* fix(main.py): support 'mock_timeout=true' param
allows mock requests on proxy to have a time delay, for testing
* fix(main.py): ensure mock timeouts raise litellm.Timeout error
triggers retry/fallbacks
* fix: fix fallback + mock timeout testing
* fix(router.py): always return remaining tpm/rpm limits, if limits are known
allows for rate limit headers to be guaranteed
* docs(timeout.md): add docs on mock timeout = true
* fix(main.py): fix linting errors
* test: fix test
* feat(guardrails_endpoint.py): new `/guardrails/list` endpoint
Allow users to view what the available guardrails are
* docs: document new `/guardrails/list` endpoint
* docs(enterprise.md): update docs
* fix(openai/transcription/handler.py): support cost tracking on vtt + srt formats
* fix(openai/transcriptions/handler.py): default to 'verbose_json' response format if 'text' or 'json' response_format received. ensures 'duration' param is received for all audio transcription requests
* fix: fix linting errors
* fix: remove unused import
* fix(team_endpoints.py): enforce assigning team admins as an enterprise feature
* fix(proxy/_types.py): fix common proxy error to link to trial key
* fix: fix linting errors
* fix(proxy_server.py): enforce team id based model add only works if enterprise user
* fix(auth_checks.py): enforce common_checks can only be imported by user_api_key_auth.py
* fix(auth_checks.py): insert not premium user error message on failed common checks run
* ui fix - allow searching model list + fix bug on filtering
* qa fix - use correct provider name for azure_text
* ui wrap content onto next line
* ui fix - allow selecting current UI session when logging in
* ui session budgets
* ui show provider models on wildcard models
* test provider name appears in model list
* ui fix auto scroll on chat ui tab
* ui fix - allow searching model list + fix bug on filtering
* qa fix - use correct provider name for azure_text
* ui wrap content onto next line
* ui fix - allow selecting current UI session when logging in
* ui session budgets
* fix(utils.py): e2e azure tts cost tracking working
moves tts response obj to include hidden params (allows for litellm call id, etc. to be sent in response headers) ; fixes spend_Tracking_utils logging payload to account for non-base model use-case
Fixes https://github.com/BerriAI/litellm/issues/7223
* fix: fix linting errors
* build(model_prices_and_context_window.json): add bedrock llama 3.3
Closes https://github.com/BerriAI/litellm/issues/7329
* fix(openai.py): fix return type for sync openai httpx response
* test: update test
* fix(spend_tracking_utils.py): fix if check
* fix(spend_tracking_utils.py): fix if check
* test: improve debugging for test
* fix: fix import
* fix(proxy_track_cost_callback.py): log to db if only end user param given
* fix: allows for jwt-auth based end user id spend tracking to work
* fix(utils.py): fix 'get_end_user_id_for_cost_tracking' to use 'user_api_key_end_user_id'
more stable - works with jwt-auth based end user tracking as well
* test(test_jwt.py): add e2e unit test to confirm end user cost tracking works for spend logs
* test: update test to use end_user api key hash param
* fix(langfuse.py): support end user cost tracking via jwt auth + langfuse
logs end user to langfuse if decoded from jwt token
* fix: fix linting errors
* test: fix test
* test: fix test
* fix: fix end user id extraction
* fix: run test earlier
* fix(proxy_server.py): only update k,v pair if v is not empty/null
Fixes https://github.com/BerriAI/litellm/issues/6787
* test(test_router.py): cleanup duplicate calls
* test: add new test stream options drop params test
* test: update optional params / stream options test to test for vertex ai mistral route specifically
Addresses https://github.com/BerriAI/litellm/issues/7309
* fix(proxy_server.py): fix linting errors
* fix: fix linting errors
* fix(proxy_server.py): pass model access groups to get_key/get_team models
allows end user to see actual models they have access to, instead of default models
* fix(auth_checks.py): fix linting errors
* fix: fix linting errors
* fix(factory.py): skip empty text blocks for bedrock user messages
Fixes https://github.com/BerriAI/litellm/issues/7169
* Add support for Gemini 2.0 GoogleSearch tool (#7257)
* Add support for google_search tool in gemini 2.0
* Add/modify tests
* Fix grounding check
* Remove 2.0 grounding test; exclude experimental model in VERTEX_MODELS_TO_NOT_TEST
* Swap order of tools
* DFix formatting
* fix(get_api_base.py): return api base in streaming response
Fixes https://github.com/BerriAI/litellm/issues/7249
Closes https://github.com/BerriAI/litellm/pull/7250
* fix(cost_calculator.py): only set base model to model if not none
Fixes https://github.com/BerriAI/litellm/issues/7223
* fix(cost_calculator.py): enforce stricter order when picking model for cost calculation
* fix(cost_calculator.py): fix '_select_model_name_for_cost_calc' to return model name with region name prefix if provided
* fix(utils.py): fix 'get_model_info()' to handle edge case where model name starts with custom llm provider AND custom llm provider is given
* fix(cost_calculator.py): handle `custom_llm_provider-` scenario
* fix(cost_calculator.py): e2e working tts cost tracking
ensures initial message is passed in, to cost calculator
* fix(factory.py): suppress linting errors
* fix(cost_calculator.py): strip llm provider from model name after selecting cost calc model
* fix(litellm_logging.py): store initial request in 'input' field + accept base_model to be passed in litellm_params directly
* test: handle none env var value in flaky test
* fix(litellm_logging.py): fix linting errors
---------
Co-authored-by: Sam B <samlingx@gmail.com>
* fix(router.py): fix reading + using deployment-specific num retries on router
Fixes https://github.com/BerriAI/litellm/issues/7001
* fix(router.py): ensure 'timeout' in litellm_params overrides any value in router settings
Refactors all routes to use common '_update_kwargs_with_deployment' which has the timeout handling
* fix(router.py): fix timeout check
* fix(main.py): fix retries being multiplied when using openai sdk
Closes https://github.com/BerriAI/litellm/pull/7130
* docs(prompt_management.md): add langfuse prompt management doc
* feat(team_endpoints.py): allow teams to add their own models
Enables teams to call their own finetuned models via the proxy
* test: add better enforcement check testing for `/model/new` now that teams can add their own models
* docs(team_model_add.md): tutorial for allowing teams to add their own models
* test: fix test
* fix test_deployment_budget_limits_e2e_test
* refactor async_log_success_event to track spend for provider + deployment
* fix format
* rename class to RouterBudgetLimiting
* rename func
* rename types used for budgets
* add new types for deployment budgets
* add budget limits for deployments
* fix checking budgets set for provider
* update file names
* fix linting error
* _track_provider_remaining_budget_prometheus
* async_filter_deployments
* fix model list passed to router
* update error
* test_deployment_budgets_e2e_test_expect_to_fail
* fix test case
* run deployment budget limits
* fix(litellm_logging.py): pass user metadata to langsmith on sdk calls
* fix(litellm_logging.py): pass nested user metadata to logging integration - e.g. langsmith
* fix(exception_mapping_utils.py): catch and clarify watsonx `/text/chat` endpoint not supported error message.
Closes https://github.com/BerriAI/litellm/issues/7213
* fix(watsonx/common_utils.py): accept new 'WATSONX_IAM_URL' env var
allows user to use local watsonx
Fixes https://github.com/BerriAI/litellm/issues/4991
* fix(litellm_logging.py): cleanup unused function
* test: skip bad ibm test
* fix(azure/): support passing headers to azure openai endpoints
Fixes https://github.com/BerriAI/litellm/issues/6217
* fix(utils.py): move default tokenizer to just openai
hf tokenizer makes network calls when trying to get the tokenizer - this slows down execution time calls
* fix(router.py): fix pattern matching router - add generic "*" to it as well
Fixes issue where generic "*" model access group wouldn't show up
* fix(pattern_match_deployments.py): match to more specific pattern
match to more specific pattern
allows setting generic wildcard model access group and excluding specific models more easily
* fix(proxy_server.py): fix _delete_deployment to handle base case where db_model list is empty
don't delete all router models b/c of empty list
Fixes https://github.com/BerriAI/litellm/issues/7196
* fix(anthropic/): fix handling response_format for anthropic messages with anthropic api
* fix(fireworks_ai/): support passing response_format + tool call in same message
Addresses https://github.com/BerriAI/litellm/issues/7135
* Revert "fix(fireworks_ai/): support passing response_format + tool call in same message"
This reverts commit 6a30dc6929.
* test: fix test
* fix(replicate/): fix replicate default retry/polling logic
* test: add unit testing for router pattern matching
* test: update test to use default oai tokenizer
* test: mark flaky test
* test: skip flaky test
* add unit test for test_datadog_static_methods
* docs dd vars
* test_datadog_payload_environment_variables
* test_datadog_static_methods
* docs env vars
* fix table
* feat(base_llm): initial commit for common base config class
Addresses code qa critique https://github.com/andrewyng/aisuite/issues/113#issuecomment-2512369132
* feat(base_llm/): add transform request/response abstract methods to base config class
* feat(cohere-+-clarifai): refactor integrations to use common base config class
* fix: fix linting errors
* refactor(anthropic/): move anthropic + vertex anthropic to use base config
* test: fix xai test
* test: fix tests
* fix: fix linting errors
* test: comment out WIP test
* fix(transformation.py): fix is pdf used check
* fix: fix linting error
* fix(main.py): support passing max retries to azure/openai embedding integrations
Fixes https://github.com/BerriAI/litellm/issues/7003
* feat(team_endpoints.py): allow updating team model aliases
Closes https://github.com/BerriAI/litellm/issues/6956
* feat(router.py): allow specifying model id as fallback - skips any cooldown check
Allows a default model to be checked if all models in cooldown
s/o @micahjsmith
* docs(reliability.md): add fallback to specific model to docs
* fix(utils.py): new 'is_prompt_caching_valid_prompt' helper util
Allows user to identify if messages/tools have prompt caching
Related issue: https://github.com/BerriAI/litellm/issues/6784
* feat(router.py): store model id for prompt caching valid prompt
Allows routing to that model id on subsequent requests
* fix(router.py): only cache if prompt is valid prompt caching prompt
prevents storing unnecessary items in cache
* feat(router.py): support routing prompt caching enabled models to previous deployments
Closes https://github.com/BerriAI/litellm/issues/6784
* test: fix linting errors
* feat(databricks/): convert basemodel to dict and exclude none values
allow passing pydantic message to databricks
* fix(utils.py): ensure all chat completion messages are dict
* (feat) Track `custom_llm_provider` in LiteLLMSpendLogs (#7081)
* add custom_llm_provider to SpendLogsPayload
* add custom_llm_provider to SpendLogs
* add custom llm provider to SpendLogs payload
* test_spend_logs_payload
* Add MLflow to the side bar (#7031)
Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
* (bug fix) SpendLogs update DB catch all possible DB errors for retrying (#7082)
* catch DB_CONNECTION_ERROR_TYPES
* fix DB retry mechanism for SpendLog updates
* use DB_CONNECTION_ERROR_TYPES in auth checks
* fix exp back off for writing SpendLogs
* use _raise_failed_update_spend_exception to ensure errors print as NON blocking
* test_update_spend_logs_multiple_batches_with_failure
* (Feat) Add StructuredOutputs support for Fireworks.AI (#7085)
* fix model cost map fireworks ai "supports_response_schema": true,
* fix supports_response_schema
* fix map openai params fireworks ai
* test_map_response_format
* test_map_response_format
* added deepinfra/Meta-Llama-3.1-405B-Instruct (#7084)
* bump: version 1.53.9 → 1.54.0
* fix deepinfra
* litellm db fixes LiteLLM_UserTable (#7089)
* ci/cd queue new release
* fix llama-3.3-70b-versatile
* refactor - use consistent file naming convention `AI21/` -> `ai21` (#7090)
* fix refactor - use consistent file naming convention
* ci/cd run again
* fix naming structure
* fix use consistent naming (#7092)
---------
Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Yuki Watanabe <31463517+B-Step62@users.noreply.github.com>
Co-authored-by: ali sayyah <ali.sayyah2@gmail.com>