* fix(anthropic_claude3_transformation.py): fix amazon anthropic claude 3 tool calling transformation on invoke route
move to using anthropic config as base
* fix(utils.py): expose anthropic config via providerconfigmanager
* fix(llm_http_handler.py): support json mode on async completion calls
* fix(invoke_handler/make_call): support json mode for anthropic called via bedrock invoke
* fix(anthropic/): handle 'response_format: {"type": "text"}` + migrate amazon claude 3 invoke config to inherit from anthropic config
Prevents error when passing in 'response_format: {"type": "text"}
* test: fix test
* fix(utils.py): fix base invoke provider check
* fix(anthropic_claude3_transformation.py): don't pass 'stream' param
* fix: fix linting errors
* fix(converse_transformation.py): handle response_format type=text for converse
* Adding VertexAI Claude 3.7 Sonnet (#8774)
Co-authored-by: Emerson Gomes <emerson.gomes@thalesgroup.com>
* build(model_prices_and_context_window.json): add anthropic 3-7 models on vertex ai and bedrock
* Support video_url (#8743)
* Support video_url
Support VLMs that works with video.
Example implemenation in vllm: https://github.com/vllm-project/vllm/pull/10020
* llms openai.py: Add ChatCompletionVideoObject
Add data structures to support `video_url` in chat completion
* test test_completion.py: add test for video_url
* Arize Phoenix - ensure correct endpoint/protocol are used; and default to phoenix cloud (#8750)
* minor fixes to default to http and to ensure that the correct endpoint is used
* Update test_arize_phoenix.py
* prioritize http over grpc
---------
Co-authored-by: Emerson Gomes <emerson.gomes@gmail.com>
Co-authored-by: Emerson Gomes <emerson.gomes@thalesgroup.com>
Co-authored-by: Pang Wu <104795337+pang-wu@users.noreply.github.com>
Co-authored-by: Nate Mar <67926244+nate-mar@users.noreply.github.com>
* feat(bedrock/rerank): infer model region if model given as arn
* test: add unit testing to ensure bedrock region name inferred from arn on rerank
* feat(bedrock/rerank/transformation.py): include search units for bedrock rerank result
Resolves https://github.com/BerriAI/litellm/issues/7258#issuecomment-2671557137
* test(test_bedrock_completion.py): add testing for bedrock cohere rerank
* feat(cost_calculator.py): refactor rerank cost tracking to support bedrock cost tracking
* build(model_prices_and_context_window.json): add amazon.rerank model to model cost map
* fix(cost_calculator.py): bedrock/common_utils.py
get base model from model w/ arn -> handles rerank model
* build(model_prices_and_context_window.json): add bedrock cohere rerank pricing
* feat(bedrock/rerank): migrate bedrock config to basererank config
* Revert "feat(bedrock/rerank): migrate bedrock config to basererank config"
This reverts commit 84fae1f167.
* test: add testing to ensure large doc / queries are correctly counted
* Revert "test: add testing to ensure large doc / queries are correctly counted"
This reverts commit 4337f1657e.
* fix(migrate-jina-ai-to-rerank-config): enables cost tracking
* refactor(jina_ai/): finish migrating jina ai to base rerank config
enables cost tracking
* fix(jina_ai/rerank): e2e jina ai rerank cost tracking
* fix: cleanup dead code
* fix: fix python3.8 compatibility error
* test: fix test
* test: add e2e testing for azure ai rerank
* fix: fix linting error
* test: mark cohere as flaky
* fix(azure/chat/gpt_transformation.py): add 'prediction' as a support azure param
Closes https://github.com/BerriAI/litellm/issues/8500
* build(model_prices_and_context_window.json): add new 'gemini-2.0-pro-exp-02-05' model
* style: cleanup invalid json trailing commma
* feat(utils.py): support passing 'tokenizer_config' to register_prompt_template
enables passing complete tokenizer config of model to litellm
Allows calling deepseek on bedrock with the correct prompt template
* fix(utils.py): fix register_prompt_template for custom model names
* test(test_prompt_factory.py): fix test
* test(test_completion.py): add e2e test for bedrock invoke deepseek ft model
* feat(base_invoke_transformation.py): support hf_model_name param for bedrock invoke calls
enables proxy admin to set base model for ft bedrock deepseek model
* feat(bedrock/invoke): support deepseek_r1 route for bedrock
makes it easy to apply the right chat template to that call
* feat(constants.py): store deepseek r1 chat template - allow user to get correct response from deepseek r1 without extra work
* test(test_completion.py): add e2e mock test for bedrock deepseek
* docs(bedrock.md): document new deepseek_r1 route for bedrock
allows us to use the right config
* fix(exception_mapping_utils.py): catch read operation timeout
* initial transform for invoke
* invoke transform_response
* working - able to make request
* working get_complete_url
* working - invoke now runs on llm_http_handler
* fix unused imports
* track litellm overhead ms
* working stream request
* sign_request transform
* sign_request update
* use has_async_custom_stream_wrapper property
* use get_async_custom_stream_wrapper in base llm http handler
* fix make_call in invoke handler
* fix invoke with streaming get_async_custom_stream_wrapper
* working bedrock async streaming with invoke
* fix make call handler for bedrock
* test_all_model_configs
* fix test_bedrock_custom_prompt_template
* sync streaming for bedrock invoke
* fix _add_stream_param_to_request_body
* test_async_text_completion_bedrock
* fix transform_request
* fix get_supported_openai_params
* fix test supports tool choice
* fix test_supports_tool_choice
* add unit test coverage for bedrock invoke transform
* fix location of transformation files
* update import loc
* fix bedrock invoke unit tests
* fix import for max completion tokens
* fix(o_series_transformation.py): add 'reasoning_effort' as o series model param
Closes https://github.com/BerriAI/litellm/issues/8182
* fix(main.py): ensure `reasoning_effort` is a mapped openai param
* refactor(azure/): rename o1_[x] files to o_series_[x]
* refactor(base_llm_unit_tests.py): refactor testing for o series reasoning effort
* test(test_azure_o_series.py): have azure o series tests correctly inherit from base o series model tests
* feat(base_utils.py): support translating 'developer' role to 'system' role for non-openai providers
Makes it easy to switch from openai to anthropic
* fix: fix linting errors
* fix(base_llm_unit_tests.py): fix test
* fix(main.py): add missing param
* fix: support azure o3 model family for fake streaming workaround (#8162)
* fix: support azure o3 model family for fake streaming workaround
* refactor: rename helper to is_o_series_model for clarity
* update function calling parameters for o3 models (#8178)
* refactor(o1_transformation.py): refactor o1 config to be o series config, expand o series model check to o3
ensures max_tokens is correctly translated for o3
* feat(openai/): refactor o1 files to be 'o_series' files
expands naming to cover o3
* fix(azure/chat/o1_handler.py): azure openai is an instance of openai - was causing resets
* test(test_azure_o_series.py): assert stream faked for azure o3 mini
Resolves https://github.com/BerriAI/litellm/pull/8162
* fix(o1_transformation.py): fix o1 transformation logic to handle explicit o1_series routing
* docs(azure.md): update doc with `o_series/` model name
---------
Co-authored-by: byrongrogan <47910641+byrongrogan@users.noreply.github.com>
Co-authored-by: Low Jian Sheng <15527690+lowjiansheng@users.noreply.github.com>
* add support for using llama spec with bedrock
* fix get_bedrock_invoke_provider
* add support for using bedrock provider in mappings
* working request
* test_bedrock_custom_deepseek
* test_bedrock_custom_deepseek
* fix _get_model_id_for_llama_like_model
* test_bedrock_custom_deepseek
* doc DeepSeek-R1-Distill-Llama-70B
* test_bedrock_custom_deepseek
* Litellm dev 01 29 2025 p4 (#8107)
* fix(key_management_endpoints.py): always get db team
Fixes https://github.com/BerriAI/litellm/issues/7983
* test(test_key_management.py): add unit test enforcing check_db_only is always true on key generate checks
* test: fix test
* test: skip gemini thinking
* Litellm dev 01 29 2025 p3 (#8106)
* fix(__init__.py): reduces size of __init__.py and reduces scope for errors by using correct param
* refactor(__init__.py): refactor init by cleaning up redundant params
* refactor(__init__.py): move more constants into constants.py
cleanup root
* refactor(__init__.py): more cleanup
* feat(__init__.py): expose new 'disable_hf_tokenizer_download' param
enables hf model usage in offline env
* docs(config_settings.md): document new disable_hf_tokenizer_download param
* fix: fix linting error
* fix: fix unsafe comparison
* test: fix test
* docs(public_teams.md): add doc showing how to expose public teams for users to join
* docs: add beta disclaimer on public teams
* test: update tests
* feat(lowest_tpm_rpm_v2.py): fix redis cache check to use >= instead of >
makes it consistent
* test(test_custom_guardrails.py): add more unit testing on default on guardrails
ensure it runs if user sent guardrail list is empty
* docs(quick_start.md): clarify default on guardrails run even if user guardrails list contains other guardrails
* refactor(litellm_logging.py): refactor no-log to helper util
allows for more consistent behavior
* feat(litellm_logging.py): add event hook to verbose logs
* fix(litellm_logging.py): add unit testing to ensure `litellm.disable_no_log_param` is respected
* docs(logging.md): document how to disable 'no-log' param
* test: fix test to handle feb
* test: cleanup old bedrock model
* fix: fix router check
* test(test_completion_cost.py): add unit testing to ensure all bedrock models with region name have cost tracked
* feat: initial script to get bedrock pricing from amazon api
ensures bedrock pricing is accurate
* build(model_prices_and_context_window.json): correct bedrock model prices based on api check
ensures accurate bedrock pricing
* ci(config.yml): add bedrock pricing check to ci/cd
ensures litellm always maintains up-to-date pricing for bedrock models
* ci(config.yml): add beautiful soup to ci/cd
* test: bump groq model
* test: fix test
* fix(utils.py): move adding custom logger callback to success event into separate function + don't add success callback to failure event
if user is explicitly choosing 'success' callback, don't log failure as well
* test(test_utils.py): add unit test to ensure custom logger callback only adds callback to specific event
* fix(utils.py): remove string from list of callbacks once corresponding callback class is added
prevents floating values - simplifies testing
* fix(utils.py): fix linting error
* test: cleanup args before test
* test: fix test
* test: update test
* test: fix test