o1.py): fix test
* fix(llm_http_handler.py): support handling azure ai unprocessable entity error
* fix(llm_http_handler.py): handle sync invalid param error for azure ai
* fix(azure_ai/): streaming support with base_llm_http_handler
* fix(llm_http_handler.py): working sync stream calls with unprocessable entity handling for azure ai
* fix: fix linting errors
* fix(llm_http_handler.py): fix linting error
* fix(azure_ai/): handle cohere tool call invalid index param error
* test(azure_openai_o1.py): initial commit with testing for azure openai o1 preview model
* fix(base_llm_unit_tests.py): handle azure o1 preview response format tests
skip as o1 on azure doesn't support tool calling yet
* fix: initial commit of azure o1 handler using openai caller
simplifies calling + allows fake streaming logic alr. implemented for openai to just work
* feat(azure/o1_handler.py): fake o1 streaming for azure o1 models
azure does not currently support streaming for o1
* feat(o1_transformation.py): support overriding 'should_fake_stream' on azure/o1 via 'supports_native_streaming' param on model info
enables user to toggle on when azure allows o1 streaming without needing to bump versions
* style(router.py): remove 'give feedback/get help' messaging when router is used
Prevents noisy messaging
Closes https://github.com/BerriAI/litellm/issues/5942
* test: fix azure o1 test
* test: fix tests
* fix: fix test
* fix(health.md): add rerank model health check information
* build(model_prices_and_context_window.json): add gemini 2.0 for google ai studio - pricing + commercial rate limits
* build(model_prices_and_context_window.json): add gemini-2.0 supports audio output = true
* docs(team_model_add.md): clarify allowing teams to add models is an enterprise feature
* fix(o1_transformation.py): add support for 'n', 'response_format' and 'stop' params for o1 and 'stream_options' param for o1-mini
* build(model_prices_and_context_window.json): add 'supports_system_message' to supporting openai models
needed as o1-preview, and o1-mini models don't support 'system message
* fix(o1_transformation.py): translate system message based on if o1 model supports it
* fix(o1_transformation.py): return 'stream' param support if o1-mini/o1-preview
o1 currently doesn't support streaming, but the other model versions do
Fixes https://github.com/BerriAI/litellm/issues/7292
* fix(o1_transformation.py): return tool calling/response_format in supported params if model map says so
Fixes https://github.com/BerriAI/litellm/issues/7292
* fix: fix linting errors
* fix: update '_transform_messages'
* fix(o1_transformation.py): fix provider passed for supported param checks
* test(base_llm_unit_tests.py): skip test if api takes >5s to respond
* fix(utils.py): return false in 'supports_factory' if can't find value
* fix(o1_transformation.py): always return stream + stream_options as supported params + handle stream options being passed in for azure o1
* feat(openai.py): support stream faking natively in openai handler
Allows o1 calls to be faked for just the "o1" model, allows native streaming for o1-mini, o1-preview
Fixes https://github.com/BerriAI/litellm/issues/7292
* fix(openai.py): use inference param instead of original optional param